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FIXED POINTS OF f-CONTRACTIVE MAPS
SEHIE PARK

1. Introduction. Let (X, d) be a metric space. A fixed point of a
map g: X — X is a common fixed point of g and the identity map 1, of
X. Motivated by this fact, we replace 1, by a continuous map
f:X— X, and obtain the following.

DEerFiNiTIONS. Let f be a continuous self-map of X. Then a self-map g
of X is said to be f-contractive if d(gx, gy) < d(fx, fy) for all x,y € X,
gx # gy.

Let C; denote the family of all maps g: X — X such that gX C fX
and gf = fg. Given a point x, € X and a map g € C,, an f-iteration of
x, under g is a sequence {fx }*_, such that fx, = gx,_;.

We observe that an f-contractive map is always continuous. Note
that given x, € X, its f-iteration under g is not unique; however, in
case f = 1, these definitions reduce to the usual ones.

We give conditions under which f-contractive maps have fixed
points. In fact, necessary and sufficient conditions for the existence of
fixed points of continuous self-maps of X are given. In order to do this,
criteria for an f-iteration to be Cauchy are of interest. In this direc-
tion, Geraghty [5] obtained important results on usual contractive maps
and iterations.

In this paper, we generalize results of Edelstein [4], Rakotch [7], and
Geraghty [5] on the existence of fixed points, and, consequently, obtain
many extended forms of the Banach contraction principle, especially
those of Boyd-Wong [2], [8], Geraghty [5], Jungck [6], and Rakotch [7].

In § 2, basic nas.c.’s for the existence of fixed points of self-maps of
an arbitrary metric space and their applications are given.

In § 3, we give a nas.c. that an f-iteration of x, € X under g be
convergent. This condition is used to prove criteria for the existence of
fixed points for metric spaces more general than complete ones. Some
applications are also considered.

Throughout this paper, X denotes a metric space with metric d, and
f denotes always a continuous self-map of X.

2. General existence theorems. In this section, we give some n.a.s.c.’s
for the existence of fixed points of a continuous self-map f of X. First,
we need the following.
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LemMa 2.1. Let f and g be commuting self-maps of a metric space
X. If g¥ is f-contractive for some integer N > 0 and f, g¥ have a point
of coincidence { € X, then f{ is the unique common fixed point of f
and g.

Proor. Let n=f{ =g"¢ and n # fn. Then d(n, fn) = d(g, gf%)
<d(fS, ff$) = d(n, fn) leads to a contradiction. Therefore 7 = fy

= g"n. Suppose f and g¥ have another common fixed point 7. Then
din,v') = dig™, g"') < d(fn,fn') = d(n,v") leads to another con-
tradiction. Therefore 7 is the unique common fixed point of f and g.
But from n = fn = g™ we have gn = flan) = g"(gn), whence gn =
n. Thus 7 is a common fixed point of f and g. Now, 7 is unique since
" = fn’ = gn’ implies v’ = fy’ = g'’.

The following is basic in this paper.

THEOREM 2.2. A continuous self-map f of X has a fixed point iff
there exists an f-contractive map g in C; such that for some x, € X, an
f-iteration {fx,} of x, under g has a subsequence {fx, } converging to a
point { € X. Indeed, f and g have a unique common fixed point fS.

ProoF. Suppose that fy = n for some n € X. Define g: X — X by
gx = n for all x € X. Then clearly g € C; and g is f-contractive. Note
that for any x € X, its f-iteration under g converges to 7 and 7 is the
unique common fixed point of f and g.

Conversely, from the continuities of f, g and fx, —{, we have
ffx, — f¢ and gfx, —g{. We define a function r:Y =
fX% fX = A— R by rifp, fq) = d(gp. gq)/d(fp. fa), where A denotes the
diagonal of X. Then r is continuous and r(fp, fq) < 1. Thus if f{ # gf,
there is an a, 0 < a < 1, and an open set U of Y such that (f{,g{) € U
and if (fp, fq) € U then 0 = 1(fp, fq) < a. Now choose p > 0 so that
(1) p <(1/3)d(f%, g¢) and (2) if B; = B(f{, p) and B, = B(gS{, p) are open
balls, then B, X B, C U.  Since ffx, — f{ and gfx, — g, there exists
N >0 such that i > N implies ffx, € B, and gfx, € B,. Therefore
d(ffx,, gfx,) > p for all i > N. On the other hand, from the definition
of r, the choice of U, and the fact that ffx, = gfx, _,, we have

d(ffx, 1 ffxng2) < ad(ffx,; ffx,, )
Further, if /> j > N, then
d(ffxn, ffx n,+1 d(ffxn,_1+1’ ffxn,_,+2)
< ad(ffxn,_l’ ffxn,_1+1)‘

