FIXED POINTS OF *f*-CONTRACTIVE MAPS

SEHIE PARK

1. Introduction. Let (X, d) be a metric space. A fixed point of a map $g: X \to X$ is a common fixed point of g and the identity map 1_X of X. Motivated by this fact, we replace 1_X by a continuous map $f: X \to X$, and obtain the following.

DEFINITIONS. Let f be a continuous self-map of X. Then a self-map g of X is said to be f-contractive if d(gx, gy) < d(fx, fy) for all $x, y \in X$, $gx \neq gy$.

Let C_f denote the family of all maps $g: X \to X$ such that $gX \subset fX$ and gf = fg. Given a point $x_0 \in X$ and a map $g \in C_f$, an f-iteration of x_0 under g is a sequence $\{fx_n\}_{n=1}^{\infty}$ such that $fx_n = gx_{n-1}$.

We observe that an *f*-contractive map is always continuous. Note that given $x_0 \in X$, its *f*-iteration under g is not unique; however, in case $f = 1_x$, these definitions reduce to the usual ones.

We give conditions under which f-contractive maps have fixed points. In fact, necessary and sufficient conditions for the existence of fixed points of continuous self-maps of X are given. In order to do this, criteria for an f-iteration to be Cauchy are of interest. In this direction, Geraghty [5] obtained important results on usual contractive maps and iterations.

In this paper, we generalize results of Edelstein [4], Rakotch [7], and Geraghty [5] on the existence of fixed points, and, consequently, obtain many extended forms of the Banach contraction principle, especially those of Boyd-Wong [2], [8], Geraghty [5], Jungck [6], and Rakotch [7].

In § 2, basic n.a.s.c.'s for the existence of fixed points of self-maps of an arbitrary metric space and their applications are given.

In § 3, we give a n.a.s.c. that an f-iteration of $x_0 \in X$ under g be convergent. This condition is used to prove criteria for the existence of fixed points for metric spaces more general than complete ones. Some applications are also considered.

Throughout this paper, X denotes a metric space with metric d, and f denotes always a continuous self-map of X.

2. General existence theorems. In this section, we give some n.a.s.c.'s for the existence of fixed points of a continuous self-map f of X. First, we need the following.

Copyright © 1978 Rocky Mountain Mathematics Consortium

Received by the editors on November 16, 1976.

AMS(MOS) subject classifications (1970). Primary 54H25; Secondary 47H10.

LEMMA 2.1. Let f and g be commuting self-maps of a metric space X. If g^N is f-contractive for some integer N > 0 and f, g^N have a point of coincidence $\zeta \in X$, then $f\zeta$ is the unique common fixed point of f and g.

PROOF. Let $\eta = f\zeta = g^N\zeta$ and $\eta \neq f\eta$. Then $d(\eta, f\eta) = d(g^N\zeta, g^Nf\zeta)$ $< d(f\zeta, ff\zeta) = d(\eta, f\eta)$ leads to a contradiction. Therefore $\eta = f\eta$ $= g^N\eta$. Suppose f and g^N have another common fixed point η' . Then $d(\eta, \eta') = d(g^N\eta, g^N\eta') < d(f\eta, f\eta') = d(\eta, \eta')$ leads to another contradiction. Therefore η is the unique common fixed point of f and g^N . But from $\eta = f\eta = g^N\eta$ we have $g\eta = f(g\eta) = g^N(g\eta)$, whence $g\eta =$ η . Thus η is a common fixed point of f and g. Now, η is unique since $\eta' = f\eta' = g\eta'$ implies $\eta' = f\eta' = g^N\eta'$.

The following is basic in this paper.

THEOREM 2.2. A continuous self-map f of X has a fixed point iff there exists an f-contractive map g in C_f such that for some $x_0 \in X$, an f-iteration $\{fx_n\}$ of x_0 under g has a subsequence $\{fx_{n_i}\}$ converging to a point $\zeta \in X$. Indeed, f and g have a unique common fixed point $f\zeta$.

