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SOLUTION OF TWO VOLTERRA INTEGRAL EQUATIONS 
JON C. HELTON 

ABSTRACT. The letters / , h, F and G denote functions with 
values in a normed complete ring. With suitable restrictions on 
these functions, it is established that 

/(*) = h(x) + fX/(")G(ti,t>)[„nX(l + F)i 
J a 

for a = x = b if, and only if, 

f(x) = h(x) + f h(u)G(u,v)[^['(l + F + G)] 
J a 

for a ̂  x ̂  b, and that 

f{x) = h(x) + £ f(v)G(u, tOCn'u + F)] 

for a ̂  x = b if, and only if, 

f(x) = h(x) + \Z
a [h(v)%"j=lG(u, v)] [„nX(l + F)(l - G)-i] 

for « ^ x ^ fo. 

In this paper, product integral techniques for the solution of certain 
types of Volterra integral equations are developed. These results con­
nect closely with previous integral equation results in papers by B. W. 
Helton [3, 4] and J. C. Helton [7, 8, 9] . In addition, several other 
papers also contain product integral related techniques for the solution 
of Volterra integral equations. In particular, the reader is referred to 
papers by C. W. Bitzer [1, 2 ] , J. V. Herod [11,12], D. B. Hinten [13] 
and J. A. Reneke [16]. 

In the following, all functions are from R to N or R X R to N, where 
R denotes the set of real numbers and N denotes a ring which has a 
multiplicative identity element represented by 1 and a norm | • | with 
respect to which N is complete and | 1 | = 1. Lower case letters are 
used to denote functions from R to N, and upper case letters are used 
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to denote functions from R X R to N. Functions o n R X R are as­
sumed to be defined only for elements {a, b} of R X R such that a< b. 

All integrals and definitions are of the subdivision-refinement type. 
If {Xi} 7=o is a subdivision of [a, b], then^ = ffa) and G* = G(xi_1, Xj). 
The statement that lh

a G exists means there exists an element L of N 
such that, if € > 0, then there exists a subdivision D of [a, b] such that, 
if {Xi }"=0 is a refinement of D, then 

U - S GÌ I < «• 
1 i = l ' 

Similarly, the statement that aJIb(^ "*~ ̂ ) e x i s t s means there exists an 
element L of N such that, if e > 0, then there exists a subdivision D of 
[a, fe] such that, if {Xij'Uo is a refinement of D, then 

I I - n (i + Q) I < e. 
1 i = l ' 

Further, the statement that G is in OM* on [a, b] means (1) J l y ( l + 
G) exists for a = * < J/ = k and (2) if € > 0, then there exists a sub­
division D of [a, b] such that, if {XjjLo is a refinement of D and 
0 ^ p < g ^ n, then 

L i p a + G)- n a + co I <« 
i=p + l ' 

The function G has bounded variation on [a, fc] only if there exist a 
subdivision D of [a, b] and number B such that, if {**} "=0 is a refine­
ment of D, then £ > i |G,| < B. Further, if ß > 0, then the notation 
\G\ < 1 — ß on [a, b] means there exists a subdivision D of [a, b] such 
that, if {xi} f=o is a refinement of D and 1 ^ i! =ï n, then |Gi\ < 1 — ß. 
Also, G is in OP0 on [a, b] only if there exist a subdivision D of [a, b] 
and a number B such that, if {x^} "=0 is a refinement of D and 0 ^ p < 
q = n, then 

I n (i + Gi) | < B -

The symbols G(p~, p), G(p", p~),G(p, p+) and G(p+, p+) are used 
to denote lim?_p-G(x, p), limÄ>v_p--G(x, y), limx_+p+G(p, oc) and 
lim/x p+ G(x, t/), respectively. Further, the function h is quasi-
continuous on [a, b] only if limx-+p-h(x) exists for a < pê b and 
limx_»p+h(x) exists for a^p<b. For convenience in notation, let 
G G Si on [a, b] only if G(p~9 p~) exists and is zero for a < p ^ b and 



VOLTERRA INTEGRAL EQUATIONS 549 

G(p+, p+) exists and is zero for a =i p < b, and let G E S2 on [a, b] 
only if G(p~, p) exists for a < p ^ b and G(p, p+) exists for a ^ p < b. 