Then by repeating this argument we get

d(ffra; ffrnpn) < & 7d(ffx,; ffr, ,0)-
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But with fixed j, a/~— 0 as /— oo, whence d(ffx,, ffx,,,)— 0. This
contradicts d(ffx,, gfx,)>p for /> N. Thus we conclude that
f§ = g, and, by Lemma 2.1, § = f{ is the unique common fixed point
of fand g.
If f = 1, Theorem 2.2 is reduced to a theorem of Edelstein [4].
From Lemma 2.1 and Theorem 2.2, we have

CoROLLARY 2.3. A continuous self-map f of a compact metric space X
has a fixed point iff there exists a map g in C, such that for some in-
teger N > 0, gV is f-contractive. Indeed, f and g have a unique common
fixed point.

In case f = 1,, Corollary 2.3 is a particular case of a result of Bailey
[1], and is reduced to a result of Edelstein [4] whenever N = 1.

THEOREM 2.4. A continuous self-map f of a metric space X has a
fixed point iff there exists an f-contractive map g in C, a subset M C X
and a point x, € M such that

1) d(fx, fxo) — dlgx, gxe) = 2d(fx,, gxo)

for every x € X — M and g maps M into a compact subset of X. In-
deed, f and g have a unique common fixed point.

ProoF. Suppose that fn = n for some n € X. Define g: X — X by
gx =7 for all x € X. Then g is in C; and f-contractive. Putting x, = 7
and M = {7}, the necessity follows.

Conversely, if fx, = gx,, it is the unique common fixed point of f and
g, by Lemma 2.1. Suppose fx, # gx, and let {fx,}2_; be an f-iteration
of x, under g. Since g maps M into a compact set by assumption, by
Theorem 2.2, it suffices to show that x, € M for every n. Since g is f-
contractive, if fx,_, = fx,, ie., gx, ; = fx,_;, for some n, then, by
Lemma 2.1, f and g already have a unique common fixed point. Hence
we may assume that d(fx,, fx,.,) <d(fx,_;, fx,) for all n. From
fxo * gx,, it follows that d(fx, f X, 1) < d(fxg, gxo) for all n. Then

d(fx,, fxo) = d(fx,, d(gx,, gx,) + d(gxo, fx,)
implies
d(fx,, fxo) — d(gx,, gxo) < 2d(fxy, gxo)-

Thus, by (1), we have x, € M for all n.

If x, € M, Theorem 2.4, then the existence of a common fixed point
of f and g follows immediately by putting x = x, in (1). In case f = 1,,
Theorem 2.4 is due to Rakotch [7, Theorem 1].

Now, following Rakotch [7], we introduce a class of functions.
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DerFINITION. . is the class of monotonically decreasing functions
a:(0,00)— [0, 1).

For a €.7, let a(x, y) = a(d(fx, fy)).

CoROLLARY 2.5. A continuous self-map f of X has a fixed point iff
there exists an f-contractive map g in C, and a point x, € X satisfying

2) d(gx, gxo) = a(x, x0)d(fx, fx,)

for every x € X, fx, # fx, where o €7 and g maps the open ball
B(fx,, 1) with r = 2d(fx,, gx,)/[1 — a(2d(fx,, gx,))] into a compact subset
of X. Indeed, f and g have a unique common fixed point.

Proor. Suppose that fn = 1 for some n € X. Defining g: X — X by
gx = 7 and putting x, = 7, for some constant a € (0, 1), everything is
trivially satisfied.

Conversely, in Theorem 2.4, take M = B(fx,, 7), then from (2), by the
definition of a(d) and r = 2d(fx,, gx,), it follows that if d(fx, fx,) = r
then

d(fx, fxo) — d(gx, gxo) = d(fx, fxg) — a(x, xo)d(fx, fxo)
= [1 — alx, x))d(fx, fx,)

=1 — o)
> [1 — a(2d(fxo, gxo))]r
= 2d(fx,, gxo),

that is, (1) holds.
In case f = 1,, Corollary 2.5 is due to Rakotch [7].

3. g-orbitally complete spaces only. Given a continuous self-map f of
X, we introduce a condition on X somewhat more general than com-
pleteness.

DerFiNiTION. Given g € C,, X is said to be g-orbitally complete w.r.t. f
if, for any x € X, every Cauchy subsequence of an arbitrary f-iteration
{fx,}2_, of x under g converges in X.

