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A(n, k)—CONVEX FUNCTIONS 
S. UMAMAHESWARAM 

1. Introduction. Assume n and k are positive integers such that 
n = 2 and 1 = k ~ n. Define an Ordered /c-partition of n (denoted 
À(n, k)) as an ordered fc-tuple (n(l), • • -, n(k)) of positive integers satis
fying n(l) + • • • 4- n(k) — n. Let P(n) denote the set of all ordered /-
partitions \x(n, f) of n with j varying such that 1 fk j = n. Let F C Cr(I) 
and u G Cr(I) where / C fi is an interval and r > 0 is large enough so 
that the following definitions make sense. 

DEFINITION 1.1. F is a A(n, /c)-parameter family on I if for every set 
of k (k fixed) distinct points xt < • • • < xk in / and every set of n real 
numbers yir there exists a unique / in F satisfying 

(1.1) f\x{) = y4„ r = 0, • • -, n(i) - 1, < = 1, • • -, k. 

Given Q(n), a nonempty subset of P(n) we say F is a Ç)(n)-parameter 
family on I if F is a jii(n, /)-parameter family on I for all ju(n, /) G Ç(n). 

Let M(t) ^ n + n(l) -f • • • + n(t) for 1 ^ i ^ ^ M(0) = n and F 
be a A(n, fe)-parameter family on /. 

DEFINITION 1.2. For /c ^ 2, i* is A(n, fc)-convex with respect to F on 7 
if for every set of k points xx < • • • < xk in I the unique f in F deter
mined by 

(1.2) {f - tijMfo) = 0, r = 0, • • -, n(t) - 1, i = 1, • • -, k 

satisfies 

(1.3) (-l)m)if - u)(x) ta 0 on (xi? xi+1), i = 1, • • -, fc - 1. 

(If in (1.3) strict inequalities are satisfied then we say u is strictly 
A(n, fc)-convex.) 

DEFINITION 1.3. For k ^ 1, u is A(n, /c)*-convex with respect to F on I 
if for every jq < • • • < xk in / the function / in F determined by (1.2) 
satisfies (1.3) for i = 0, • • -, fc. (x0 and xfc+1 are the left and right end 
points of I respectively). 
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Let u be A(n, /c)*-convex with respect to F on I. We say u has prop
erty P(\(n, k)) with respect to F on / in case either (i) u is strictly 
A(n, Jc)*-convex with respect to F on I, or (ii) for every x1 < • • • < xk 

in 7 the conditions (1.2) and f(z) = u(z) for some z E I (z ^ xi? 1 ^ i 
^ fc) imply /(oc) = u(x) on [minlxj, A} , max{xfc, z}]. 

It has been shown (Theorem 4.5 of [3]) that if F is a P(n)-parameter 
family and u is X(n, n)-convex with respect to F on I then (i) u is 
\x(n, ;)*-convex with respect to F on I and (ii) u has property P(/x(n, /)) 
with respect to F on Z for all ju(n, /) E P(n), / ^ 1. In the main theorem 
(Theorem 3.1) of this paper we show under the assumption X(n, k) 
(n, k ^ 3) has at least two entries equal to 1 that if F is a P(n)-parame-
ter family and u is ju(n, k — l)*-convex with respect to F on I with the 
property P(ß(n, k — 1)) for all \i(n, k — 1) in a certain subset (which de
pends on \(n, fc)) of P(n) then u is \(n, fc)*-convex with respect to F on I 
with the property P(\(n, k)). It then follows from this theorem that if F 
is a P(n)-parameter family and u is /x(n, ;)*-convex with respect to F on 
J for all fi(n, f) E P(n) which have at most one entry equal to 1 then u 
is A(n, n)-convex with respect to F on I. It remains unknown however 
whether X(n, l)*-convexity of u together with property P(\(n, 1)) im
plies jLt(n, ;)*-convexity of u with property P(ju(n, /)) where /x(n, /) E P(n) 
is arbitrary and F is a P(n)-parameter family on I. 

For earlier results concerning X(n, fc)-parameter families and associ
ated convex functions or their special cases reference may be made to 
[1, 2, 3, 4] and to the other references mentioned therein. In particular, 
Theorem 3.1 of [2] is analogous to our main theorem in the case k — n. 
Also for the case k < n with the following restrictions on A(n, k) name
ly, (i) max{n(i) : 1 ^ i ^ k] =2 (ii) n(l) = n(k) — 2 and (iii) any two 
entries not equal to 1 are separated by at least two entries equal to 1, 
an analogous result can be found on page 40 of [2]. 

