$\lambda(n, k)$ —CONVEX FUNCTIONS
 S. UMAMAHESWARAM

1. Introduction. Assume n and k are positive integers such that $n \geqq 2$ and $1 \leqq k \leqq n$. Define an Ordered k-partition of n (denoted $\lambda(n, k))$ as an ordered k-tuple $(n(1), \cdots, n(k))$ of positive integers satisfying $n(1)+\cdots+n(k)=n$. Let $P(n)$ denote the set of all ordered j partitions $\mu(n, j)$ of n with j varying such that $1 \leqq j \leqq n$. Let $F \subset C^{r}(I)$ and $u \in C^{r}(I)$ where $I \subset R$ is an interval and $r>0$ is large enough so that the following definitions make sense.

Definition 1.1. F is a $\lambda(n, k)$-parameter family on I if for every set of k (k fixed) distinct points $x_{1}<\cdots<x_{k}$ in I and every set of n real numbers $y_{i r}$ there exists a unique f in F satisfying

$$
\begin{equation*}
f^{(r)}\left(x_{i}\right)=y_{i r}, r=0, \cdots, n(i)-1, i=1, \cdots, k \tag{1.1}
\end{equation*}
$$

Given $Q(n)$, a nonempty subset of $P(n)$ we say F is a $Q(n)$-parameter family on I if F is a $\mu(n, i)$-parameter family on I for all $\mu(n, j) \in Q(n)$.

Let $M(i) \equiv n+n(1)+\cdots+n(i)$ for $1 \leqq i \leqq k, M(0)=n$ and F be a $\lambda(n, k)$-parameter family on I.

Definition 1.2. For $k \geqq 2, u$ is $\lambda(n, k)$-convex with respect to F on I if for every set of k points $x_{1}<\cdots<x_{k}$ in I the unique f in F determined by

$$
\begin{equation*}
(f-u)^{(r)}\left(x_{i}\right)=0, r=0, \cdots, n(i)-1, i=1, \cdots, k \tag{1.2}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
(-1)^{M(i)}(f-u)(x) \leqq 0 \text { on }\left(x_{i}, x_{i+1}\right), i=1, \cdots, k-1 \tag{1.3}
\end{equation*}
$$

(If in (1.3) strict inequalities are satisfied then we say u is strictly $\lambda(n, k)$-convex.)

Definition 1.3. For $k \geqq 1, u$ is $\lambda(n, k)^{*}$-convex with respect to F on I if for every $x_{1}<\cdots<x_{k}$ in I the function f in F determined by (1.2) satisfies (1.3) for $i=0, \cdots, k$. (x_{0} and x_{k+1} are the left and right end points of I respectively).

[^0]Key words and phrases. Convex function, parameter, boundary condition.

Let u be $\lambda(n, k)^{*}$-convex with respect to F on I. We say u has property $P(\lambda(n, k))$ with respect to F on I in case either (i) u is strictly $\lambda(n, k)^{*}$-convex with respect to F on I, or (ii) for every $x_{1}<\cdots<x_{k}$ in I the conditions (1.2) and $f(z)=u(z)$ for some $z \in I\left(z \neq x_{i}, 1 \leqq i\right.$ $\leqq k$ imply $f(x) \equiv u(x)$ on $\left[\min \left\{x_{1}, z\right\}, \max \left\{x_{k}, z\right\}\right]$.

It has been shown (Theorem 4.5 of [3]) that if F is a $P(n)$-parameter family and u is $\lambda(n, n)$-convex with respect to F on I then (i) u is $\mu(n, j)^{*}$-convex with respect to F on I and (ii) u has property $P(\mu(n, j))$ with respect to F on I for all $\mu(n, j) \in P(n), j \geqq 1$. In the main theorem (Theorem 3.1) of this paper we show under the assumption $\lambda(n, k)$ $(n, k \geqq 3)$ has at least two entries equal to 1 that if F is a $P(n)$-parameter family and u is $\mu(n, k-1)^{*}$-convex with respect to F on I with the property $P(\mu(n, k-1))$ for all $\mu(n, k-1)$ in a certain subset (which depends on $\lambda(n, k))$ of $P(n)$ then u is $\lambda(n, k)^{*}$-convex with respect to F on I with the property $P(\lambda(n, k))$. It then follows from this theorem that if F is a $P(n)$-parameter family and u is $\mu(n, i)^{*}$-convex with respect to F on I for all $\mu(n, j) \in P(n)$ which have at most one entry equal to 1 then u is $\lambda(n, n)$-convex with respect to F on I. It remains unknown however whether $\lambda(n, 1)^{*}$-convexity of u together with property $P(\lambda(n, 1))$ implies $\mu(n, j)^{*}$-convexity of u with property $P(\mu(n, j))$ where $\mu(n, j) \in P(n)$ is arbitrary and F is a $P(n)$-parameter family on I.