PROOF. Suppose that $f\eta = \eta$ for some $\eta \in X$. Define $g: X \to X$ by $gx = \eta$ for all $x \in X$. Then clearly $g \in C_f$ and g is f-contractive. Note that for any $x \in X$, its f-iteration under g converges to η and η is the unique common fixed point of f and g.

Conversely, from the continuities of f, g and $fx_{n_i} \rightarrow \zeta$, we have $ffx_{n_i} \rightarrow f\zeta$ and $gfx_{n_i} \rightarrow g\zeta$. We define a function $r: Y = fX \times fX - \Delta \rightarrow \mathbb{R}$ by r(fp, fq) = d(gp, gq)/d(fp, fq), where Δ denotes the diagonal of X. Then r is continuous and r(fp, fq) < 1. Thus if $f\zeta \neq g\zeta$, there is an $\alpha, 0 < \alpha < 1$, and an open set U of Y such that $(f\zeta, g\zeta) \in U$ and if $(fp, fq) \in U$ then $0 \leq r(fp, fq) < \alpha$. Now choose $\rho > 0$ so that $(1) \ \rho < (1/3)d(f\zeta, g\zeta)$ and (2) if $B_1 = B(f\zeta, \rho)$ and $B_2 = B(g\zeta, \rho)$ are open balls, then $B_1 \times B_2 \subset U$. Since $ffx_{n_i} \rightarrow f\zeta$ and $gfx_{n_i} \rightarrow g\zeta$, there exists N > 0 such that i > N implies $ffx_{n_i} \in B_1$ and $gfx_{n_i} \in B_2$. Therefore $d(ffx_{n_i}, gfx_{n_i}) > \rho$ for all i > N. On the other hand, from the definition of r, the choice of U, and the fact that $ffx_{n_i} = gfx_{n_i-1}$, we have

 $d(ffx_{n_i+1}, ffx_{n_i+2}) < \alpha \ d(ffx_{n_i}, ffx_{n_i+1}).$

Further, if l > j > N, then

$$\begin{split} d(ffx_{n,r},ffx_{n,r+1}) &\leq d(ffx_{n_{r-1}+1},ffx_{n_{r-1}+2}) \\ &< \alpha d(ffx_{n_{r-1}},ffx_{n_{r-1}+1}). \end{split}$$

Then by repeating this argument we get

 $d(ffx_{n,\ell} ffx_{n,\ell+1}) < \alpha^{\ell-j} d(ffx_{n,\ell} ffx_{n,\ell+1}).$

But with fixed j, $\alpha^{\ell-j} \to 0$ as $\ell \to \infty$, whence $d(ffx_{n,\ell}, ffx_{n+1}) \to 0$. This contradicts $d(ffx_{n,\ell}, gfx_{n,\ell}) > \rho$ for $\ell > N$. Thus we conclude that $f\zeta = g\zeta$, and, by Lemma 2.1, $\eta = f\zeta$ is the unique common fixed point of f and g.

If $f = 1_x$, Theorem 2.2 is reduced to a theorem of Edelstein [4]. From Lemma 2.1 and Theorem 2.2, we have

COROLLARY 2.3. A continuous self-map f of a compact metric space X has a fixed point iff there exists a map g in C_f such that for some integer N > 0, g^N is f-contractive. Indeed, f and g have a unique common fixed point.

In case $f = 1_x$, Corollary 2.3 is a particular case of a result of Bailey [1], and is reduced to a result of Edelstein [4] whenever N = 1.

THEOREM 2.4. A continuous self-map f of a metric space X has a fixed point iff there exists an f-contractive map g in C_{ρ} a subset $M \subset X$ and a point $x_0 \in M$ such that

(1)
$$d(fx, fx_0) - d(gx, gx_0) \ge 2d(fx_0, gx_0)$$

for every $x \in X - M$ and g maps M into a compact subset of X. Indeed, f and g have a unique common fixed point.

PROOF. Suppose that $f\eta = \eta$ for some $\eta \in X$. Define $g: X \to X$ by $gx = \eta$ for all $x \in X$. Then g is in C_f and f-contractive. Putting $x_0 = \eta$ and $M = \{\eta\}$, the necessity follows.

