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1. Introduction. Modern efforts to determine the organization and 
structure of the eukaryotic chromosome have shown that there are two 
general organizational classes of DNA: repetitive and non-repetitive. In 
animals the fraction of DNA in repetitive sequences typically lies be­
tween 0.25 and 0.45 [1]. For example, in man the Y chromosome is 
about 50% repetitive DNA [2]. Satellite DNA from the fruit fly Droso-
philia virilis contains about 107 copies of a single heptanucleotide re­
peat known as satellite sequence I, as well as 106 copies of satellite se­
quences II and III, heptanucleotide repeats which could be derived 
from sequence I by single base substitutions [3]. In the frog Xenopus 
laevis, as well as many other species, there are units, repeated several 
hundred times [3], which contain the genes coding for 18S and 28S 
ribosomal RNA separated by spacer regions of unknown function [4—6]. 
An unusual feature of these units is that among different species within 
the genus Xenopus the 18S and 28S ribosomal RNA genes are identical, 
but the spacer regions may differ both in length and nucleotide se­
quence [5, 7-8]. 

The name multigene family has been proposed to describe those sets 
of nucleotide sequences or genes that show multiplicity, close linkage, 
sequence homology, and have similar or overlapping functions [3]. Be­
sides satellite DNA and the genes coding for 18S and 28S ribosomal 
RNA many other genes in eukaryotes are arranged in multigene fami­
lies. These include the genes coding for 5S ribosomal RNA, transfer 
RNA, histones, hemoglobin, and antibody [3]. 

The existence of multigene families raises some intriguing biological 
questions. Genetic mechanisms must be found which can not only gen­
erate repetitive gene sequences, but which also explain the novel evolu­
tionary features of multigene families. That is, how can the genes with­
in a multigene family be maintained virtually identical within a species, 
and yet show divergence between species, as is found with the spacer 
portions of the ribosomal RNA genes and the species-specific residues 
found in the conserved portion of the antibody V gene? This feature of 
multigene families, called coincidental evolution, is difficult to explain 
with classical population genetics theory. For example, in a family of 
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450 ribosomal RNA genes how could selection operate to eliminate a 
mutant nonfunctional gene when 449 functional genes were still pres­
ent? One additional novel evolutionary feature of multigene families is 
that the family size expands and contracts rapidly with respect to evo­
lutionary time. Different but closely related species of kangaroo rats, 
for example, contain multigene families which constitute from very 
little to 50% of their genomic DNA [3]. Also, size heterogeneity of 
multigene families is observed among the individual members of a pop­
ulation [3]. 

One genetic mechanism that can explain the generation and evolu­
tion of multigene families, and which has attracted both biological and 
mathematical attention is homologous but unequal crossing-over [3, 
9-14]. During intrachromosomal unequal crossing-over, sister chroma­
tids carrying closely linked homologous genes mispair, crossover, and 
produce two new sister chromatids, one containing a greater number 
and the other a lesser number of gene repeats (Fig. 1). When mis-
pairing is by one repeat unit a single gene is duplicated in one chroma­
tid and eliminated from the other chromatid. A mispairing by k units 
leads to a duplication and elimination of k tandem repeats. The effects 
of many unequal cross-overs on a multigene family have been studied 
by Smith [9, 11] and Black and Gibson [10] by Monte-Carlo simula­
tions. Although such studies are useful they can only deal with limited 
numbers of genes. Here I shall present some analytical models for the 
evolution of multigene families developed by Oh ta [12] and by me in 
collaboration with Bell [13]. Since unequal crossing-over requires the 
presence of at least two repeats, other mechanisms must be invoked to 
explain the initial duplication of a gene. 

