
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 8, Number 4, Fall 1978 

ON HYPERBOLIC POLYNOMIALS WITH CONSTANT 
COEFFICIENTS 

M. MÜNSTER 

ABSTRACT. We give several criteria of hyperbolicity for poly
nomials P with constant coefficients. Our conditions include those of 
Svensson [5] (a necessary and sufficient condition), A. Lax [3] (a nec
essary condition) and Hörmander [2] (a sufficient condition). 

Our criteria seem to be practical to handle because they are 
based either on the comparison of homogeneous functions of the 
same degree, or on the behaviour of the different homogeneous parts 
of P at the roots of its principal part. 

On the other hand, our proof is quite elementary: in particular, 
it does not rely on Puiseux series or Seidenberg's lemma. 

1. Introduction. The symbols /, k, /, m, with or without indices, al
ways denote integers ^ 0. 

Let Pk(k — 0, • •, m) be a polynomials in n variables, homogeneous 
of degree k and with constant coefficients. 

The polynomial 

m 

r = 2 Pm-k 
k—o 

is said to be hyperbolic with respect to N G K n \ { 0 } if Pm(N) ¥* 0 and 
if there exists a constant c such that 

P(ix + T2V) = 0 Ì 

x G Rn, T G C J 

One also says in this case, that P is c-hyperbolic with respect to N. 
For any polynomial P, we denote by P{i) the polynomial defined by 

F®(ix + TN) = DT\P{ix + TN)]. 

Let us recall some properties of hyperbolic polynomials. We give the 
proofs for the reader's convenience. 

PROPERTY 1. / / P is c-hyperbolic with respect to N, then Pm is 0-
hyperbolic with respect to N. 

PROOF. We have, for all t > 0, 

P(itx + rtN) = 0 

x G Rn, r G C J ' ' t 
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Letting t —* oo, we get the result, by Hurwitz's theorem (see e.g., [6, 
p. 119]). 

PROPERTY 2. If P is c-hyperbolic with respect to N, then Pij) is also c-
hyperbolic with respect to N for all / E [0, m]. 

PROOF. It is sufficient to treat the case ; = 1. Since 

i™= S A W ' 
its principal part takes, at N, the value mPm(N) ¥* 0 by Euler's identity. 

In addition, for any x0 in Rn, we have 

FtojixQ + T2V) 
P(ix0 + TN) = 2 

k-l T — Tl 

• for | ^ r | > c, 

where rk(k = 1, • • -, p) are the distinct roots of P(ix0 + TN) and afc 

their multiplicity. 
Therefore 

r f̂ fap + ry i J «f^-j*) ^ o f a r | ^ | > c 
L P(ix0 + TN) J /El |T - rk\

2 K ' 

and P<x> differs from 0 for |^V| > c. 

PROPERTY 3. If P is c-hyperbolic with respect to N9 there exists a con
stant K such that 

pfijix + TAQ K 
P(ix + TN) I ( | ^ T | - c)* 

for all x E Hn, |^V| > c, / E [0, m]. 

PROOF. It is sufficient to prove it for / = 1. 
For xQ fixed in Rn, we have, with the same notations as in the pre

ceding proof, 

HV(ix0 + TN) 
P(ix0 + TN) 

P 

2 - ^ -
fc=l T — Tj, 
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for |^T | > c. 

2. Criteria of Hyperbolicity. 

THEOREM. 7/ Pm is hyperbolic with respect to N, the following are 
equivalent: 

(a) P — 2£L0 Pm_k is hyperbolic with respect to N; 
(b) there exists a constant K such that 

\Pm_k\ ^ K su?[\Pjfr-WMpfi\*-4W-4>.m 0 g | S K f S m ] 

for all x G Rn, r G C, k G [0, m[; 
(From no«; on, u;/ien the argument is omitted, it has the form 

ix + TN, with x G Rn and r G C, unless otherwise stated. Moreover, the 
same symbol K is used for possibly different constants.) 