For earlier results concerning $\lambda(n, k)$-parameter families and associated convex functions or their special cases reference may be made to $[1,2,3,4]$ and to the other references mentioned therein. In particular, Theorem 3.1 of [2] is analogous to our main theorem in the case $k=n$. Also for the case $k<n$ with the following restrictions on $\lambda(n, k)$ namely, (i) $\max \{n(i): 1 \leqq i \leqq k\}=2$ (ii) $n(1)=n(k)=2$ and (iii) any two entries not equal to 1 are separated by at least two entries equal to 1 , an analogous result can be found on page 40 of [2].
2. Preliminary results. The Lemmas 2.1 and 2.2 stated below are special cases of Theorems 2.1 and 2.2 of [4]. We indicate, however, for the sake of reference the proof of one of them, the other being analogous.

Lemma 2.1. Suppose F is a $P(n)$-parameter family and u is $\lambda(n, k)^{*}$ convex with respect to F on I. Let $g \in F$ satisfy the condition

$$
\begin{equation*}
(-1)^{M(J)}(g-u)^{(n(J)-1)}\left(x_{J}\right)>0 \tag{2.1}
\end{equation*}
$$

for some $J, 1<J \leqq k$ and all the conditions of (1.2) except for $i=J$ and $r=n(J)-1$. Then g satisfies

$$
(-1)^{M(i)}(g-u)(x)<0 \text { on }\left(x_{i}, x_{i+1}\right), i=0, \cdots, J-1 .
$$

Lemma 2.2. Suppose F and u are as in Lemma 2.1 and $g \in F$ satisfies the condition

$$
\begin{equation*}
(-1)^{M(J)}(g-u)^{(n(J)-1)}\left(x_{j}\right)<0 \tag{2.2}
\end{equation*}
$$

for some $J, 1 \leqq J<k$ and all the conditions (1.2) except for $i=J$ and r $=n(J)-1$. Then g satisfies $(-1)^{M(i)}(g-u)(x)<0$ on $\left(x_{i}, x_{i+1}\right), i=J$, \cdots, k.

Proof of Lemma 2.1. Let $f \in F$ be determined by the conditions (1.2). Then the condition (2.1) together with the hypothesis on F implies

$$
\begin{equation*}
(-1)^{M(i)}(g-f)(x)<0 \text { on }\left(x_{i}, x_{i+1}\right), i=0, \cdots, J-1 \tag{2.4}
\end{equation*}
$$

Now the conclusion follows by addition of the inequalities (1.3) and (2.4) for $i=0, \cdots, J-1$.

We assume hereafter that $n, k \geqq 3$ and $\lambda(n, k)$ is such that $n(p)=1$ $=n(m)$ for some fixed $p, m, 1 \leqq p<m \leqq k$. We also let $Q(n) \equiv$ $\{\mu(n, k-1) \in P(n) ; \mu(n, k-1)$ is obtained from $\lambda(n, k)$ by deleting the entries $n(p)=1, n(m)=1$ and inserting the integer 2 in exactly one of the possible $k-1$ places in the resulting array $\} \cup\{\mu(n, k-1) \in$ $P(n): \mu(n, k-1)$ is obtained from $\lambda(n, k)$ by deleting the entries $n(p)=1, n(m)=1$, replacing $n(i)$ by $n(i)+1$ for exactly one $i \neq p, m$ and inserting the integer 1 in just one of the possible $k-1$ places in the resulting array $\}$.