2. Birth-Death Models. I shall first analyze the effects of unequal 
crossing-over on a multigene family when the mispairing is by a single 
repeat. Assume that at t = 0 there are N0 = 2 adjacent homologous 
DNA sequences or "genes" which represent a multigene family. These 
sequences need not be identical, only similar enough to allow mis­
pairing. For simplicity, I shall only consider the case in which all of the 
N0 repeats at t = 0 are distinct. Pick one particular repeat and let Pn(t) 
be the probability that there are n copies of this repeat at time t. In 
the time interval [t, t + 8t] one of three things can happen: The num­
ber of copies of the repeat can increase by 1, decrease by 1, or remain 
the same. If there are n copies of the repeat at time f, the probabilities 
of these events are Xn(t)8t + o(8t), iin(t)8t + o(8t), and 
1 — Xn(t)8t — iin(t)8t + o(8t), respectively. Hence 
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Figure 1. Unequal crossing-over between sister chromatids in a region containing N0 tan­
dem homologous genes and the products of the events, a, Mispairing by one gene; b, 

mispairing by two genes. 

Pn(t + St) = [1 - Xn(t)St - fin(t)St}Pn(t) 

+ Xn_1(t)StPn_1(t) 

(2.1) +nn+1(t)8tPn+1(t) + o(8t), n ü l , 

P0(t + St) = [1 - \0(t)8t]P0(t) 

+ HiKifit Pj/it) + o(8t). 
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In the limit 8t —> 0 one obtains the following system of differential 
equations: 

dP 
-£ = -[Xn(t) + vJt)]Pn(t) + K-i(tK-i(t) 

(2.2) + Vn+i(t)Pn+1(t), n ^ 1 

dP 
-£ = -X0(t)P0(t) + Mi(W), 

with initial conditions 

This description of unequal crossing-over is a birth and death process 
with Xn(t) and \xn(t) the birth and death coefficients, respectively. In 
what follows, I shall consider two separate and biologically reasonable 
methods of choosing these coefficients. 

2.2. If there is an equal a priori probability of each repeat in a mul-
tigene family being influenced by crossover, i.e., duplicated or elimi­
nated, then the probability that a gene with multiplicity n is influenced 
is n/N(t), where N(t) is the total number of genes in the family at time 
t. If we let p and 1 — p be the respective probabilities that a gene in­
fluenced by crossover is duplicated and eliminated, and if we measure 
time by the crossover rate so one crossover equals one unit of time, 
then 

(2-4) Kit) = p 
N(t) 

(2.5) ßn(t) = (1 - p) 
N(t) 

The difficulty with this approach is that N(t) is a random variable. At 
each crossover the total family length increases by one with probability 
p and decreases by one with probability I — p. Thus N(t) varies as a 
one-dimensional random walk. To proceed we shall replace N(t) by its 
mean value, N(t). Thus we are approximating the true birth and death 
coefficients. In section (2.6) I shall comment on a more precise method 
of solution employing a bivariate Markov process. 

One can show quite simply that 

(2-6) - Ä - = (2p - 1)[1 - «0JfQ(t)] 
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where irQtN (t) is the probability of the family going extinct [i.e., N(t) — 
0] given iV(0) = N0. Thus for p ^ 1/2, dN/dt ^ 0 whereas for 
p ^ 1/2, dN/dt ^ 0. 

Restricting our attention to the case p — 1/2, so that N(t) — N0, Eqs. 
(2.4) and (2.5) become 

(2.7) \Jit) = ^(t)= " 
2N0 

For these values of the birth and death coefficients, Eq. (2.2) with in­
itial conditions (2.3) can be solved [15] yielding 

(2.9) P0(t) = * 
t + 2N0 

The mean value of n, n, can be shown to be 

(2.10) n = 1 

which is simply N(t)/N0, as one would expect, and the variance, a2, is a 
linearly increasing function of time given by 

(2.11) ••= i- . 

2.3. If the number of copies of a gene ever reaches 0 then that gene 
is lost forever. From (2.9) one sees that the probability of ultimate ex­
tinction 

lim P0(t) = 1, 

Thus if p — 1/2 all genes will ultimately be lost. However, since evolu­
tion has only had a finite time to operate, this asymptotic result should 
not be disturbing. Additionally, in reality, the loss of the whole multi-
gene family would be highly selected against. 