(c) for {gome) M > ®> there exists a constant KM such that 

0 g ; S k < /' S m} 

/or a« x G R", |^T | = M, k G [0, m[; 

(d) there exists a constant K0 such that 

\Pm_k\ Si K o S Up{|Pmöf'-W-»|pj»|<*-w-» : 

0 g / g k < f ^ m} 

/or aß x G fi", ^V = 0, fc G [0, m[. 
(e) there exists a constant K such that 

\Pm_k\ ^ K sup{|?w0-)|0'-W-,)|Pm00|(^W-i) : 

k - 1 ^ \'^ k < f ^ m) 

for ail x G Rn, 0?T = 0, k G ]0, m[; 
(f) tfiere existe a constant K such that 

x0 G fin, T0 G C J 

W?-* K + VV)| ^ KlP^ + ̂ fai, + r0N)| 

for ail k G ]0, m[ and / G [0, m - Jfc[; 
(g) there exists a constant K such that 

x0 G fi«, r0 G C, P J * - « ^ + To2V) 

= .••• =^m
< f c + /-1K + ToA0 = o ^ 

1 ^ - * («*b + ToAOI ^ W = + 1 ) K + T0A/)| 
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for all k E ]0, m[ and I 6 [0, m - k[; 
(h) for k E ]0, m[, there exists a constant K such that, for any 

x0 E Rnand T0 E C such that Pw
(fc_1)(ix0 + T0N) = 0, there exists a 

neighbourhood V of T0 in {r:âPr = 0} such tfiaf 

l^m- f cK + TAOI ^ K|Pm<*>(ix0 + TW)|, /or aB T G V; 

(i) (Svennson's first condition) for {soZei M > 0 there exists a constant 
KM such that 

\pm-k\ ^ KM\pm\ 

for all x e Rn, \&r\ ^ M, k e [0, m]; 
(j) (Svensson's second condition) for ("™ êj M > 0 there exists a con$. 

stont KM sac/i that 

\Pm-k\^KM\Pm^-^\ 

for all x E Rn, |^V| ^ M , J C G ]0, m]. 

Before giving the proof, let us make some observations about this 
statement. 

Conditions (b), (c), (d) and (e) are very similar: note that (b) is valid 
for any r, (c) for ^ T | = M > 0, (d) for ^ T = 0; (e) is also valid for 
^?r = 0 but many terms in the right member of (d) have disappeared: 
the index / takes only 2 values, k and k — 1. 

Condition (b) (or even (c)) gives immediately Svensson's first condi
tion (i). To obtain Svensson's second condition (j), which is more pre
cise, we need condition (g), which comes from (d), (e) and (f). This is 
the first reason why we have distinguished the two cases fé?r\ — M > 0 
and âfir — 0. This last case is also useful in obtaining A. Lax's condition 
(see section 3). 

Let us also note that the criteria (b), (d), (e), (f) and (g) relate func
tions which are homogeneous of the same degree in a cone. So, as nec
essary conditions, they are, in a certain sense, more precise than Svens
son's conditions, (where the right members have a degree of 
homogeneity strictly greater than the left members.) 

Furthermore, they also have some advantages as sufficient conditions, 
because of the following simple remark: if / and g are homegeneous of 
the same degree in a cone T, the following are equivalent: 

(a) 3 K > 0: \f] ^ K\g\ in I\ 

(/?)xmer,g(*j-o=*/(*j-o, 
(Y) *mer, \f(xj\ = i^g(xj-£o, 

(ô)xmer(g(xj-^o^/(*j>œ. 
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The proof is quite elementary: (a) ==> (/?) => (y) and (8). Conversely, 
(y) => (a) and (Ô) ==> (a) are easily obtained by contradiction. 

PROOF. Let us now give the proof of our theorem. It will be divided 
in several steps. 

I. (a) => (b). To clarify the idea of the proof, we shall first give it for 
a polynomial of degree 2. 

Let P = P2 4- P t 4- P0 be c-hyperbolic with respect to N. 
For any a > 0, t > 0, x G Rn and T £ C, we have 

a2P [ itX + (* + tT)N ] - t2P2(ix + TN) + tP^Xix + TN)Z 

(1) 

P (2) 
4- - ~ - z2 4- «fP^i* 4- TAT) 4- aP!(1)% 

z 

+ a*P0 = 0=* \&(±±*L) I g c 
• \ a / I 

From this, it is impossible to find sequences ap> 0, tp > 0, xp E Rn 

and TP G C such that cap + fp^Tp | — 0, \ap tpPt(ixp 4- rpN)\ = 1 and all 
the other coefficients in (1) tend to 0 (except P2

(2)/2, which is a con
stant ¥* 0) i.e., such that 

{ 
a p - 0 , ^ T P - 0 , l a ^ P i K + rpN)| = 1, 

tp
2 P2(txp + TPN) - 0, *p P2V(ixp + rpN) - 0. 