Conversely, if $fx_0 = gx_0$, it is the unique common fixed point of f and g, by Lemma 2.1. Suppose $fx_0 \neq gx_0$ and let $\{fx_n\}_{n=1}^{\infty}$ be an f-iteration of x_0 under g. Since g maps M into a compact set by assumption, by Theorem 2.2, it suffices to show that $x_n \in M$ for every n. Since g is f-contractive, if $fx_{n-1} = fx_n$, i.e., $gx_{n-1} = fx_{n-1}$, for some n, then, by Lemma 2.1, f and g already have a unique common fixed point. Hence we may assume that $d(fx_n, fx_{n+1}) < d(fx_{n-1}, fx_n)$ for all n. From $fx_0 \neq gx_0$, it follows that $d(fx_n, fx_{n+1}) < d(fx_0, gx_0)$ for all n. Then

$$d(fx_n, fx_0) \leq d(fx_n, gx_n) + d(gx_n, gx_0) + d(gx_0, fx_0)$$

implies

$$d(fx_n, fx_0) - d(gx_n, gx_0) < 2d(fx_0, gx_0).$$

Thus, by (1), we have $x_n \in M$ for all n.

If $x_0 \notin M$, Theorem 2.4, then the existence of a common fixed point of f and g follows immediately by putting $x = x_0$ in (1). In case $f = 1_X$, Theorem 2.4 is due to Rakotch [7, Theorem 1].

Now, following Rakotch [7], we introduce a class of functions.

DEFINITION. \mathscr{I} is the class of monotonically decreasing functions $\alpha: (0, \infty) \rightarrow [0, 1)$.

For $\alpha \in \mathscr{S}$, let $\alpha(x, y) = \alpha(d(fx, fy))$.

COROLLARY 2.5. A continuous self-map f of X has a fixed point iff there exists an f-contractive map g in C_t and a point $x_0 \in X$ satisfying

(2)
$$d(gx, gx_0) \leq \alpha(x, x_0)d(fx, fx_0)$$

for every $x \in X$, $fx_0 \neq fx$, where $\alpha \in \mathscr{S}$ and g maps the open ball $B(fx_0, r)$ with $r = 2d(fx_0, gx_0)/[1 - \alpha(2d(fx_0, gx_0))]$ into a compact subset of X. Indeed, f and g have a unique common fixed point.

PROOF. Suppose that $f\eta = \eta$ for some $\eta \in X$. Defining $g: X \to X$ by $gx = \eta$ and putting $x_0 = \eta$, for some constant $\alpha \in (0, 1)$, everything is trivially satisfied.

Conversely, in Theorem 2.4, take $M = B(fx_0, r)$, then from (2), by the definition of $\alpha(d)$ and $r \ge 2d(fx_0, gx_0)$, it follows that if $d(fx, fx_0) \ge r$ then

$$\begin{aligned} d(fx, fx_0) - d(gx, gx_0) &\geq d(fx, fx_0) - \alpha(x, x_0)d(fx, fx_0) \\ &= [1 - \alpha(x, x_0)]d(fx, fx_0) \\ &\geq [1 - \alpha(r)]r \\ &> [1 - \alpha(2d(fx_0, gx_0))]r \\ &= 2d(fx_0, gx_0), \end{aligned}$$

that is, (1) holds.

In case $f = 1_{\chi}$, Corollary 2.5 is due to Rakotch [7].

3. g-orbitally complete spaces only. Given a continuous self-map f of X, we introduce a condition on X somewhat more general than completeness.

DEFINITION. Given $g \in C_f$, X is said to be g-orbitally complete w.r.t. f if, for any $x \in X$, every Cauchy subsequence of an arbitrary f-iteration $\{fx_n\}_{n=1}^{\infty}$ of x under g converges in X.

The g-orbital completeness w.r.t. l_x is just the g-orbital completeness of Ćirić [3].

For any pair of sequences $\{x_n\}$ and $\{y_n\}$ in X with $fx_n \neq fy_n$, we write

$$d_n = d(fx_n, fy_n)$$
 and $\Delta_n = d(gx_n, gy_n)/d_n$

746

We have the following theorem.