2.4. One can easily imagine circumstances in which initial conditions 
other than (2.3) might apply. If one initially has n 0 > 1 identical copies 
of the particular repeat we are following, then the probability of ex­
tinction, F0, is obtained by raising (2.9) to the (n0)th power and the 
probability of ultimate extinction is still unity. The expressions for the 
mean and variance are obtained by multiplying Eqs. (2.10) and (2.11) 
by n0. These results follow from the fact that the n0 repeats evolve in­
dependently. 
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2.5. Initially there were N0 distinct genes in the multigene family. 
Let us call each of these distinct genes a gene type. Above, I examined 
the effects of unequal crossing-over on a single gene type and showed 
that any particular gene type may disappear from the family. If the to­
tal number of gene types in the family ever reaches one, then the re­
maining gene (or more precisely, the remaining gene type) is said to 
have become fixed. The multigene family would then be homogeneous 
and contain on the average N(t) copies of the fixed gene. Gene fixation 
is therefore a mechanism for explaining the coincidental evolution seen 
in multigene families. Furthermore, even after fixation occurs N(t) will 
vary, explaining the observed expansion and contraction of multigene 
families. 

When p — 1/2 gene fixation is certain to occur since all genes will 
eventually be lost. The mean time to fixation can be computed as fol­
lows. Let piN (t) be the probability of having i gene types in the multi­
gene family at time t, given that there were N0 gene types at t = 0. 
Then 

(2-12) PO,N0=PON", 

(2.13) phNo=N0(l-P0)P0
No-\ 

A gene becomes fixed when a multigene family with two gene types 
loses all the genes of one type. A family containing one gene type can 
become a family with zero gene types, i.e., go extinct. Since dp1N/dt 
measures the net rates of these competing processes, one can easily see 
that the rate of gene fixation, dpf/dt, is given by 

(2.14) Èh. =
 dh^ + dPo.*o 

dt dt di 

and that the cumulative probability of fixation by time t, Pf(t), is 

(2.15) pr(t) = £ -^-dr = PlJfo + VoMo. 

Substituting (2.9) into (2.12) and (2.13) and differentiating gives 

(2 im ÉEL =
 4No3(No - 1 ) ^ 0 " 2 

1 ' ; dt (t + 2N0f o+i 

and 

(2.17) m = ^ 2 + ^ 
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Thus the probability of ultimate fixation 

(2.18) lim p/f) = 1 
£-+00 

and the mean time to ultimate fixation determined by this birth death 
process, Tbd, is given by 

(2.19) TM= £° * %*r. 

One can easily show 

r f^o-i tNo 
( 2 ' 2 0 ) J (t + 2N0)

N0+1 d T = 2N0
2(* + 22Vo)wo 

and hence 

(2.21) TM = 2N0(N0 - 1). 

2.6. The results obtained so far were based upon an approximation 
in which the birth and death coefficients were obtained by replacing 
N(t) in (2.4) and (2.5) by its mean valuue N(t). A precise model of un­
equal crossing-over can be constructed by viewing both n(t) and N(t) as 
random variables and computing the probability, P(n, N, t), that at time t 
there are n copies of a particular repeat and a total of N repeats in the 
whole multigene family. Figure 2 illustrates the possible transitions 
from state (n, N) by unequal crossing with unit mispairing. If one as­
sumes that there is an equal a priori chance of a crossover influencing 
each repeat in the family then the transition probabilities shown in Fig­
ure 2 have the values: 

(2.22a) XnN = pn/N ; XnN : (n, N) — (n + 1, N + 1), 

(2.22b) ynJV - p(l - n/N) ; ynJi : (n, N)-*(n,N+ 1), 

(2.22c) iinN = (1 - p)n/N ; K,N '• (", *0 - (n - 1, N - 1), 

(2.22d) <onJV = (1 - p)(l - n/N) ; cowJV : (n, N) - (n, iV - 1), 

and 

( 2 - 2 3 ) *»JV + yn.N + Mn.iV + Wn.tf = * ' 

Although one can easily construct the forward and backward equations 
for this process, they do not appear to be easily soluble because of the 
factor N in the denominator of the transition probabilities. 
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n+l,N+l 

Figure 2. Possible transitions and their rates from the state (n, A7) by unequal crossing-

over with unit mispairing. 