The g-orbital completeness w.r.t. 1, is just the g-orbital comvleteness
of Ciri¢ [3].

For any pair of sequences {x,} and {y,} in X with fx, # fy,, we
write

d, = d(fx, fy,) and A, = d(gx,, gy,)/d,.
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We have the following theorem.

TueoreM 3.1. Let f be a continuous self-map of X and g be an f-
contractive map in C, such that X is g-orbitally complete w.r.t. f. Let
x, € X and {fx,}?_, be an f-iteration of x, under g. Then {fx,} con-
verges to a point { € X and hence f{ is the unique common fixed point
of f and g iff, for any two subsequences {fx,} and {fx,} with
fxy, # fx, we have that A, — 1 implies d, — 0.

PrOOF. Suppose fx, — { and let {fx, } and {fx, } be any two sub-
sequences. Then d, = d(fx, , fx, ) — 0 and the condition is satisfied.

Conversely, assume the condition is satisfied for a given point
xo € X. Since g is f-contractive, if fx, , = gx, = fx, for some n, then f
and g already have a unique common tixed point by Lemma 2.1. Hence
we may assume that d(fx,, fx, ) = d(gx,_,, gx,) < d(fx,_,, fx,) for all
n. Now d, = d(fx,, fx,,,) is a decreasing sequence of positive numbers
and so approaches some € = 0. Assume € > 0. Then letting h, = n and
k, =n + 1, we have d,— ¢ > 0 while A, — 1. This leads to a con-
tradiction. Hence d(fx,,fx,,,)— 0. Now assume that {fx,} is not
Cauchy. Then there exists some € > 0 such that every tail {fx,},>y has
diameter Dy = sup,, ,=xd(fx,, fx,,) > €. Given this ¢, we will construct
a pair of subsequences violating the condition. For any n >0, let N,
be so large that d(fx,,, fx,,,,) < 1/n for all m = N,, as is possible since
d(fx,, fx, 1) — 0. Let h, = N, be the smallest integer such that for
some k, > h,, d(fx, , fx, ) > e. Such pairs exist by the above diameter
condition. Next choose k, to be the smallest such integer > h,. Then
difx,, fx, 1) =€ and e=d, = d(fx, , fx, ) < € + 1/n. Moreover, we
have

12 A, = dgx,, gr,)/d, Z (d, — 2/n)/d,.

So A, — 1 while d, — ¢ > 0, again leading to a contradiction. So {fx,)
must be a Cauchy sequence and converges in X since X is g-orbitally
complete w.r.t. f. Now by Theorem 2.2., our proof is complete.

The above proof is essentially that of Theorem 1.1 of Geraghty [5],
which is a particular case f = 1,. By thoroughly examining the proof,
we also obtain the following extended form of Corollary 1.2 of [5].

CoROLLARY 3.2. Let f be a continuous self-map of X and g be an f-
contractive map in C, such that X is g-orbitally complete w.rt. f. Let
%y € X and {fx,}*_, be an f-iteration of x, under g. Then {fx,} con-
verges to a point { € X, and hence f{ is the unique common fixed point
of f and g iff, for any two subsequences {fx,} and {fx, } with
fx,, # fx,, we have that A, — 1, with d,, decreasing, implies d, — 0.
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According to Geraghty [5], we can convert this sequential condition
to the more customary functional form.

DEFINITION. .7 is the class of functions a : (0, o) — [0, 1) such that
(i) a(t,)— 1 implies t,— 0. [5]. As before, a(x,y) = a(d(fx, fy))
when a €.7.

ReMARK. Note that #” C .7 and that we do not assume any continu-
ity on a. Using Corollary 3.2, we can replace (i) by

(ii) a(t,) — 1 with ¢, decreasing implies ¢, — 0 [5].

Note also that any continuous a : (0, 00) — [0, 1) is contained in .7~
(cf. Corollary 3.8).

TueoreM 3.3. Let f be a continuous self-map of X and g be an f-
contractive map in C; such that X is g-orbitally complete w.r.t. f. Let
x, €EX and {fx,}?_, be an f-iteration of x, under g. Then {fx,} con-
verges to some { € X and hence f{ is the unique common fixed point of
f and g iff there exists an « in.7" such that for all n,m, fx, # fx,, we
have

d(gx,, gx,) = a(x,, x,)d(fx,, fx,,)-

Proor. It suffices to show that the existence of such an a in .7 is
equivalent to the sequential condition of Theorem 3.1. Suppose such an
a exists. Let {fx, } and {fx; } be subsequences with fx, # fx,. As-
sume that A, — 1. Then it follows from the above inequalit)’; that
a(x, , 1, ) — 1. But then since a € .77, we have d(fx; , fx, ) — 0.