Lemma 2.3. Suppose F is a $P(n)$-parameter family and u is $\mu(n$, $k-1)^{*}$-convex with property $P(\mu(n, k-1))$ with respect to F on I for all $\mu(n, k-1) \in Q(n)$. Let $f \in F$ be determined by the conditions (1.2) and assume that $u(x) \not \equiv f(x)$ on $\left[x_{1}, x_{k}\right]$. Then
(i) $(-1)^{M(i)}(f-u)^{(n) i)}\left(x_{i}\right)<0$ for all $i, 1 \leqq i \leqq k$
(ii) $(f-u)(z)=0, z \in\left(x_{i}, x_{i+1}\right)$ implies
(a) $(-1)^{M(i)}(f-u)^{\prime}(z)<0$ if $m \leqq i \leqq k$ or $i=p$
(b) $(-1)^{M(i)}(f-u)^{\prime}(z)>0$ if $0 \leqq i \leqq p-1$ or $i=m-1$
and
(iii) $(f-u)(x) \neq 0$ for any $x \in\left(x_{i}, x_{i+1}\right), p<i<m-1$.

Proof. (i) Suppose $(A):(-1)^{M(J)}(f-u)^{(n(J)}\left(x_{J}\right) \geqq 0$ holds for some J. We shall consider two cases. (I) $p<J \leqq k$ and (II) $1 \leqq J \leqq p$.

Case (I). Let $\mu(n, k-1)=(n(1), \cdots, n(p-1), n(p+1), \cdots$, $n(J)+1, \cdots, n(k))$. (In case $J=p+1$, the entry $n(p+1)$ in $\mu(n, k-1)$ has to be ignored.) If equality holds in (A) then the $\mu(n, k-1)^{*}$-convexity of u along with property $P(\mu(n, k-1))$ and $(f-u)\left(x_{p}\right)=0$ implies $f \equiv u$ on $\left[x_{1}, x_{k}\right]$, a contradiction.

If strict inequality holds in (A) then the $\mu(n, k-1)^{*}$-convexity of u together with the hypothesis on F implies by Lemma 2.1 that $(-1)^{M(p-1)}(f-u)(x)<0$ on $\left(x_{p-1}, x_{p+1}\right)$, a contradiction to $(f-u)\left(x_{p}\right)$ $=0$.

Case (II). The arguments will be the same as in Case (I) if we interchange the roles of p and m and of Lemmas 2.1 and 2.2 in its proof.
(ii) (a) Suppose $(\mathrm{B}):(-1)^{M(J)}(f-u)^{\prime}(z) \geqq 0$ for some J. We shall consider two cases. (I) $m \leqq J \leqq k$ and (II) $J=p$.

Case I. Let $\mu(n, k-1)=(n(1), \cdots, n(p-1), n(p+1), \cdots$, $n(m-1), n(m+1), \cdots, n(J), 2, n(J+1), \cdots, n(k))$. (In case $J=m$, the entries $n(m+1), \cdots, n(J)$ are to be ignored.) If equality holds in (B) then the $\mu(n, k-1)^{*}$-convexity of u together with property $P(\mu(n$, $k-1)$) and $(f-u)\left(x_{p}\right)=0$ implies $f \equiv u$, a contradiction.

If strict inequality holds in (B) then the $\mu(n, k-1)^{*}$-convexity of u and the hypothesis on F imply by Lemma 2.1 that $(-1)^{M(p-1)}$ $(f-u)(x)<0$ on $\left(x_{p-1}, x_{p+1}\right)$, a contradiction to $(f-u)\left(x_{p}\right)=0$.

