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POLYNOMIAL CHARACTERISTIC FUNCTIONS 
FOR GF(p) AND IRREGULAR PRIMES 

L. CARLITZ 

1. Let P(x) be a polynomial with coefficients in F = GF(p), where p 
is an odd prime, that takes on only the values 0 and 1. It will be con
venient to assume that P(0) = 0. Note that if P(x) is a 0-1 polynomial 
then P(cx) is also a 0-1 polynomial for all e E F, c ¥= 0. Let 

(1.1) U= {uv u2, - •., uk] 

denote the subset of F — {0} such that 

(1.2) PK) = 1 (i = 1, 2, • • -, *). 

By the Lagrange interpolation formula, the unique 0-1 polynomial of 
degree < p and satisfying (1.2) is given by 

(1.3) P(x)= 2 { l - O c - u ^ - 1 } -
t = l 

Since 

we have 

(x - yf"1 = 2 ay-'""1, 
i=o 

p—1 p—1 

(1.4) (x - u / - 1 = 2 ^ V - ' - 1 = 2 ^Wi_;'-

Thus (1.3) becomes 
p-2 k 

(1.5) P(x) = - 2 x> 2 « i ^ - fa?"1. 
i=l i n i 

An alternate representation for P(x) is the following. Put 

(1.6) *(x) = n (x -1 . ) , *(x) = 
w EÏ7 <j>(x) 

Since 
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*' ( l )-= Z(*-u)-\ 
<j>(x) util 

it follows from (1.3) that 

D/ \ ^ xp - x <J>'(x) . , 
P(X = - 2 = T7T" (X ~ *)• 

W G [ 7 X - W </>(x) 

Hence 

(1.7) ?(x) = - **'(*)*(*). 

For example, if 17 consists of the non-zero squares of F then 

<#>(*) = X<1/2>^-1> - 1, !/,(*) = X^172^-^ + 1 

and it follows that 

P(x) = - (l/2)(p - 1) x(i/2)(p-i)(x(i/2)(p-i) + x) 

= ( l /2)(xp-1 + x*172^"1*). 

This result is easily generalized. Let p — rs + 1 and let U denote the 
set of non-zero 5-th powers of F. Then 

y?-1 - 1 
<j>(x) = x' - 1, ^(x) = x r - 1 

and we get 

(1.9) ?(x) = - r(xrs + x^s-V + • • • + af). 

Returning to (1.5), we can rewrite it in the form 

(1.10) P(x) = a ^ 4- a2x
r* + • • • + amxr™ - fcep-1 

where 0 < r 1 < r 2 < • • < rm < p — 1 and none of the coefficients 
ai vanishes. Thus the question arises of what exponent patterns (r1? r2, 

• -, rm) can occur. In (1.9) the exponents (including p — 1) form an 
arithmetic progression. 

As another example in which (r1? r2, • • •, rm) alone form an arithmetic 
progression we cite U = 1, 2, 3 with p — 7. It can be verified that in 
this case 

(1.11) ifc) = - 3X6 + x5 - x3 - 3x. 

2. We shall now examine the more general case 

(2.1) [ / = { ! , 2, • • • , ( l / 2 ) ( p - l ) } 
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in some detail. By (1.5) we now have 

p - 2 (1/2XP-1) 

p(x) = - 2 ^ 2 a*-1-' - (i/2)(p - l)**-1. 
i = l a = l 

Since 

it follows that 

p - i 

2 ar = 0 (1 ê r < p - 1), 

(1/2KP-1) 

(2.2) 2 ^ r = 0 (1 ë r < p - 1), 
an i 

To evaluate the corresponding sum with an odd exponent, we make 
use of the formula [2, Ch. 2] 

a/2y~1}
 a2r+i = l W V 2 ( p + 1)) - B2r+2 

o=i 2r + 2 

where Bn(x) is the Bernoulli polynomial of degree n and Bn is the n-th 
Bernoulli number. For 2r + 2 ^ p — 1, it follows from the Staudt-Clau-
sen theorem that 

B2r+2(l/2(p + 1)) - B2r+2 

= T ( 2r + 2 ) ^(l/2(p + l))2r"'+2 

= T ( 2f + 2 ) ^(l/2)2r- -J+2 

= ß 2 r + 2 ( 1 / 2 ) - ß 2 r + 2 -

Since [2, p. 22] Bn(l/2) = (21"" - l)£n, it follows that 

(1/2KP-1) o - 2 r - 2 

(2.3) 2 « 2 r + 1 = r (1 - 22r+2)B2r+2 (2r + 2 S p - l ) . 
o=l r + 1 

Therefore by (2.2) and (2.3), 

(1/2XP-1) 9 _ 2 r 

(2.4) P(x) = - 2 ^ — (1 - 220 V 2 r - (l/2)(p - l y - 1 . 
r = l r 
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Recall that a prime p is regular [3, p. 82] if it divides none of the Ber
noulli numbers B2, B^ • • •, Bp_3. Moreover it is known that there are 
infinitely many irregular primes. Those less than 100 are p = 37, 59, 
67. 

If p is irregular, at least one of the coefficients on the right of (2.4) 
vanishes. If p is regular it is still possible that 22r = 1 (mod p). Hence if 
we assume that p is regular and that 2 is a primitive root (modp2), it 
follows that none of the coefficients in (2.4) vanishes. If p = 3 (mod 4) 
and 2 belongs to the exponent (p — l)/2, it is still true that none of the 
coefficients in (2.4) vanishes. For example, for p = 7, (1.11) illustrates 
this situation. 

More generally let the smallest even exponent to which 2 belongs 
(modp) be 2t and put p = 2st + 1. Then, for p regular, the vanishing 
coefficients in (2.4) are those corresponding to the exponents p — 2rs 
( r = l , 2 , • • - ,*) . 

3. Results of an analogous nature also hold in the following situation. 
Let p = 1 (mod 4) and take 

(3.1) U = (1, 2, • - -, i ( p - 1), - 1 , - 2 , • • -, -\(p - 1)}. 

Then as above 
p-2 (1/4XP-1) 

P(X) = - 2 *j 2 K"1_i 

j—l a—l 

+ ( _ f l ) p - i - i ) _ i ( p - l ) ^ - 1 

(l/2)(p-3) (1/4KP-1) 

= - 2 2 x2i 2 a"'1-* - l/2(p -c l)*p_1-

Now, for r = 1, 

"V ..- B—((p + 3)/4) - B^i(1) 

J i 2r + 1 
1 B2r+1(l/4(p + 3)) 

2r + 1 

Since [2, p. 21 and p. 29] 

B2r+1(3/4) = -B 2 r + 1 ( l /4) = (2f + l )4- 2 - 1 E 2 r , 
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where E2r is an Euler number, it follows that 

(1/2XP-3) 

P(x) = _ 2 2 4~2r-1£2^-2r-1 

r—l 

(3.2) 
- (l/2)(p - l)**-1. 

Corresponding to the definition of regular primes above we may de
fine a prime p as regular with respect to the Euler numbers if none of 
the numbers E2, E^ • • -, Ep_3 is divisible by p. It is proved in [1] that 
the number of primes irregular with respect to the Euler numbers is in
finite. 

Hence if p is regular with respect to the Euler numbers it follows 
that none of the coefficients in (3.2) vanishes. For example, 5 is regular 
in this sense (as well as the previous sense) and we have from (1.3) 

P(x) = (1 - (x - l)4) + (1 - (x + l)4) = - 2X2 - 2s4, 

in agreement with (3.2). 
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