Indeed, if it were possible, taking subsequences, we could also sup
pose that aptpP1(ixp 4- TpN) converges to a number r with \r\ = 1. Pass
ing then to the limit as p —• oo and using Hurwitz's theorem, we should 
obtain 

p (2) 

±j~-z2 + r = o=>0?z = O 
Zi 

which implies r/P2
i2) ^ 0. But, choosing now the sequences ap, tpy —xp 

and — rp, we should also obtain — r/P2
{2) ^ 0 (because P1 is homo

geneous of degree 1), and so r = 0, an absurdity. 
Furthermore, note that tp\âPrp\ —* 0 is a consequence of 

i2P2(ixp 4- TPN) —• 0, because 

1*2 I < ^ for ^ L . ^ A 
|P2| - | 0 r | ' 

Ir2 I 
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Therefore, eliminating ap, we find that it is impossible to find se
quences tp > 0, xp G Rn, TP G C such that 

Pi(i*P + rpN) # 0 

J- I .ft 

*p sup{|P2(ixp + TpJV)r2, |P2<"(t*p + rpN)\} - 0. 

But given two sequences ap = 0, bp = 0, the following are equivalent: 

( « ) a p f c p - 0 , 

0») 3 tp > 0: y * p - 0 and bjtv-+ 0. 

Indeed, (/?) obviously implies (a). Conversely, if (a) is true, we can 
take, for instance, 

( it )in*%*o>\*»> 
I pbp i fap = 0, & p # 0 , 

- i - i f a p * 0 , bp = 0, 

^ 1 if ap = 0, bp = ft 

to obtain (0). 
From this remark, we see that there exist no sequences xp G R", 

TP G C such that 

J\K + '»A) y. ft 

1 
\Pt(ixp + rpN)\ 

In other words, there exists e > 0 such that 

1 

sup{|P2(tep + r^AOr2, |P2<«(i*p + rpN)l) - 0. 

or, with k = 1/e, 

ftl 
suP{|P2r, |p2o)|} g < 

I P j I S K s u p d P ^ , |P2<D|}, 

which is equivalent to condition (b) of the theorem for k = 1. Since (b) 
is obvious for fc = 0, the proof is complete for polynomials of degree 2. 
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Let us now treat the general case. 
We prove it by induction on ra. 
For m = 1, it is obvious because ?1

(1) = PX(N) ¥= 0. 
From now on, we suppose that (a) => (b) for polynomials of degree 

< m (m > 1) and we prove it for polynomials of degree m in several 
steps. 

Let us fix k* in ]0, m[ and /* E ]fc*, m]. 
(Note that b) is obvious for k = 0). 

(1) It is impossible to find sequences ap > 0, tp> 0, xp E Rn and 
TpGC such that 

ap**t™-k*Pm_k*(ixp + TpN)\ 

= \tp™-i* Pm^(ixp + rpN)\ * 0 , 

tp™-i*Pj*>(ixp + TpN) 

« p - 0 . 

0, for all k E [0, m], 
ì E [0, m — k] except 
for (k, /) = (0, /*) and 
(**, 0), 

Note first that these conditions imply té#rp —> 0: take / = k• = 0 and re
call the existence of a constant K such that 

ft tf*>l K 

for all x 6 f i f l and ^?T * 0. 
Since P is c-hyperbolic with respect to N9 for any t > 0, a > 0, 

T E C, we have 

awP I ita + (z + frr)N 

TO—fc 

fc=o i=o ;! 

=* |^z | ^ ca + ^ r | (X E JRn, z E C). 

Replacing (a, t9 x, T) by (ap, fp, xp, TP) in the equation, dividing this 
equation by tp

m~j* Fm°*) (ixp -f rpN), taking subsequences so that 

k* * m-k* ; -fc* (K + TpJV) 

converges to r(|r| = 1) and letting p—* -f oo, we would obtain, by Hur-
witz's theorem, 
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+ r = 0=»Jfe = 0, 
H 

which is obviously impossible if /* > 2. If /'* = 2 (thus k* = 1), replac
ing (xp, TP) by ( —xp, — Tp) and keeping the same sequences tp and ap 

would simply change r into — r and we would still obtain a con
tradiction: 

z2 

\r\ = 1 and ~ ± r = 0=> \#z\ = 0. 
Zi 

(2) It is impossible to find sequences ap > 0, tp > 0, xp G Hn orai 
Tp G C such that 

K * tp—*' Pm_k.(ixp + TDN)| = |tp—>* PJ*> (ixp + TpA0| * 0, 

" " , r*7k, p pl » 0, for k G ]0, m[ \{**} , 

p -, „ , ,w p " i »0, for / G [0, m] \{ /*} , 

v a p - 0 . 