THEOREM 3.1. Let f be a continuous self-map of X and g be an fcontractive map in C_f such that X is g-orbitally complete w.r.t. f. Let $x_0 \in X$ and $\{fx_n\}_{n=1}^{\infty}$ be an f-iteration of x_0 under g. Then $\{fx_n\}$ converges to a point $\zeta \in X$ and hence $f\zeta$ is the unique common fixed point of f and g iff, for any two subsequences $\{fx_{h_n}\}$ and $\{fx_{k_n}\}$ with $fx_{h_n} \neq fx_{k_n}$, we have that $\Delta_n \to 1$ implies $d_n \to 0$.

PROOF. Suppose $fx_n \to \zeta$ and let $\{fx_{h_n}\}$ and $\{fx_{k_n}\}$ be any two subsequences. Then $d_n = d(fx_{h_n}, fx_{k_n}) \to 0$ and the condition is satisfied.

Conversely, assume the condition is satisfied for a given point $x_0 \in X$. Since g is f-contractive, if $fx_{n+1} = gx_n = fx_n$ for some n, then f and g already have a unique common fixed point by Lemma 2.1. Hence we may assume that $d(fx_n, fx_{n+1}) = d(gx_{n-1}, gx_n) < d(fx_{n-1}, fx_n)$ for all n. Now $d_n = d(fx_n, fx_{n+1})$ is a decreasing sequence of positive numbers and so approaches some $\epsilon \ge 0$. Assume $\epsilon > 0$. Then letting $h_n = n$ and $k_n = n + 1$, we have $d_n \rightarrow \epsilon > 0$ while $\Delta_n \rightarrow 1$. This leads to a contradiction. Hence $d(fx_n, fx_{n+1}) \rightarrow 0$. Now assume that $\{fx_n\}$ is not Cauchy. Then there exists some $\epsilon > 0$ such that every tail $\{fx_n\}_{n \ge N}$ has diameter $D_N = \sup_{n,m \ge N} d(fx_n, fx_m) > \epsilon$. Given this ϵ , we will construct a pair of subsequences violating the condition. For any n > 0, let N_n be so large that $d(fx_m, fx_{m+1}) < 1/n$ for all $m \ge N_n$, as is possible since $d(fx_m, fx_{m+1}) \rightarrow 0$. Let $h_n \ge N_n$ be the smallest integer such that for some $k_n > h_n$, $d(fx_{h_n}, fx_{k_n}) > \epsilon$. Such pairs exist by the above diameter condition. Next choose k_n to be the smallest such integer $> h_n$. Then $d(fx_{h_n}, fx_{k_n-1}) \leq \epsilon$ and $\epsilon \leq d_n = d(fx_{h_n}, fx_{k_n}) < \epsilon + 1/n$. Moreover, we have

$$1 \ge \Delta_n = d(gx_h, gx_k)/d_n \ge (d_n - 2/n)/d_n.$$

So $\Delta_n \to 1$ while $d_n \to \epsilon > 0$, again leading to a contradiction. So $\{fx_n\}$ must be a Cauchy sequence and converges in X since X is g-orbitally complete w.r.t. f. Now by Theorem 2.2., our proof is complete.

The above proof is essentially that of Theorem 1.1 of Geraghty [5], which is a particular case $f = 1_X$. By thoroughly examining the proof, we also obtain the following extended form of Corollary 1.2 of [5].

COROLLARY 3.2. Let f be a continuous self-map of X and g be an fcontractive map in C_f such that X is g-orbitally complete w.r.t. f. Let $x_0 \in X$ and $\{fx_n\}_{n=1}^{\infty}$ be an f-iteration of x_0 under g. Then $\{fx_n\}$ converges to a point $\zeta \in X$, and hence $f\zeta$ is the unique common fixed point of f and g iff, for any two subsequences $\{fx_{h_n}\}$ and $\{fx_{k_n}\}$ with $fx_{h_n} \neq fx_{k_n}$, we have that $\Delta_n \to 1$, with d_n decreasing, implies $d_n \to 0$.

According to Geraghty [5], we can convert this sequential condition to the more customary functional form.