2. Preliminary results. The Lemmas 2.1 and 2.2 stated below are 
special cases of Theorems 2.1 and 2.2 of [4]. We indicate, however, for 
the sake of reference the proof of one of them, the other being analo
gous. 

LEMMA 2.1. Suppose F is a P(n)-parameter family and u is \(n, k)*-
convex with respect to F on I. Let g E F satisfy the condition 

(2.1) ( - l)M{J) (g - i ^ - D (xj) > 0 

for some J, 1 < J = k and all the conditions of (1.2) except for i — J 
and r = n(J) — 1. Then g satisfies 

( _l^<i ) ( g _ u){x) < o on (*„ x1+1), i = 0, - . . , / - 1. 
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LEMMA 2.2. Suppose F and u are as in Lemma 2.1 and g E F satis
fies the condition 

(2.2) ( - Vf«) (g - ufn^ - D (x.) < 0 

for some J, 1 = / < k and all the conditions (1.2) except for i — J and r 
= n(J) - 1. Then g satisfies (-1)*® (g - t*)(s) < 0 on (*., * i + 1 ) , i = J, 

PROOF OF LEMMA 2.1. Let / E F be determined by the conditions 

(1.2). Then the condition (2.1) together with the hypothesis on F im
plies 

(2.4) ( - l)*<«(g - /)(*) < 0 on (*„ * j + 1 ) , < = 0, • • • , / - 1. 

Now the conclusion follows by addition of the inequalities (1.3) and 

(2.4) for t = 0, • • • , / - 1. 
We assume hereafter that n, k ^ 3 and A(n, k) is such that n(p) = 1 

= n(m) for some fixed p, m, I ^ p < m^ k. We also let Q(n) == 
(jLt(n, fe — 1) E P(n); ju(n, fc — 1) is obtained from A(n, fc) by deleting the 
entries n(p) = 1, n(m) — 1 and inserting the integer 2 in exactly one 
of the possible k — 1 places in the resulting array} U {/x(n, k — 1) E 
F(n) : /x(n, fc — 1) is obtained from A(n, fc) by deleting the entries 
n(p) = 1, n(m) = 1, replacing n(t) by n(i) + 1 for exactly one i =£ p,m 
and inserting the integer 1 in just one of the possible k — 1 places in 
the resulting array}. 

LEMMA 2.3. Suppose F is a P(n)-parameter family and u is jtt(n, 
k — l)*-convex with property F(ju,(n, k — 1)) with respect to F on I for 
all ju(n, k — 1) E Q(n). Let f E F he determined by the conditions (1.2) 
and assume that u(x) # f(x) on [x1? xk]. Then 

(i) ( _ iyni)(f _ M)(»M))(Xi) < 0 /or aH i, 1 ^ t ^ Jfc 

(ii) (f - !*)(*) = 0, Ä E (xi? x i+1) implies 

(a) ( - l)^>(f - u)'(z) <0ifm^i^kori = p 

(b) ( - l ^ * ) ( f - t#)'(z) > 0 i f 0 ^ i ^ p - l o r i = m - l 

and 

(iii) (f — u)(x) ¥^ 0 /or ant/ x E (*., x i+1), p < i < m — 1. 

PROOF, (i) Suppose (A) : ( - l )M ( J )(f - i * ) ^ * , ) è 0 holds for some / . 
We shall consider two cases. (I) p < J ^ k and (II) 1 ^ J ^ p. 
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Case (I). Let ju(n, k - 1) = (n(l), • • -, n(p - 1), n(p + 1), 
n(/) + 1, • • -, n(k)). (In ease J = p + 1, the entry n(p + 1) in 
jLt(n, fc — 1) has to be ignored.) If equality holds in (A) then the 
ju(n, k — l)*-convexity of u along with property P(ix(n, k — 1)) and 
(f — u)(xp) = 0 implies / = w o n [xv xk], a contradiction. 

If strict inequality holds in (A) then the ju,(n, k — l)*-convexity of u 
together with the hypothesis on F implies by Lemma 2.1 tha t 
( - l ^ - ^ C f - u)(x) < 0 on (xp_l9 xp+1), a contradiction to (f - u)(xp) 
= 0. 