If it were possible, we should also have, for the same sequences, 

«p* tp
m-"->' Ft-k (fay + Tp^) , 0 f a l j fc [ 0 j 
rp rm l**p + V ^ ;- G [o, m - k] except 

for (fc, /) = (0, /*) and 
(k*, 0) 

which is absurd, by (1). 
We have only to verify this for k G [1, m[, / G [1, m - k], for k - 0, 

/ = m, and for k — m, / = 0. For Je G [0, m[ and / = m - Je, p^Lfc is a 
constant and 

because ap —* 0, and 

P 
x m 

m—i* 

'p 

(m) 

P 

m—k* 
«„* 

V> K 

jf_ TVN) 

+ V*) 

- 0 , if/* 

-* 0 

=5̂  m , 

^m-i* p 0*)(iXp -f TpiV) is a constant, if /* = m. 

The same argument may be used for k = m and ; = 0. For k G [1, m[ 
and ; G [1, m — fc[, we shall apply the hypothesis of in
duction (a) => (b) for polynomials of degree < m. Since P® = 2^=o 
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pm-k i s hyperbolic with respect to N, there exists a constant K such 
that 

l'-k-j _k+j-£ 

\P%_k \*Ks*j>{\Pj>\ r-/ |PW(0| r-/ 

for all x G Hn, T G C . Then, omitting here the arguments ixp + TpiV, we 
have, for all p, 

^ /c + m-k-j p(j) 
"p *p x m-fc 

* m-j* p (j*) 
*p £ m 

f-k-j h+j-t 

\PJ'}\ '-' C m k t m-k-j ip (/)! / ' - / 

^ K s u p { -%LJP ^ I r 

: j' ^ i ^ k + ; < f = m > 

r-k-j k+j-£ 

p l p L y - > v > | J Ltp—
,,|PJ,«*>i J 

and each term in the braces tends to 0 as p tends to infinity. 

(3) There exists a constant K such that, for any x G R" and T E C , 
we have either 

\PJ*\* KsupflPJ» '"-'' | V > | ' - ' 

0 S; < /* < /' ^ m) 

or 
fc'-fc* fc*-fc 

|P r o _ A » |êfcsup{ |P m _ s |^ |Pm_t,| *'-* , 

|JM»| *'«*-» | ? j I V 
j*(k'-k*) k* 

m—k'\ 

Hk'-k*) 
\p <j*)\ k'(i*-j) 
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k* j*(k*-k) 
\p \ k \p (?')| W-j*) 
\ m—k\ lx m I 

IVY 
j*-k* 

j'(k*-k) 
W-j*) 

k*-k_ 

m—k 

j*-k* 

IP I i*-k \p 0'*)| J*-k 
\rm-k\ \rm I 

P m j*-j 

: 0 ^ / < /* < f ^ m, 0 < k < k* < k' < m}. 
j-k* 

Here, the second inequality is valid everywhere for /* = m. In this 
case, we shall conventionally say that the first inequality is "false" 
everywhere; in fact, it has no meaning! In the same way, any term 
which has no meaning has to be omitted: it is the case, for instance, of 
terms including Pm_k if k* = 1. 

At a point where Pw
ö*> = 0 (resp. Pm_k* = 0), the first (resp. second) 

inequality is valid for any K. 
So, we may suppose Pm°*) and Pm_k* ^ 0. 
By (2), replacing ap by its value and then eliminating tp, we find that 

it is impossible to construct sequences xp E Rn and rp E C such that 
the quotients of each expression in the braces by the first members, cal
culated at ixp -f TpN, all tend to zero as p —* oo. This is equivalent to 
assertion (3). 