2.7. An alternative approach to assessing the validity of replacing 
N(t) by its mean is to compare the results of Monte Carlo simulations 
with those predicted by the linear birth-death process. Black and Gib­
son [10] performed such a simulation for the case of unit mispairing 
with p — 1/2. In Figure 3 I have superimposed Black and Gibson's re­
sults for the percentage of original gene types that remain in the family 
after a given number of crossovers, with plots of 1 — P0(t) as obtained 
from Eq. (2.9), for different values of N0. The Monte-Carlo results con­
sistently appear below the computed curves, with the disagreement 
being least at high values of N0. The disagreement at small values of N0 

may in part be due to poor statistics in the Monte-Carlo simulations 
which start with few repeats. 
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t (measured in crossovers) 

Figure 3. Comparison of the predictions of the birth-death (solid lines) with the Monte-
Carlo simulations of Black and Gibson [10] (data points) for p — 1/2. Plotted is the ex­
pected fraction of remaining genes after various numbers of crossovers for different size 
families. A, N0 = 50; • , N0 = 250; O, N0 = 500; •, N0 = 1000. Reproduced with per­

mission from [13]. 

2.8. There is a second, biologically reasonably way to view the un­

equal crossing process which rigorously leads to linear birth and death 

coefficients. In the model discussed above, time was measured in units 
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of crossover events. If there were a constant rate of unequal crossing-
over within a multigene family this approach would be appropriate. 
However, there is some biological evidence [16] which suggests that the 
rate of crossing-over is proportional to the size of the multigene family. 
If this is in fact the case, then it is reasonable to suppose that the num­
ber of crossovers per unit time which influence a particular gene type 
is proportional to n(t), the number of copies of that gene at time t, so 
that 

(2.24) Kit) = kpn(t) 

Hn(t) = fc(l - p)n(t) 

where k is the crossover rate per gene copy. For p — 1/2 this model 
reduces to the previous one if /c_1 is replaced by NQ9 however it has the 
advantage of being exactly soluble for all values of p. Using the clas­
sical results for linear birth death processes [15] one finds 

(2-25) po(ty- , „ ^ « , - 1 , , 
(1 _ p ) [ l _ gfc(2p-D*] 

1 — p — pek 

_ p n - l ( 1 _ 2p)V<*>-l> ' [ l - gfcffP-Ky-

K*"U>) r n W - [I - p - pe*<2p-l)*]n+l 

The mean and variance of n are 

(2.27) n = ek^-1)l 

ek{2p-l)tJek{2p-l)t _ il 

(2.28) 
2p - 1 

For p — 1/2 these equations reduce to 

(2.29) P0(t) = kt/2 

1 + kt/2 

[kt/2]"-1 

(2.30) P.W = t l + w + 1 , 

(2.31) n = l, 

(2.32) a2 = kt. 

The probability of ultimate extinction is therefore 

if p ^ 1/2 
(2.33) lim P0(t) 

«-co t L^P q p > l / 2 . (1 
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The probability of fixation, ettermined by using (2.12), (2.13), (2.15), 
and (2.25), is 

P/(') = 
(2.34) 
V ' (1 - pfo-^l - eWy-^fo-ìjN^l - 2p)ek^-1)f + (1 - p)(l - e**2*»-1**} 

[1 - p - p^(2P-D^o 

which simplifies when p = 1/2 to 

(2 35) vit) - (fr/^-Wo + fa/2) 
(2'35) m ~ (l + fa/2^ 

The probability of ultimate fixation 

[ 1 if p ^ 1/2 
( 2 - 3 6 ) - m = (i-p^Hd-rt + ^ - i ) ] i f p > 1 / 2 . 

Thus when p > 1/2 fixation is not certain. 
The mean time to ultimate fixation can be computed as in section 