Case (II). The arguments will be the same as in Case (I) if we inter
change the roles of p and m and of Lemmas 2.1 and 2.2 in its proof. 

(ii) (a) Suppose (B) : ( - l )M ( J )(f - u)\z) ^ 0 for some /. We shall con
sider two cases. (I) ra ^ / = fc and (II) / = p. 

Case I. Let n(n, k — 1) = (n(l), • • -, n(p — 1), n(p + 1), 
n(ra — 1), n(ra + 1), • • -, n(J), 2, n(/ + 1 ) , • • -, n(k)). (In case / = m, 
the entries n(ra 4-1), • • -, n(J) are to be ignored.) If equality holds in 
(B) then the /x(n, k — l)*-convexity of u together with property P(ji(n, 
k — 1)) and (f — u) (xp) = 0 implies / = w, a contradiction. 

If strict inequality holds in (B) then the ii(n, k — l)*-convexity of u 
and the hypothesis on F imply by Lemma 2.1 that ( _ 1 ) ^ ( P - D 
(f — u)(x) < 0 on (xp_v xp+1), a contradiction to (f — w)(xp) = 0. 

Case II. Let /x(n, fc - 1) = (n(l), • • -, n(p - 1), 2, n(p + 1 ) , 
n(m — 1), n(m + 1), • • •, n(fc)). If equality holds in (B) then the ju(n, 
k — l)*-convexity of u along with p roper ty P(fi(n, k — 1)) and 
(f — u)(xm) = 0 implies / = ü o n [x1? xfc], a contradiction. If strict in
equality holds in (B) then the n(u, k — l)*-convexity of u with the hy
pothesis on F yields, by Lemma 2.2 that (-l)mm)(f - u) (xm) < 0, a 
contradiction to (f — u) (xm) — 0. 

(ii) (b). The arguments will be similar to those of (ii) (a) if we inter
change the roles of p and m and of the Lemmas 2.1 and 2.2 in its 
proof. 

(iii) Suppose (f — u)(z) — 0 for some z G (xj9 xJ+1) where 
p < / < m - 1. Let n(n, k - 1) = (n(l), • • -, n(p - 1), n(p + 1), • • -, 
n(/), 2, n( / + 1 ) , • • -, n(m - 1), n(m + 1 ) , • • -, n(fc)). If 
( _ 1 ) W ) ( ^ _ My(z) > o (<0 ) then the ju(n, fc - l)*-convexity of u im
plies by Lemma 2.2 (2.1) that (-l)M^m)(f - u) (xj < 0 
( (_ l^(p- i ) ( f _ u) (Xp) < 0), a contradiction. If (f - u)\z) = 0 then the 
ju(n, fc - l)*-convexity of u with the property P(jti(n, Jc - 1)) and (f — u) 
(xp) — 0 implies / = u, a contradiction. 
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3. Main results. 
THEOREM 3.1. Let A(n, k) be a given ordered k-partition of the type re

ferred to above and let Q(n) he the corresponding subset of P(n) as de
fined above. Then, if F is a P(n)-parameter family and if u is jii(n, 
k — I)*-convex and has property JP(ju(n, k — 1)) with respect to F on I 
for all ju(n, k — 1) E Ç(n\ it follows that u is X(n, k)*-convex and has 
property P(\(n, k)) with respect to F on I. 

PROOF. Let / E F be determined by the conditions (1.2). We will 
show 

(3.1) (-lY*Hf - «) (x) s o o n (xt, xi+1), i = 0, • • -, k. 

If / = u on some subinterval of (xv xk) then by virtue of our hypothesis 
on u we will have that / = u on [xv xk], the inequality (3.1) holds for 
i — 0, k and u has property P(\(n, k)) with respect to F on I. Hence 
without loss of generality we can assume / ^ u o n any sub-interval of 

\xl> xk)' 

We will first show that the inequality (3.1) holds for i — k. By (i) of 
Lemma 2.3 we have (f — u){n{k)\xk) < 0. If the inequality (3.1) does not 
hold for i — k we can assume there exists a smallest number 
z(xk < z ^ xk+1) such that f(z) = u(z) and (f — u) (x) < 0 on (xh, z). 
Consequently we must have (f — u)'(z) i= 0, which is a contradiction to 
(ii) (a) of Lemma 2.3 for i — k. Hence the inequality (3.1) holds for 
< = *. 