We shall now proceed to eliminate in (3) the terms containing Pm_k 

and Pm_w. 
For the reader's convenience, we shall first study the case of a poly

nomial of degree 3 : P = P3 + P2 + Px + P0. 
In this case, the inequalities in (3) take the form: 

(a) \Pl\ s Ksup{|p2i^, |p 3r , i p ^ r . iiy2,i); 
(b) |P2| â K sup{|P3|1/2|F1|1/2, |P3<«|3/4|P1|

1/2, IPg^HPil1 '2 , 

|P,l2/3> \Pn |P3<
2>|2}; 

either 

(c) |P 3 W|SKsup{ |P s r s , | P s w r } , 

or 

(d) | P 2 | ^ K s u p i I P ^ I P , {' 11/21p 11/2 î 3(i>i i ^ r 2 

|P3(2)|l/2 

\Ps\1/2\r3
&)\1/2>\m} 
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To eliminate P2 in the bound for Pv we only need (a) and (b) (i.e., 
the inequalities obtained for ;'* = 3). Indeed, if we replace |P2| by the 
right member of (b) in (a), we find 

IPJI ^ K supfK^IPaf lPJ 1 ' 4 , K^P^f^P^, 

K l /2 |p 3 ( l ) | l /2 ; KV2\p&)\t |P 3 | l /3 ; \P3W]l/2t | p 3 » |J 

SK3 /2sup{|P3 |1 /4 |P1 |1 /4 , |P3
(1,|3/8|P1|1/4, 

I W ^ I ^ l ^ l 1 ^ l^3(1,|1/2» \P3
(2)\i 

if K is greater than 1, which is no restriction. 
But, if 

|PX| â K3/2 sup{|P3|1/4|P1|1/4, I ^ I ^ I P i l 1 7 4 , |P3<2)|3/4|P ir
4} 

and if Px # 0, dividing by |Pi|1/4, we find 

|?i|3/4 ^ x ^ s u p d P a l 1 ^ , |P3
(1)|3/8, |P3

(2)|3/4} 

or 

(a') |Pa| ^ K2 sup{|P3r3, |P3<«|1/2, |P3<
2>|}. 

So, in fact, this last inequality is valid everywhere and we have elim
inated P2 from the right member of (a) (and this gives the desired in
equality for |jPa|). 

From (a'), one can see that the terms including P1 in (b) and (d) may 
be eliminated if we change the constant K. Indeed, (a') shows, for in
stance, that 

V ^ s + V^-o] 
W K + W) - ol ^ K p^Xj> + TpiV) _ o => V A + T/o - o. 

So, in (2), adapted to the particular case treated here, we can drop 
the condition about Px(a tp P^top + TpN) —* 0); we can therefore replace 
Pj by 0 in the rest of the proof. 

We thus obtain the existence of a constant K such that 

(b') |P2 |3iKsup{|P3 |2/3 , |P3<«|, |P3<
2>|2} 

and either 
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(C) |P3<2) |^Ksup{|P3 |^ |p3(i) | i /2} 

or 

(d') |P2 |gKsup{|P3|^|P3(2)|l/2 ; |p3a,|}. 

At a given point ix + TN, if 

|P3<2>|>Ksup{|P3|^|P3(l)|l/2}> 

then, at this point 

|P 2 | SKsup{ |P3HP 3 Wr2, |P3<«|} 

^ Ksup{|P3 |^|P3<2)|^ |P 3 n |P 3 | 2 /3 } . 

If, on the contrary, 

|P3<2)|^Ksup{|P3 |^|P3(l)|l/2}) 

then we have also 

|P2| S K s u p { | P 3 r , |P3<»|, K 2 | P 3 r , K2|F3a)|} 

^K3sup{|P3|2/3;|P3(i)|} 

ë K3sup{|P3 |2^ |P3d)UP3jl/2|P3(2)|l/2} 

(if K ^ 1). So, this last inequality is valid everywhere and this is the 
desired inequality for \P2\. 

Let us now come to the general case. 
Let k0* be fixed in ]0, ra[. 
For x and T fixed in Rn and C respectively, denote by jQ* = ;0*(x, T, 

fc0*) the smallest integer /* > k0* for which the first inequality in (3), 
with K replaced by K' ^ K, is false at ix + T2V. Here, K' is a suffi
ciently large constant independent of x and T; its value will be specified 
in the sequel. 

(4) There exists a constant Kx such that 

io*(fc'-fc0*> ko* 
IP (i)| fc'0'o*-i) |P I *' 

I m-k0*\ 1 if ^ M'-kn*) 
|Pm0'o*)| fc'0-o*-i> 

IP 0')| j 0 * - ' \ 
J-2-Î : 0 ^ / < /0* Jko* < if < m f . 