Conversely, suppose that the sequential condition holds. Define
a: (0, 00) — [0, co) as follows:

ot) = sup {d(gx,, gx,,)/d(fx,, fx,) | d(f,, fx,,) = t}

if d(fx,, fx,,) = t holds for some m, n; and a(t) = 0 otherwise. Since g is
f-contractive, the quotients are all <1 and so a is defined for all ¢ > 0
and a = 1. Now assume that a(t,) —1 for ¢, €(0, co). We may further
assume without loss of generality that 1 — 1/n < dt,) = 1. Now we
have to show t, — 0. By the definition of «a(¢,), for each n > 0, there is

a pair fx, , fx, in {fx,} with
d(fx, , fx,) = t, and

1 —1/n <dgx,, g, )/d(fx, , fx;,) = a(t,,).

So A, — 1. But then by the sequential condition of Theorem 3.1,
d(fx, , fx, ) — 0. So t, — 0. This completes our proof.
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In case f = 1,, Theorem 3.3 is reduced to Theorem 1.3 of Geraghty
(5]-

As consequences of Theorem 3.3 we obtain fixed point theorems.

THEOREM 3.4. A continuous self-map f of a metric space X has a
fixed point iff there exists an f-contractive map g in C; such that X is g-
orbitally complete w.r.t. f, and there exists a subset M C X and a point
xy € M satisfying the following:

1) d(fx, fx,) — d(gx, gxo) = 2d(fx,, gx,) for every x € X — M,

@) d(gx gy) = ofx, y)d(fx, fy) for every x,y EM, fx # fy, where

a €.7. Indeed, f and g have a unique common fixed point.

Proor. For the necessity, we just follow the proof of Theorem 2.4
for any constant « € [0,1). Conversely, if we take an f-iteration
{fx,}2_, of x, under g, then we can show that x, € M for all n, as in
the proof of Theorem 2.4. Then the condition of Theorem 3.3 is satis-
fied.

If x,¢M in Theorem 3.4, then the existence of a common fixed point
of f and g follows immediately by putting x = x,, in (1).

In case f = 1,, the above theorem includes Theorem 2 of Rakotch
[7]. Note that our proof is simpler.

THEOREM 3.5. A continuous self-map f of a metric space X has a fixed
point iff there exists an f-contractive map g in C, and a function a in

.7

7" such that X is g-orbitally complete w.r.t. f, and

digx, gy) = a(x, y) d(fx, fy)

forall x,y € X, fx # fy. Indeed

(1) f and g have a unique common fixed point n € X, and

(2) for any x, € X and any of its f-iterations {fx,}2_, under g, we
have lim,, gfx, = 7.

Proor. The necessity is clear. For the converse we can apply Theo-

rem 3.3 to any point x, € X.

In case f = 1, for complete X, Theorem 3.5 is due to Geraghty [5].
From Lemma 2.1 and Theorem 3.5, we have

CoroLLARY 3.6. A continuous self-map f of X has a fixed point iff
there exists an f-contractive map g in C, and a function a in .7 such
that, for some integer N > 0, X is gN-orbitally complete and

dg"x, g'y) = a(x, y)d(fx, fy)

forall x,y € X, fx # fy. Indeed, f and g have a unique common fixed
point.



750 S. PARK

CoroLLary 3.7. Let f be a bijective continuous self-map of a com-
plete metric space X. If there is an integer N > 0 and a function a in
7" such that

dx y) = a(d(f fMy)d(f*x fy)
for every x, y € X, x# y, then f has a unique fixed point.

A few more generalizations of the Banach contraction principle are
obtained from the following.

CoroLLARY 3.8. A continuous self-map f of X has a fixed point iff
there exists an f-contractive map g in C, such that X is g-orbitally com-
plete w.rt. f and a function a:(0,00)— [0, 1), which satisfies one of
the conditions: (i) monotone decreasing, (ii) monotone increasing, (iii)
continuous, and (iv) sup,a(d) < 1, such that

digx, gy) = ald(fx, fy)d(fx. fy)
forall x, y € X, fx # fy. Indeed,
(1) f and g have a unique common fixed point n € X, and
(2) for any x, € X, any f-iteration of x, under g converges to some
¢ € X satisfying f = g§ = .

For f = 1, and complete X, Corollary 3.8.(i) is due to Rakotch [7],
(iii) to Boyd-Wong [2], and (iv) to many authors. For a complete met-
ric space X and a constant a, Corollary 3.8 is due to Jungck [6].
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