Now we will show that (3.1) holds for i = k — 1. Again by (i) of 
Lemma 2.3 there exists a largest number z(xk_1 ^ z < xk) such that 
(f(z) = u(z) and ( - l)m ~ 1}(f - u) (x) < 0 on (z, xk). Now we claim z 
— xk_v If not by (ii) (a) of Lemma 2.3 we must have 
( — lytft-Vlf — u)'(z) < 0. Consequently there must exist a largest num
ber w(xk_1 = w < z) such that f(w) — u(w) and 

(3.2) ( - l)W-D(f _ u) (x) > 0 on (u>, z). 

If xk_1 — w then (i) of Lemma 2.3 for i = k — 1 yields a con
tradiction to (3.2). If xk_t < w then by (ii) (a) of Lemma 2.3 we have 
(_iyf(k-i)(j __ UY(W) < 0. This again yields a contradiction to (3.2). 
This proves our claim. 

The argument to show that (3.1) holds for i = m, • • -, k — 2 is sim
ilar and hence is omitted. 

Now we will show (3.1) holds for i — m — 1. 
By (i) of Lemma 2.3 we have (-l)M ( m )(f- u)'(xm) < 0. Hence there 

exists a largest number z (xm_1 ^ z< xm) such that f(z) = u(z) and 

(3.3) ( - i r»-W(f - u) (i) < 0 on (z, xj. 
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H xm-i < z t n e n by (ii) (b) of Lemma 2.3 we have 
(-lf(m-V(f - u)\z) > 0 which yields a contradiction to (3.3). Hence 
xm_1 — z and (3.1) holds for i = m — 1. 

That (3.1) holds for all i, p < i < m — 1 follows at once from (i) and 
(iii) of Lemma 2.3. 

The arguments for the cases i = 0, p and 1 ^ i ^ p — 1 are respec
tively analogous to those for the cases i = k and i = m — 1 and hence 
are omitted. 

COROLLARY 3.2. Suppose \(n, fc), Q(n) and F are as in Theorem 3.1 

and u is strictly ju,(n, k — l)*-convex with respect to F on I for all ju,(n, 
k — 1) G Q(n). Then u is strictly \(n, k)*-convex with respect to F on I. 

THEOREM 3.3. Suppose F is a P(n)-parameter family and u is /x(n, /)*-
convex with respect to F on I with the property P(ju,(n, /')) for all /x(n, 
f) E P(n) which have at most one entry equal to 1. Then u is X(n, n)*-
convex with respect to F on I with the property P(X(n, n)). 

PROOF. Let v(n, r) E P(n) be any r-tuple (r ^ 3, arbitrary) having 
exactly two entries equal to 1. Then by our hypothesis and Theorem 
3.1 it follows that u is u(n, r)*-convex with property P(v(n, r)). Since 
u(n, r) is arbitrary using the above result with Theorem 3.2 again we 
can show that u is \i{n, /)*-convex (/ ^ 3, arbitrary) with property P(/x(w, 
/')) for all /-tuples /x(n, /') having exactly three entries equal to 1. Repeat
ing the above argument a finite member times we arrive at the con
clusion of the theorem. 

Thus if F and u are as in Theorem 3.3, on combining the conclusions 
of Theorem 3.3 and Theorem 4.5 of [3] we obtain that u is A(n, fc)*-
convex with respect to F on I with property P(A(n, k)) for all X(n, 
k) E P{n), k ^ l . 

To illustrate the above remark, in the case n = 4 we have that if u 
is strictly (1,3)*, (3,1)* and (2,2)*-convex then u is strictly (2,1,1)* 
(1,2,1)*, (1,1,2)*, (1,1,1,1)* and (4)*-convex. 

ACKNOWLEDGEMENTS. The author is thankful to the referee for his 
helpful comments. 

REFERENCES 

1. P. Hartman, On N-parameter families and interpolation problems for nonlinear ordi
nary differential equations, Trans. Amer. Math. Soc. 154 (1971), 201-226. 

2. R. M. Mathsen, \(n)-convex functions, Rocky Mtn. J. Math. 2 (1972), 31-43. 
3. S. Umamaheswaram, \(n, k)-parameter families and associated convex functions, 

Rocky Mtn. J. Math. 8 (1978), 491-502. 
4. , An intermediate value property, some comparison and convergence theorems 

in X(n, k)-parameter families (to appear). 

INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY 400 076, INDIA 