IP O'o*)| ; 0 * - i 
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For every /'* E ]k0*, ;0*[ (if any), we have, by the definition of j0*, 

\Pm™\ =g K'sup [ | P m » | ^ " ÌPJ1^ : 

0 S / < / * < f S m | 

for all x E Rn, r E C. 
It can be shown by induction on /0* that, with another constant K", 

we have 

|V*) | ^ K"sup | |Pmco| V-* |pjr>| '"-; 

for all x E Kn, r E C. (Start with /0* = k0 + 2.) 
In the same way, from (3), one can prove, by induction on fc0* (start 

with fc0* = 1) the following result: there exists a constant K1 i^ K such 
that, at every point of the form ix + TN, we have either 

I P ^ I ^ K . s u p d P ^ I ^ ^ |PJ»| ^ ~ : 

0 S / < /* < f ^ m} 

or 

C IP ö)| fc'ü*-i) IP i fc' 

v. j(fc'-fc*) 

|p (01 i*-i 
lxm I : 0 ^ / < /*, fc0* < fc' < m } 

for all Jc* E ]0, fc0*]. 
This obviously implies (4) if K' (in the definition of /0*) is taken equal 

t o X r 

5. End of the proof of (a) => (b). Let us first examine the last term in 
(4). 

For 0 ^ / ' ^ &Q*, we have 
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j *—k * 

\p U)\ )0*-ï in*-fcn* *«*-* 
1 m ' - IP (f)| i0*-' IP öo*)| V " ' 

Tm I lxm I 

^sup{ |P m 0-) | f - i |PwO-0| i - i . 

0 ^ / ^ f c 0 * < f ^ m } . 

For fc0* < / < /0* we have, with the same K" as in the proof of (4), 

|pm(0| V - i 

>'-*o* 

â ( K " ) V-* s u p | 

</-J)0„«-fc«*) 0-W,*-fc„«) 
ip «I if-tHi0*-li \p C)| C-W«*-J) 

i-*„* 
|Pm00*»| v - i 

But, for each i, / , of the indicated type with / > ;0* we have with 
the same K' as before, 

(t'-M0*-k0*) 0-/)Q-o*-fc0*) 
|P W| (/'-/)0'0*-i) |P CO| v-Mo*-» 

1 
;-fc0* 

1 

M '"' |Pm
ir1 '-' 

j'-fc* fc^.y 

sup{|Pm
0) | '-> \PJ')\ r-i 

0 S / g J f c 0 * < f ^ m } . 

The same inequality is valid for / = ;0* with Kf replaced by 1. 
It remains to show that the first term in the braces in (4) may be 

suppressed. 
This is obvious for fc0* = m — 1, which proves the desired inequality 

for \PX\. 
Suppose now that the desired inequality is proved for |Pw_fc*| 
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(fc* > k0*). Then, in the second condition in (2), with (fc*, /*) replaced 
by (^o*' 7o*)> w e m a y keep only those k which are strictly less than k0* 
(the proof is the same as that of (2) itself). In other words, we may re
place here Pw_fc/ by 0 and the proof of (b) is complete. 

II. (b) => (c) and (d). Obvious: take KM = K for M ^ 0. 

III. (c) => (i). For k = m, note that P0 is a constant and 

IP (rn)\ < **\Pm\ 

for some K and all <^T # 0. 
For k G [0, m[, the inequality in (i) is obviously true for | ^ T | 

with the same constant KM as in (c). 
To prove it for |^?T| ^ M, observe that 

M, 

<^T #=0 = 
Prn-kÜ* + T2V) 

PJix + T2V) 

Lm—/c + 
rM 

+ 
TM 

IV. (d) => (e). In fact, we shall prove the following: 

LEMMA 1. If Pm is a polynomial homogeneous of degree m and hyper
bolic with respect to N, there exists a constant K such that 

for all x 

IP 0')| i'-i IP 0"0| 
I m i I m i 

: f c -

Rn, g?T = 0,k 

k-j 

r-i 
\?r S*sup{|PJAj 

1 ^ / ^ k < e ^ m} 

]0, ml J G [0, k[, f G ]h m]. 

(/Ol / ' - / 

PROOF. For m = 2, this is obvious. Let us suppose the result is true 
for polynomials of degree < m. Since Pw

(1) is homogeneous of degree 
m — 1 and hyperbolic with respect to N, the inequality is valid for 
k G ]1, m[ and / G ]0, Jfc[, f G ]Jfc, m]. 