Additional background on product integration can be obtained in 
papers by P. R. Masani [15], J. S. MacNerney [14], B. W. Helton [3] , 
J. C. Helton [6,9] and J. C. Helton and S. Stuckwisch [10]. 

The first integral equation result is now established. Four lemmas 
are needed. 

LEMMA 1. If fand h are functions from RtoN,F and G are functions 
from flX RtoN, {x< }!*=<) & a subdivision of [a, b] and 

\X
of(u)G(u,v)[vl\

X(l + F)] 

exists and isf(x) — h(x)for a^x^b, then 

fm-K= s ViQ r n (i + Fj+Gj)\ 

+ s [Ci+4] r n (i + Fi+G>) 
i - l L j = i + 1 J 

/or m = 1,2, • • -, n, where 

d = r f(u)G(u, v)[U ''(I + F) ] - /,_& 
J xi-l "" J 

and 

* . - [/_! - Ä i - j ^ ^ n a + F) - u + ft)] 

fori = 1,2, • • -,n. 

PROOF. This result can be established by induction. 

LEMMA 2. If Gis a function from flX Rto N,G has bounded varia-
Hon on [a, b] and either f% G exists or xU

y(l + G) exists for o â x < 
y=b, then Gis in OM* on [a, b] [6, Theorem 1, p. 501 and Theorem 
4, p. 507]. 

LEMMA 3. If S, T and G are functions from RX R to N, each of 
S(p-, p), S(p", p~), T(p-, p) and T(p~, p~) exists for a< p ^ f c , each 
of S(p, p+), S(p+,p% T(p,p+) and T(p+

9 p+) exists for a^p<b, G 
has bounded variation on [a, b] and ]y

x G exists and is zero for a=zx 
< y=b, then lh

a SGT exists and is zero [9, Lemma 1]. 



550 J. C. HELTON 

LEMMA 4. Iff and h are functions from Rto N,F and G are functions 
from RX R to N, f is quasi-continuous on [a, b], ß F exists, J£ G 
exists, F has bounded variation on [a, b], G has bounded variation on 
[a, b] and 

J]/(«)G(«,t>).[rna + F)] 
existe and is/(x) — h(x)for a^x^b, then 

fX
ah(u)G(u,v)[vY\X(l + F+G)] 

exists and isf(x) — h(x)for a ^ x ^ b. 

PROOF. Suppose a ^ x ^ b. If a = x, then the desired equality 
follows immediately. Therefore, suppose a < x. We now establish 
that the desired integral exists and is/(x) — h(x). Let € > 0. 

If D is a subdivision of [a, x] and {Xi}"=0 is a refinement of D, then 
by employing Lemma 1 we have that 

I { i ViQKll *(1 + F + G)]}- {/(x) - /*(*)} I 

= | { Shi-iQuiTa + F + G)]} 

- { i Jn-iG, I" n U + *i+ G,) 1 
*• 1 = 1 L J=i+1 J 

+ s [c,+4] r n (1+3+Q) l ) | 

(a) =i I i ^ x Q rxiIp(l + F+G)- IÏ (1+F,+ G,)]| 

(b) +1 i « r n (i+F.+Q)] I 

(4 +1 i 4 r n (i + Fi+Q) 11 , 
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where c{ and d{ are defined in the statement of Lemma 1. 
It follows from Lemma 2 that F 4- G is in OM* on [Ö, x]. Hence, 

there exists a subdivision Dx of [a, x] such that, if {x{} f=0 is a refine­
ment of D b then the expression in (a) is less than 6/3. 

If L is the function from R X R to N such that 

*-(',*) = \\ f(u)G(u, v)[vll *(1 + F) -f(r)G(r,s)] 

for a =i r < s ^ oc, then L has bounded variation on [a, x] and J* L 
exists and is zero for a ^ r < s â x. Now, since F + G is in OM* on 
[ö, x ] , it follows from Lemma 3 that there exists a subdivision D 2 of 
[a, x] such that, if {X{} "=0 is a refinement of D2, then the expression in 
(b) is less than e/3. 