2.5. When p = 1/2 this computa t ion is simple and leads to 
2(N0 - l)/k. 

3. A Gambler's Ruin Model. If one assumes that there exists some bi­
ological mechanism for maintaining the length of a multigene family 
constant, say at N(t) — N0, then one can interpret the unequal crossing-
over problem as a classical gambler's ruin problem [15]. Again I shall 
follow one particular gene type, so that at t — 0, n = 1. Each time a 
crossover influences a gene of this type, n either increases or decreases 
by 1. If n reaches N0 then all other gene types have necessarily been 
eliminated and n has been fixed. Thus considered as a game, one gene 
type plays against all others which constitute the "bank." Initially the 
bank has N0 — 1 genes and the player 1 gene. At each unit of play, the 
player wins or loses 1 gene with probabilities p and q — 1 — p, respec­
tively. Since a crossover can affect any gene in the family, plays do not 
occur at a constant rate. From well known results on the gambler's ruin 
problem one can conclude that the probability of gene fixation is 1/2V0 

when p — 1/2, and is 

-0/[ ( ;M 
when p ¥= 1/2 [15]. Furthermore, given that fixation occurs, the mean 
time of this event can be computed using results on conditional random 
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walks developed by Beyer and Waterman [17]. If we again measure 
time in units of crossover events, then one notices that the probability 
of a step being taken at a crossover is n/N0. Including the non-uniform 
rate of play into the gambler's ruin, one finds that the mean time to 
gene fixation determined by a gambler's ruin process, r , is given by 

(3.1) 

N0(\{) - 1) p= 1/2 

(p-vo - qrvo)(p - q) 

| (p* - q^o-t - <f <H # 

i = l i 

For p — 1/2 this differs from the previous estimate, Thd, by a factor of 
2. It is smaller because in this model the game definitely stops if n 
reaches A7

0. In other models n could exceed AT
(). 

4. Diffusion Equation Method. Oh ta [12] has used the diffusion 
equation method of population genetics [18] to compute the fixation 
time in a unit mispairing problem. Here I shall summarize her work 
and show how it can be generalized for the case of unequal crossing-
over with multiple mispairing. 

4.1 Let us assume AT
0 is large so that it is appropriate to deal with 

continuous changes in gene frequency. Again we shall follow one par­
ticular gene type and denote its frequency by x. In order to compute 
the mean time for gene fixation one can utilize some classical results of 
Kimura and Ohta [19] based upon the use of the Kolmogorov backward 
equation 

dPxi = XAL d2P*i + M - ^ i 
dt 2 di2 A Ax di 

(A 1\ rxi _ ±x_ Hxi i A* 

where pxi(t) is the probability that the gene frequency is x at time t, 
given the gene frequency was i at time 0. The change in the mean and 
variance of the gene frequency per unit time are MAj, and VAx, respec­
tively. For gene fixation one considers the case in which x — 1 and de­
termines u^t) — pVv the probability that the gene becomes fixed by 
time t, given that its frequency is i initially. In order to proceed Ohta 
assumed that mispairing occurs by one repeat, so that one gene is ei­
ther duplicated or eliminated per crossover. Further, she assumed that 
crossovers occur at random between the A7

0 repeats of the family, 
p — 1/2, and that duplication and deletion occur alternately in a pro­
cess she called a "cycle." Measuring time in cycles, the family size re­
mains constant, i.e., N(t) = A7

0 for all t. 
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Ohta [12] then showed that the mean and variance of the frequency 
change per cycle are given by 

M Ax = o, 
(4.2 

VAx = 2*(1 - *)/n0
2, 

and the mean fixation time, measured in cycles, is 

(4.3) Tdi£ = -N0
2(N0 - l)ln(l - 1/N0). 

Recognizing that each cycle is two crossovers, one can compare this 
diffusion equation result with the fixation time estimate derived by the 
birth-death process. Doing so one finds that with time measured in 
crossovers 

r d i f = -2 iV 0
2 ( ]V 0 - l ) l n ( l - l / ]V 0 ) 

(4.4) = -N0ln(l - 1/N0)TM 

~ ( i + i 4 + ^ + ---K 
where Tbd is given by (2.21). The two estimates converge to the same 
result as N0 becomes large. For small values of N0, TM is probabily a 
more accurate estimate since it is derived without assuming that the re­
peat frequencies are continuous variables and that unequal crossovers 
occur in cycles. 