It remains to prove the existence of a constant K' such that 

(i) 
K ~ \PJV gJC'sup{|Pm»| 

f-k 
t-i \P, 

k-l 
(/Oi r-i . 

for all x G JRW, ^?T = 0, k G ]0, m[, /' G ]fc, m]. 
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For k = 1, this is obvious. Suppose k > 1. 
Let us first note that, for any fc' G ]0, m], there exist constants c. > 0 

(/ G [0, fc']) such that ' 

2 c^'-i pj\ix + rivy = o 

Pw(fc + TN) * 0 

x GKn, ^ T = 0, * > 0 

>^z = 0. 

Indeed, 

m j 

PJitx + (s + tr)N\ « 2 4 - P m
0 ) (fa + rN)tm-i = 0=>3?z = 0. 

j=o p 

Replacing z by 1/z and multiplying the new equation by zm, we get 

i l /! 
^ — PTO<» (ix + TJV) *»»-' = 0 = > ^ z = 0. 

Differentiating m — k! times with respect to z, we obtain 

A;' -fc'-i - iM (m - /)' 

m {K-w n 
Pm® (ix + TN)*™"' = 0 

PJte + N) * 0 
>^z = 0, 

(the condition Pm(ix 4- TN) ^ 0 is sufficient to assert that the equation 
does not take the form 0 = 0). 

Replacing now z by 1/z and multiplying the new equation by zk\ we 
have 

iô^¥ iVL p- , l ( < t + ™,(" 
Fm (ix + TAT) # 0 

0 I =»^z = 0 

(the condition Pm(ix 4- rN) ¥= 0 implies that 0 is not a solution of the 
equation). The result follows after division by tm~k'. 

We shall now use this result with k' = k + 1 to prove inequality (1) 
for f = k 4- 1. 

It is easy to verify as previously that it is impossible to find se
quences xp G Rn, rp G C (with 0Prp = 0) and tp > 0 such that 
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K\^\*Tjf -°>forai1 / E ] ° - *]• 
Pm

(fc+1)(txp -f <rpN) 

This implies the existence of a constant K* > 0 such that 

r ip ®\ i i 
sup < LmJ : 0 < / < fc + 1 > è — 

for all x G Rn, e^T = 0 such that Pm ¥> 0 and Pm
(fc+1) ^ 0. In other 

words, for any x E fln, ^?T = 0, there exists / = j(x, r) E ]0, fc + 1[ such 
that 

fc+l-j 
P J *+1 IPJ*+1)l fc+1 S K * | P »I. m 

Then, 

| p j *+1 I ^ < Ä + 1 , I *+1 

1 j k-j 
/£) — ip I fc+l \p (fc+i)| (fc+D(fc+l-i) ip <*+D| fc+i-i 

1 1 fc-i 
^ (K*) jt+1~-7' IP ^l k+x~i IP <fe+1)| *+i-i' 

If / E ]0, fc[, we get, from the hypothesis of induction, 

ip I fc+i ip (fc+i)| fc+i < 
I ml lxm I — 

^ (K*) ^ ^ Ksup UP^l7^ ÌPm^ì7^ 

: f c - 1 ^ / ^ f c < / ^ m } . 

For / = fc, (2) becomes 

1 fc 
|p | fc+1 |p (fc+i)| fc+1 < K*\P 
r ml lx m I — in 

(fc)| 

and the result is proved for f = fc + 1. 
The general case follows in the same way by induction on /'. 

V. a => /. We know that a =» & => d => e. Applying this to P(/), we ob
tain that, for some constant K, 
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j'-k-l k+l-j 
\P%_k\ ^ sup{|Pj»| ' - ' \PJ')\ r-i 

for ail x G Rn, 3?T = o, k G ]0, m[ and 7 G [0, m - fc[. Property (/) fol
lows immediately with the same constant K. 

VI. (f) => (g). Obvious with the same constant K. 

VIL (g) => (/). For k — m, note that P0 is a constant (see III). We 
shall thus suppose k G ]0, m[. 

For x fixed in Rn, let T. (/ = 1, • • -, p) denote the distinct roots of 
Pm

(/C_1)(ix + TN) and a? their multiplicity. 
From (g), a; > 1 => T,. is a root of Pm_k(ix + TN) with multiplicity 

^ a, - 1. 
So, Pw_fc/Pm

(fc_1) has only simple poles and it may be written as 

where 

N = lim 
p (fc-l> 

^Kat 

by Taylor's formula; the result follows because 

^ r , = 0 = 1 i - ^ f o r ^ ^ M . 

