POLYNOMIAL CHARACTERISTIC FUNCTIONS FOR $G F(p)$ AND IRREGULAR PRIMES

 L. CARLITZ

 L. CARLITZ}

1. Let $P(x)$ be a polynomial with coefficients in $F=G F(p)$, where p is an odd prime, that takes on only the values 0 and 1 . It will be convenient to assume that $P(0)=0$. Note that if $P(x)$ is a $0-1$ polynomial then $P(c x)$ is also a $0-1$ polynomial for all $c \in F, c \neq 0$. Let

$$
\begin{equation*}
U=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\} \tag{1.1}
\end{equation*}
$$

denote the subset of $F-\{0\}$ such that

$$
\begin{equation*}
P\left(u_{i}\right)=1 \quad(i=1,2, \cdots, k) \tag{1.2}
\end{equation*}
$$

By the Lagrange interpolation formula, the unique 0-1 polynomial of degree $<p$ and satisfying (1.2) is given by

$$
\begin{equation*}
P(x)=\sum_{i=1}^{k}\left\{1-\left(x-u_{i}\right)^{p-1}\right\} \tag{1.3}
\end{equation*}
$$

Since

$$
(x-y)^{p-1}=\sum_{j=0}^{p-1} x^{j} y^{p-j-1}
$$

we have

$$
\begin{equation*}
\left(x-u_{i}\right)^{p-1}=\sum_{j=0}^{p-1} x^{j} u_{i}^{p-j-1}=\sum_{j=0}^{p-1} x^{j} u_{i}^{-j} \tag{1.4}
\end{equation*}
$$

Thus (1.3) becomes

$$
\begin{equation*}
P(x)=-\sum_{j=1}^{p-2} x^{j} \sum_{i=1}^{k} u_{i}^{-j}-k x^{p-1} . \tag{1.5}
\end{equation*}
$$

An alternate representation for $P(x)$ is the following. Put

$$
\begin{equation*}
\phi(x)=\prod_{u \in U}(x-u), \psi(x)=\frac{x^{p-1}-1}{\phi(x)} \tag{1.6}
\end{equation*}
$$

Since

$$
\frac{\phi^{\prime}(x)}{\phi(x)}=\sum_{u \in U}(x-u)^{-1}
$$

it follows from (1.3) that

$$
P(x)=-\sum_{u \in U} \frac{x^{p}-x}{x-u}=-\frac{\phi^{\prime}(x)}{\phi(x)}\left(x^{p}-x\right)
$$

Hence

$$
\begin{equation*}
P(x)=-x \phi^{\prime}(x) \psi(x) . \tag{1.7}
\end{equation*}
$$

For example, if U consists of the non-zero squares of F then

$$
\phi(x)=x^{(1 / 2)(p-1)}-1, \psi(x)=x^{(1 / 2)(p-1)}+1
$$

and it follows that

$$
\begin{aligned}
P(x) & =-(1 / 2)(p-1) x^{(1 / 2)(p-1)}\left(x^{(1 / 2)(p-1)}+1\right) \\
& =(1 / 2)\left(x^{p-1}+x^{(1 / 2)(p-1)}\right)
\end{aligned}
$$

This result is easily generalized. Let $p=r s+1$ and let U denote the set of non-zero s-th powers of F. Then

$$
\phi(x)=x^{r}-1, \psi(x)=\frac{x^{p-1}-1}{x^{r}-1}
$$

and we get

$$
\begin{equation*}
P(x)=-r\left(x^{r s}+x^{r(s-1)}+\cdots+x^{r}\right) . \tag{1.9}
\end{equation*}
$$

Returning to (1.5), we can rewrite it in the form

$$
\begin{equation*}
P(x)=a_{1} x^{r_{1}}+a_{2} x^{r_{2}}+\cdots+a_{m} x^{r_{m}}-k x^{p-1} \tag{1.10}
\end{equation*}
$$

where $0<r_{1}<r_{2}<\cdots<r_{m}<p-1$ and none of the coefficients a_{i} vanishes. Thus the question arises of what exponent patterns $\left(r_{1}, r_{2}\right.$, \cdots, r_{m}) can occur. In (1.9) the exponents (including $p-1$) form an arithmetic progression.

As another example in which $\left(r_{1}, r_{2}, \cdots, r_{m}\right)$ alone form an arithmetic progression we cite $U=1,2,3$ with $p=7$. It can be verified that in this case

$$
\begin{equation*}
P(x)=-3 x^{6}+x^{5}-x^{3}-3 x \tag{1.11}
\end{equation*}
$$

2. We shall now examine the more general case

$$
\begin{equation*}
U=\{1,2, \cdots,(1 / 2)(p-1)\} \tag{2.1}
\end{equation*}
$$

in some detail. By (1.5) we now have

$$
P(x)=-\sum_{j=1}^{p-2} x^{j} \sum_{a=1}^{(1 / 2)(p-1)} a^{p-1-j}-(1 / 2)(p-1) x^{p-1} .
$$