DEFINITION. \mathscr{T} is the class of functions $\alpha : (0, \infty) \to [0, 1)$ such that (i) $\alpha(t_n) \to 1$ implies $t_n \to 0$. [5]. As before, $\alpha(x, y) = \alpha(d(fx, fy))$ when $\alpha \in \mathscr{T}$.

REMARK. Note that $\mathscr{I} \subset \mathscr{T}$ and that we do not assume any continuity on α . Using Corollary 3.2, we can replace (i) by

(ii) $\alpha(t_n) \to 1$ with t_n decreasing implies $t_n \to 0$ [5].

Note also that any continuous $\alpha : (0, \infty) \rightarrow [0, 1)$ is contained in \mathscr{T} (cf. Corollary 3.8).

THEOREM 3.3. Let f be a continuous self-map of X and g be an fcontractive map in C_f such that X is g-orbitally complete w.r.t. f. Let $x_0 \in X$ and $\{fx_n\}_{n=1}^{\infty}$ be an f-iteration of x_0 under g. Then $\{fx_n\}$ converges to some $\zeta \in X$ and hence $f\zeta$ is the unique common fixed point of f and g iff there exists an α in \mathcal{T} such that for all $n, m, fx_n \neq fx_m$, we have

$$d(gx_n, gx_m) \leq \alpha(x_n, x_m) d(fx_n, fx_m).$$

PROOF. It suffices to show that the existence of such an α in \mathcal{T} is equivalent to the sequential condition of Theorem 3.1. Suppose such an α exists. Let $\{fx_{h_n}\}$ and $\{fx_{k_n}\}$ be subsequences with $fx_{h_n} \neq fx_{k_n}$. Assume that $\Delta_n \to 1$. Then it follows from the above inequality that $\alpha(x_{h,2}, x_{k_n}) \to 1$. But then since $\alpha \in \mathcal{T}$, we have $d(fx_{h,2}, fx_{k_n}) \to 0$.

Conversely, suppose that the sequential condition holds. Define $\alpha: (0, \infty) \rightarrow [0, \infty)$ as follows:

$$\alpha(t) = \sup \left\{ \frac{d(gx_n, gx_m)}{d(fx_n, fx_m)} \mid \frac{d(fx_n, fx_m)}{d(fx_n, fx_m)} \le t \right\}$$

if $d(fx_n, fx_m) \ge t$ holds for some m, n; and $\alpha(t) = 0$ otherwise. Since g is f-contractive, the quotients are all < 1 and so α is defined for all t > 0 and $\alpha \le 1$. Now assume that $\alpha(t_n) \to 1$ for $t_n \in (0, \infty)$. We may further assume without loss of generality that $1 - 1/n < \alpha(t_n) \le 1$. Now we have to show $t_n \to 0$. By the definition of $\alpha(t_n)$, for each n > 0, there is a pair fx_{h_n}, fx_{k_n} in $\{fx_n\}$ with

$$\begin{aligned} d(fx_{h_n}, fx_{k_n}) &\geq t_n \text{ and} \\ 1 - 1/n < d(gx_{h_n}, gx_{k_n})/d(fx_{h_n}, fx_{k_n}) &\leq \alpha(t_n). \end{aligned}$$

So $\Delta_n \to 1$. But then by the sequential condition of Theorem 3.1, $d(fx_{h,2}, fx_{k,2}) \to 0$. So $t_n \to 0$. This completes our proof.

In case $f = 1_X$, Theorem 3.3 is reduced to Theorem 1.3 of Geraghty [5].

As consequences of Theorem 3.3 we obtain fixed point theorems.

THEOREM 3.4. A continuous self-map f of a metric space X has a fixed point iff there exists an f-contractive map g in C_f such that X is gorbitally complete w.r.t. f, and there exists a subset $M \subset X$ and a point $x_0 \in M$ satisfying the following:

(1) $d(fx, fx_0) - d(gx, gx_0) \ge 2d(fx_0, gx_0)$ for every $x \in X - M$,

(2) $d(gx, gy) \leq \alpha(x, y)d(fx, fy)$ for every $x, y \in M$, $fx \neq fy$, where $\alpha \in \mathcal{T}$. Indeed, f and g have a unique common fixed point.