VIII. (e) => (h). In fact, there exists a neighborhood V of T0 in C such 
that 

j'-k 

l ^ - ' K + TAOI j'-k+1 \PJ'\ix0 + TN)| '"-*+ 1 ^ |Pm<*K + TAOI 

for all T G V, f G ]fc, m]. 
This follows immediately from the fact that 

lim [PJ^Vo + TW-WXQ + TAQ 
[Pm<*>(ix0 + rN)Y~*+1 

exists and is < 1: it is indeed easy to verify that, if i is the multiplicity 
of T0 as a root of P j * " 1 ^ + TN), this limit is 0 if t < f - k + 1 and 
it is equal to 
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(y _ f + k) • • • (/ - 1) 
/ -fc 

if / ^ /' - k + 1. 

IX. (ft) => (g). Let /0 be the smallest integer such that 
Pm(k+,°~1)(ixo + T(A) ^ °> s o 4> E }/, m - Jfc + 1]. It follows from (ft) 
that 

Pm_,(i*0 + W ) = - - • = i*V2>(i*0 + r0iV) = 0. 

Indeed, there exists a polynomial Ç> such that 

J V ' - V o + TiV) - (T - T0/OÇ(T). 

Then, for some polynomial Qv 

Pm«\ix0 + TN) - (T - T/O-IÇ^T). 
But, by (/»), 

l ^ - * K + TAOI S K |(T - T 0 ) V I Ç I ( T ) | for all T G V, 

so Pm-k(i*o + ToN) = 0. 

Suppose Pm_k(ixQ + TN) takes the form 

J W * o + TW) - (T - T0)«F(T) (a < /„ - 1), 

where F is a polynomial. We can write (ft) in the form 

|F(T)| ^ K |(T - T^o-i-aC^r)! for all T E V, 

and T0 is a root of F. Therefore, we can take a = /0 — 1 and the result 
follows. 

Then, by Taylor's formula, 

lim ? ™ - * K + TJV) = ton ^ - " K + T A ° 
r-r. P / K + TiV) r-r . P / ^ K + ^ 

= lim P - l f t («o + TiV) 
™ . P J ^ K + TiV) 

for all / E [0, 70[. 

But the absolute value of the first limit is ^ K (by (ft)) and this im
plies (g) with the same constant K. 
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REMARK. Property (g) is not implied by 

3K : Pj^Kix, + r0N) = 0 ^ \Pm_k(ix0 + r0N)| 

^ K|Pw<*>(is0 + r0N)|. 

Take, for instance, with n = 2, N = (0, 1), ro = 3, fc = 1, 

P3(ix -f TN) = (T + ix2 - ix^f 

P2(ix + TN) = (T 4- i*2 - ^i)(T + ^ 

X. (/) => (i). Obvious, if we recall the existence of a constant K such 
that 

P (fc-D K 
T f o r f r ^ 0 , J l > 0 . 

XL (t) => (a). If (i) is satisfied for some M > 0, we have, for «#r ^ 0 
and k G ]0, m], 

*«(<* + TN) 

Mfe 

KwMfc 

m—k 

\ I! 
ixM TM 

KM 
k * 

So, for |^?r| large enough, we have 

m m 

\P\ = \Pm + 2 Pm-k\ ^ |PJ - 2 \Pm-u\ 
k-\ k-1 

> * 0. 

This completes the proof of the theorem. 

3. Corollaries. 

COROLLARY 1. (A. Lax s theorem) If P = 2^_0 Pm_k is hyperbolic 
with respect to N, then Pm®{ix0 + r0N) - 0, for all / G [0,1\ => 
^U(**o + ToN) = 0 for all / G [0,1 - k] for k G [0, / ] . 

This is an immediate consequence of (/). See [4] for a simpler proof. 
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COROLLARY 2. (Hormander's theorem) If Pm is a homogeneous poly
nomial of degree m hyperbolic with respect to N and if, for any x E Rn 

not proportional to N, Pm(ix + TN) possesses only roots of multiplicity 
= ko, where k0 does not depend on x, then Pm + 2]£_fc Pm_k, is hyper
bolic with respect to N, whatever be the polynomials Pm_k homogeneous 
of degree m — k. 

This follows from criterion (d): both members are homogeneous of 
degree m — k and the second member never vanishes, by hypothesis, 
for x not parallel to N. 
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