Since

$$
\sum_{a=1}^{p-1} a^{r}=0 \quad(1 \leqq r<p-1)
$$

it follows that

$$
\sum_{a=1}^{(1 / 2)(p-1)} a^{2 r}=0 \quad(1 \leqq r<p-1)
$$

To evaluate the corresponding sum with an odd exponent, we make use of the formula [2, Ch. 2]

$$
\sum_{a=1}^{(1 / 2)(p-1)} a^{2 r+1}=\frac{B_{2 r+2}(1 / 2(p+1))-B_{2 r+2}}{2 r+2},
$$

where $B_{n}(x)$ is the Bernoulli polynomial of degree n and B_{n} is the n-th Bernoulli number. For $2 r+2 \leqq p-1$, it follows from the Staudt-Clausen theorem that

$$
\begin{aligned}
B_{2 r+2}(1 / 2(p+1)) & -B_{2 r+2} \\
= & \sum_{j=0}^{2 r+1}\binom{2 r+2}{j} B_{j}(1 / 2(p+1))^{2 r-j+2} \\
= & \sum_{j=0}^{2 r+1}\binom{2 r+2}{j} B_{j}(1 / 2)^{2 r-j+2} \\
= & B_{2 r+2}(1 / 2)-B_{2 r+2}
\end{aligned}
$$

Since [2, p. 22] $B_{n}(1 / 2)=\left(2^{1-n}-1\right) B_{n}$, it follows that

$$
\begin{equation*}
\sum_{a=1}^{(1 / 2)(p-1)} a^{2 r+1}=\frac{2^{-2 r-2}}{r+1}\left(1-2^{2 r+2}\right) B_{2 r+2} \quad(2 r+2 \leqq p-1) . \tag{2.3}
\end{equation*}
$$

Therefore by (2.2) and (2.3),

$$
\begin{equation*}
P(x)=-\sum_{r=1}^{(1 / 2)(p-1)} \frac{2^{-2 r}}{r}\left(1-2^{2 r}\right) B_{2 r} x^{p-2 r}-(1 / 2)(p-1) x^{p-1} \tag{2.4}
\end{equation*}
$$

Recall that a prime p is regular [3, p. 82] if it divides none of the Bernoulli numbers $B_{2}, B_{4}, \cdots, B_{p-3}$. Moreover it is known that there are infinitely many irregular primes. Those less than 100 are $p=37,59$, 67.

If p is irregular, at least one of the coefficients on the right of (2.4) vanishes. If p is regular it is still possible that $2^{2 r} \equiv 1(\bmod p)$. Hence if we assume that p is regular and that 2 is a primitive $\operatorname{root}\left(\bmod p^{2}\right)$, it follows that none of the coefficients in (2.4) vanishes. If $p \equiv 3(\bmod 4)$ and 2 belongs to the exponent $(p-1) / 2$, it is still true that none of the coefficients in (2.4) vanishes. For example, for $p=7$, (1.11) illustrates this situation.

More generally let the smallest even exponent to which 2 belongs $(\bmod p)$ be $2 t$ and put $p=2 s t+1$. Then, for p regular, the vanishing coefficients in (2.4) are those corresponding to the exponents $p-2 r s$ ($r=1,2, \cdots, t)$.
3. Results of an analogous nature also hold in the following situation. Let $p \equiv 1(\bmod 4)$ and take

$$
\begin{equation*}
U=\left\{1,2, \cdots, \frac{1}{4}(p-1),-1,-2, \cdots,-\frac{1}{4}(p-1)\right\} \tag{3.1}
\end{equation*}
$$

Then as above

$$
\begin{aligned}
P(x)= & -\sum_{j=1}^{p-2} x^{j} \sum_{a=1}^{(1 / 4)(p-1)}\left(a^{p-1-j}\right. \\
& \left.+(-a)^{p-1-j}\right)-\frac{1}{2}(p-1) x^{p-1} \\
= & -2 \sum_{j=1}^{(1 / 2)(p-3)} x^{2 j} \sum_{a=1}^{(1 / 4)(p-1)} a^{p-1-2 j}-1 / 2(p-1) x^{p-1} .
\end{aligned}
$$

Now, for $r \geqq 1$,

$$
\begin{aligned}
\sum_{a=1}^{1 / 4(p-1)} a^{2 r} & =\frac{B_{2 r+1}((p+3) / 4)-B_{2 r+1}(1)}{2 r+1} \\
& =\frac{1}{2 r+1} B_{2 r+1}(1 / 4(p+3)) \\
& =\frac{1}{2 r+1} B_{2 r+1}(3 / 4)
\end{aligned}
$$

Since [2, p. 21 and p. 29]

$$
B_{2 r+1}(3 / 4)=-B_{2 r+1}(1 / 4)=(2 r+1) 4^{-2 r-1} E_{2 r}
$$

where $E_{2 r}$ is an Euler number, it follows that

$$
\begin{aligned}
P(x)= & -2 \sum_{r=1}^{(1 / 2)(p-3)} 4^{-2 r-1} E_{2 r} x^{p-2 r-1} \\
& -(1 / 2)(p-1) x^{p-1}
\end{aligned}
$$

Corresponding to the definition of regular primes above we may define a prime p as regular with respect to the Euler numbers if none of the numbers $E_{2}, E_{4}, \cdots, E_{p-3}$ is divisible by p. It is proved in [1] that the number of primes irregular with respect to the Euler numbers is infinite.

Hence if p is regular with respect to the Euler numbers it follows that none of the coefficients in (3.2) vanishes. For example, 5 is regular in this sense (as well as the previous sense) and we have from (1.3)

$$
P(x)=\left(1-(x-1)^{4}\right)+\left(1-(x+1)^{4}\right)=-2 x^{2}-2 x^{4}
$$

in agreement with (3.2).

References

1. L. Carlitz, Note on irregular primes, Proceedings of the American Mathematical Society, 5 (1954), 329-331.
2. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
3. H. S. Vandiver and G. E. Wahlin, Algebraic Numbers II, Bulletin of the National Research Council 62, 1928.
[^0]
[^0]: Duke University, Durham, North Carolina 27706