4.2. Now let us consider the case of unequal crossovers with multiple 
and random mispairing. Recall from Figure 1 that a mispairing by k re­
peats leads to a duplication of k repeats on one chromatid and an elim­
ination of k repeats from the sister chromatid. Assuming a viable off­
spring has equal probability of obtaining the expanded or contracted 
chromosome, then p = 1/2. Following Ohta I shall make the more 
stringent assumption that unequal crossovers occur in cycles composed 
of a duplication of m repeats followed by a deletion of m repeats, 
where the mispairing per cycle, m, is a random variable with mean m. 
If one further assumes that the repeats in the multigene family are dis­
tributed randomly along the chromosome and the position of the 
crossover is random, then the probability that the gene frequency of a 
particular gene type increases from x to x + £1? Px_>x+£, during a dupli­
cation event in which the mispairing is by m is 

(4-5) P„+il = ( ™ ) * ^ < l - *)»-«A 0 ^ ^ 0 S m. 
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Similarly, the probability of decreasing the gene frequency by £2 during 
the deletion stage of the cycle is 

(4.6) *W,+ É 1 -É 2 = ( ^ )^<l - *)W-*A 

0 ^ £2N0 ^ m, 

where I have neglected the small changes in gene frequency and repeat 
length caused by the preceeding duplication event. Then, for a series of 
cycles with random mispairings m, occurring with frequency f(m), and 
£j and £2 taking on all possible values for a given m, one finds 

N0 m m 

vAl= S W 2 2 «i - «2)2^-,+fl^+fl-,+fl-t, 

(4.7) 

_ 2mx(l — x) 

and 

N0 mm 

(4-8) MAI = m 2 / M ^ ^ o & - feJP,,,^,^. = 0. 

Using the results of Kimura and Ohta [19] one can now show that 
the mean time to fixation measured in crossovers is 

2N 2 

(4.9) Tdlf = - -=*-(N0 - l)ln(l - 1/N0). 

This differs from (4.4) for the unit mispairing problem by the presence 
of m in the denominator. Thus to the crude level of approximation im­
plied by this model, the only effect of multiple mispairing is to speed 
up fixation; crossovers with average mispairing rn are equivalent to m 
unit mispairing unequal crossovers. 

4.3. Much work remains to be done on the multiple mispairing prob­
lem. The assumption of duplications and deletions occurring in cycles 
needs to be relaxed and the effects of selection (p ¥^ 1/2) need to be 
explored. Possibly this should be done by a branching process approach. 
Further, the importance of gene order in multiple mispaired unequal 
crossovers needs to be ascertained. The physical process of unequal 
crossover with mispairing of two or more repeats can be represented as 
a "necklace problem." At each time unit, a section of m tandem beads 
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on a necklace are removed and replaced by two identical tandem sec­
tions with probability p, and not replaced with probability I — p. Giv­
en some initial ordering of beads on the necklace, what is the composi­
tion of the necklace at later times? What is the probability of certain 
bead types going extinct, becoming fixed, and what is the probability 
distribution of the times of occurrence of these processes? Ohta [23] has 
shown that if the maximum mispairing is 10%-15% of the total family 
length then a random gene order is to be expected. 

5. Conclusions. The process of unequal crossing-over between sister 
chromatids can explain both the existence and the novel evolutionary 
features of multigene families. Before a multigene family can arise by 
unequal crossing-over at least two tandem homologous genes must be 
present. Experiments with prokaryotic organisms suggest that de novo 
gene duplications do occur and at relatively high frequencies [20-22]. 
In order for a small number of tandem repeats to generate a large mul­
tigene family by unequal crossing-over, one would require selection of 
the expanded chromosome over the contracted one, i.e., p > 1/2. With 
p > 1/2 the mean family size would increase with time. At some point 
one would suppose that the selective pressures for expanding the family 
size would cease, p would take on the value of 1/2, and the mean fam­
ily size would remain constant. 

One method of generating a homogeneous family which exhibited 
coincidental evolution would be the fixation of one gene in the multi­
gene family at a rate which was rapid compared to the time needed for 
mutations to accumulate. When p = 1/2 fixation of one gene in the 
family is certain to occur with a mean fixation time of 2N0(N0 — 1) [or 
2(N0 — l)/k] when mispairings of one unit occur. Here N0 can be inter­
preted as the constant mean family size, and I have assumed that due to 
mutations all repeats in the family may be different when the constant 
size of N0 is attained. If multiple mispairing occurs this fixation time 
can be shortened by a factor equal to the mean mispairing per cross­
over. 
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