PROOF. For the necessity, we just follow the proof of Theorem 2.4 for any constant $\alpha \in [0, 1)$. Conversely, if we take an *f*-iteration $\{fx_n\}_{n=1}^{\infty}$ of x_0 under *g*, then we can show that $x_n \in M$ for all *n*, as in the proof of Theorem 2.4. Then the condition of Theorem 3.3 is satisfied.

If $x_0 \notin M$ in Theorem 3.4, then the existence of a common fixed point of f and g follows immediately by putting $x = x_0$ in (1).

In case $f = 1_x$, the above theorem includes Theorem 2 of Rakotch [7]. Note that our proof is simpler.

THEOREM 3.5. A continuous self-map f of a metric space X has a fixed point iff there exists an f-contractive map g in C_f and a function α in \mathcal{T} such that X is g-orbitally complete w.r.t. f, and

$$d(gx, gy) \leq \alpha(x, y) d(fx, fy)$$

for all $x, y \in X$, $fx \neq fy$. Indeed

(1) f and g have a unique common fixed point $\eta \in X$, and

(2) for any $x_0 \in X$ and any of its f-iterations $\{fx_n\}_{n=1}^{\infty}$ under g, we have $\lim_{n \to \infty} gfx_n = \eta$.

PROOF. The necessity is clear. For the converse we can apply Theorem 3.3 to any point $x_0 \in X$.

In case $f = 1_x$, for complete X, Theorem 3.5 is due to Geraghty [5]. From Lemma 2.1 and Theorem 3.5, we have

COROLLARY 3.6. A continuous self-map f of X has a fixed point iff there exists an f-contractive map g in C_t and a function α in \mathcal{T} such that, for some integer N > 0, X is g^N -orbitally complete and

$$d(g^{N}x, g^{N}y) \leq \alpha(x, y)d(fx, fy)$$

for all $x, y \in X$, $fx \neq fy$. Indeed, f and g have a unique common fixed point.

COROLLARY 3.7. Let f be a bijective continuous self-map of a complete metric space X. If there is an integer N > 0 and a function α in \mathcal{T} such that

$$d(x, y) \leq \alpha(d(f^N x, f^N y))d(f^N x, f^N y)$$

for every $x, y \in X$, $x \neq y$, then f has a unique fixed point.

A few more generalizations of the Banach contraction principle are obtained from the following.

COROLLARY 3.8. A continuous self-map f of X has a fixed point iff there exists an f-contractive map g in C_f such that X is g-orbitally complete w.r.t. f and a function $\alpha: (0, \infty) \rightarrow [0, 1)$, which satisfies one of the conditions: (i) monotone decreasing, (ii) monotone increasing, (iii) continuous, and (iv) $\sup_{d} \alpha(d) < 1$, such that

$$d(gx, gy) \leq \alpha(d(fx, fy))d(fx, fy)$$

for all $x, y \in X$, $fx \neq fy$. Indeed,

(1) f and g have a unique common fixed point $\eta \in X$, and

(2) for any $x_0 \in X$, any f-iteration of x_0 under g converges to some $\zeta \in X$ satisfying $f\zeta = g\zeta = \eta$.

For $f = 1_X$ and complete X, Corollary 3.8.(i) is due to Rakotch [7], (iii) to Boyd-Wong [2], and (iv) to many authors. For a complete metric space X and a constant α , Corollary 3.8 is due to Jungck [6].

References

1. D. F. Bailey, Some theorems on contractive mappings, J. London Math. Soc. 41 (1966), 101-106.

2. D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.

3. Lj. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N. S.) 12 (26) (1971), 19-26.

4. M. Edelstein, On fixed and periodic points under contraction mappings, J. London Math. Soc. 37 (1962), 74-79.

5. M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604-608.

6. G. Jungck, Commuting mappings and fixed points, Amer. Math Monthly 83 (1976), 261-263.

6. E. Rakotch. A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459-465.

8. J. S. W. Wong, Mappings of contractive type on abstract spaces, J. Math. Anal. Appl. 37 (1972), 331-340.

SEOUL NATIONAL UNIVERSITY, SEOUL, KOREA

750