Case II. Let $\mu(n, k-1)=(n(1), \cdots, n(p-1), 2, n(p+1), \cdots$, $n(m-1), n(m+1), \cdots, n(k))$. If equality holds in (B) then the $\mu(n$, $k-1)^{*}$-convexity of u along with property $P(\mu(n, k-1))$ and $(f-u)\left(x_{m}\right)=0$ implies $f \equiv u$ on $\left[x_{1}, x_{k}\right]$, a contradiction. If strict inequality holds in (B) then the $\mu(u, k-1)^{*}$-convexity of u with the hypothesis on F yields, by Lemma 2.2 that $(-1)^{M(m)}(f-u)\left(x_{m}\right)<0$, a contradiction to $(f-u)\left(x_{m}\right)=0$.
(ii) (b). The arguments will be similar to those of (ii) (a) if we interchange the roles of p and m and of the Lemmas 2.1 and 2.2 in its proof.
(iii) Suppose $(f-u)(z)=0$ for some $z \in\left(x_{J}, \quad x_{J+1}\right)$ where $p<J<m-1$. Let $\mu(n, k-1)=(n(1), \cdots, n(p-1), n(p+1), \cdots$, $n(J), \quad 2, \quad n(J+1), \quad \cdots, \quad n(m-1), \quad n(m+1), \quad \cdots, \quad n(k)) . \quad$ If $(-1)^{M(J)}(f-u)^{\prime}(z)>0(<0)$ then the $\mu(n, k-1)^{*}$-convexity of u implies by Lemma $2.2(2.1)$ that $(-1)^{M(m)}(f-u) \quad\left(x_{m}\right)<0$ $\left((-1)^{M(p-1)}(f-u)\left(x_{p}\right)<0\right)$, a contradiction. If $(f-u)^{\prime}(z)=0$ then the $\mu(n, k-1)^{*}$-convexity of u with the property $P(\mu(n, k-1))$ and $(f-u)$ $\left(x_{p}\right)=0$ implies $f \equiv u$, a contradiction.

3. Main results.

Theorem 3.1. Let $\lambda(n, k)$ be a given ordered k-partition of the type referred to above and let $Q(n)$ be the corresponding subset of $P(n)$ as defined above. Then, if F is a $P(n)$-parameter family and if u is $\mu(n$, $k-1)^{*}$-convex and has property $P(\mu(n, k-1))$ with respect to F on I for all $\mu(n, k-1) \in Q(n)$, it follows that u is $\lambda(n, k)^{*}$-convex and has property $P(\lambda(n, k))$ with respect to F on I.

Proof. Let $f \in F$ be determined by the conditions (1.2). We will show

$$
\begin{equation*}
(-1)^{M(i)}(f-u)(x) \leqq 0 \text { on }\left(x_{i}, x_{i+1}\right), i=0, \cdots, k \tag{3.1}
\end{equation*}
$$

If $f \equiv u$ on some subinterval of $\left(x_{1}, x_{k}\right)$ then by virtue of our hypothesis on u we will have that $f \equiv u$ on $\left[x_{1}, x_{k}\right]$, the inequality (3.1) holds for $i=0, k$ and u has property $P(\lambda(n, k))$ with respect to F on I. Hence without loss of generality we can assume $f \not \equiv u$ on any sub-interval of $\left(x_{1}, x_{k}\right)$.

We will first show that the inequality (3.1) holds for $i=k$. By (i) of Lemma 2.3 we have $(f-u)^{(n(k))}\left(x_{k}\right)<0$. If the inequality (3.1) does not hold for $i=k$ we can assume there exists a smallest number $z\left(x_{k}<z \leqq x_{k+1}\right)$ such that $f(z)=u(z)$ and $(f-u)(x)<0$ on $\left(x_{k}, z\right)$. Consequently we must have $(f-u)^{\prime}(z) \geqq 0$, which is a contradiction to (ii) (a) of Lemma 2.3 for $i=k$. Hence the inequality (3.1) holds for $i=k$.

Now we will show that (3.1) holds for $i=k-1$. Again by (i) of Lemma 2.3 there exists a largest number $z\left(x_{k-1} \leqq z<x_{k}\right)$ such that $\left(f(z)=u(z)\right.$ and $(-1)^{M(k-1)}(f-u)(x)<0$ on $\left(z, x_{k}\right)$. Now we claim z $=x_{k-1}$. If not by (ii) (a) of Lemma 2.3 we must have $(-1)^{M(k-1)}(f-u)^{\prime}(z)<0$. Consequently there must exist a largest number $w\left(x_{k-1} \leqq w<z\right)$ such that $f(w)=u(w)$ and

$$
\begin{equation*}
(-1)^{M(k-1)}(f-u)(x)>0 \text { on }(w, z) \tag{3.2}
\end{equation*}
$$

If $x_{k-1}=w$ then (i) of Lemma 2.3 for $i=k-1$ yields a contradiction to (3.2). If $x_{k-1}<w$ then by (ii) (a) of Lemma 2.3 we have $(-1)^{M(k-1)}(f-u)^{\prime}(w)<0$. This again yields a contradiction to (3.2). This proves our claim.

The argument to show that (3.1) holds for $i=m, \cdots, k-2$ is similar and hence is omitted.

Now we will show (3.1) holds for $i=m-1$.
By (i) of Lemma 2.3 we have $(-1)^{M(m)}(f-u)^{\prime}\left(x_{m}\right)<0$. Hence there exists a largest number $z\left(x_{m-1} \leqq z<x_{m}\right)$ such that $f(z)=u(z)$ and

$$
\begin{equation*}
(-1)^{M(m-1)}(f-u)(x)<0 \text { on }\left(z, x_{m}\right) . \tag{3.3}
\end{equation*}
$$

If $x_{m-1}<z$ then by (ii) (b) of Lemma 2.3 we have $(-1)^{M(m-1)}(f-u)^{\prime}(z)>0$ which yields a contradiction to (3.3). Hence $x_{m-1}=z$ and (3.1) holds for $i=m-1$.

That (3.1) holds for all $i, p<i<m-1$ follows at once from (i) and (iii) of Lemma 2.3.

The arguments for the cases $i=0, p$ and $1 \leqq i \leqq p-1$ are respectively analogous to those for the cases $i=k$ and $i=m-1$ and hence are omitted.

Corollary 3.2. Suppose $\lambda(n, k), Q(n)$ and F are as in Theorem 3.1 and u is strictly $\mu(n, k-1)^{*}$-convex with respect to F on I for all $\mu(n$, $k-1) \in Q(n)$. Then u is strictly $\lambda(n, k)^{*}$-convex with respect to F on I.

Theorem 3.3. Suppose F is a $P(n)$-parameter family and u is $\mu(n, j)^{*}$ convex with respect to F on I with the property $P(\mu(n, i))$ for all $\mu(n$, $j) \in P(n)$ which have at most one entry equal to 1 . Then u is $\lambda(n, n)^{*}$ convex with respect to F on I with the property $P(\lambda(n, n))$.

Proof. Let $v(n, r) \in P(n)$ be any r-tuple ($r \geqq 3$, arbitrary) having exactly two entries equal to 1 . Then by our hypothesis and Theorem 3.1 it follows that u is $v(n, r)^{*}$-convex with property $P(v(n, r))$. Since $v(n, r)$ is arbitrary using the above result with Theorem 3.2 again we can show that u is $\mu(n, j)^{*}$-convex ($j \geqq 3$, arbitrary) with property $P(\mu(u$, $j)$) for all j-tuples $\mu(n, j)$ having exactly three entries equal to 1 . Repeating the above argument a finite member times we arrive at the conclusion of the theorem.

Thus if F and u are as in Theorem 3.3, on combining the conclusions of Theorem 3.3 and Theorem 4.5 of [3] we obtain that u is $\lambda(n, k)^{*}$ convex with respect to F on I with property $P(\lambda(n, k))$ for all $\lambda(n$, $k) \in P(n), k \geqq 1$.

To illustrate the above remark, in the case $n=4$ we have that if u is strictly $(1,3)^{*},(3,1)^{*}$ and $(2,2)^{*}$-convex then u is strictly $(2,1,1)^{*}$, $(1,2,1)^{*},(1,1,2)^{*},(1,1,1,1)^{*}$ and (4)*-convex.

Acknowledgements. The author is thankful to the referee for his helpful comments.

References

1. P. Hartman, On N-parameter families and interpolation problems for nonlinear ordinary differential equations, Trans. Amer. Math. Soc. 154 (1971), 201-226.
2. R. M. Mathsen, $\lambda(n)$-convex functions, Rocky Mtn. J. Math. 2 (1972), 31-43.
3. S. Umamaheswaram, $\lambda(n, k)$-parameter families and associated convex functions, Rocky Mtn. J. Math. 8 (1978), 491-502.
4. __, An intermediate value property, some comparison and convergence theorems in $\lambda(n, k)$-parameter families (to appear).

Indian Institute of Technology, Bombay 400 076, India

[^0]: Received by the editors on August 25, 1976, and in revised form on February 28, 1977. AMS 1970 subject classifications. Primary 34B10, 34B15.