If L is the function from flX RtoN such that 

L(r,s) = rU°(l + F)-l-F(r,s) 

for a =É r < s ^ x, then L has bounded variation on [a, x] and J* L 
exists and is zero for a= r < $ = x. Now, since / and h are quasi-
continuous on [a, x] and F + G is in OM* on [a, x], it follows from 
Lemma 3 that there exists a subdivision D 3 of [a, x] such that, if 
{Xj}?=o is a refinement of D3, then the expression in (c) is less than e/3. 

Let D denote the subdivision Dx U D 2 U D 3 of [a, x] . Thus, if 
{Xi}^0 is a refinement of D, then it follows from the definitions of D1? 

D2 and D 3 that 

| { Ê V I Q [ J I *(1 + F + G)]}- {f(x) - h(x)} | 

< 6/3 + 6/3 + €/3 = €. 

Therefore, the desired integral exists and is/(x) — h(x). 

THEOREM 1. Iff and h are functions from Rto N, F and G are fune-
tions from fix R to N, J£ F exists, $h

a G exists, F has bounded varia­
tion on [a, b] and G has bounded variation on [a, b], then the follow­
ing statements are equivalent: 

(1) fis quasi-continuous on [a, b] and 

\X
af(u)G(u,v)[vYlX(l + F)] 

exists andisf(x) — h(x)for a^x^b, and 
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(2) h is quasi-continuous on [a, b] and 

J** h(u)G(u,v)[vl[
X(l + F+G)] 

exists and isf(x) — h(x) for a ̂  x ^ b. 

PROOF. [ ( l )-»(2)] . Suppose (1) is true. Then it follows im­
mediately that h is quasi-continuous on [a, b]. Also, the hypothesis of 
Lemma 4 is satisfied. Hence, the desired integral exists and is f(x) — 
h(x) for a ^ x ^ b. Therefore, (1) implies (2). 

[(2) -* (1)]. Suppose (2) is true. Then, it follows immediately that 
fis quasi-continuous on [a, b]. Further, it also follows that fàh(u) 
[ - G(u, v)] [vU

x(l + / + Gj] exists and is h(x) - f(x) for a â x â i . 
Now, by applying Lemma 4, we have that Iïf(u)[ — G(u,v)][vU

x(l + 
F + G — G)] exists and is h(x) — f(x) for a ^ x â b. Hence, the de­
sired integral exists and is f(x) — /i(x) for a ^ x ^ b. Therefore, (2) 
implies (1). 

The proot of Theorem 1 is now complete. The second integral equa­
tion result is established next. Two additional lemmas are needed. 

LEMMA 5. Ifß > 09fand h are functions from Rto N, F and G are 
functions from RX Rto N, fa} "=0 is a subdivision of [a, b] such that 
|Q| < 1 - ßfor t = 1,2, • • -, n and 

jX
af(v)G(u,v)[vl\

X(l + F)] 

exists and isf(x) — h(x)for a ^ x^b, then 

fm-hm= 2 U S G , J | I n (l + FuKl-Gk)-1] 

+ S [ ^ + 4)(i - Q)-1] | I l (i + F*)(i - G*)-1 1 

/or m = 1,2, • • -, n, where 

a = j * ̂ G O ^ I T ' a + F)] - jîG 

and 

di = iß-, - /».-df^rr-a + F) - (i+F4)] 
/ o f t = 1,2, • • -,n. 
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Proof. This result can be established by induction. 

LEMMA 6. Ifß > 0,fand h are functions from Rto N, F and G are 
functions from RX Rto N, fis quasi-continuous on [a, b], Sì F exists, 
lh

a G exists, F has bounded variation on [a,b],G has bounded varia­
tion on [a, b], \G\ < 1 — ß on [a, b] and 

f]f(v)G(uM[0U*(i+'F)] 

exists and isf(x) — h(x)for a^x^b, then 

J** [h(v) 2 Gf(u, v) ] [ „ n '(1 + F)(l - G ) 1 ] 

exists and isf(x) — h(x)for a ^ x == b. 

PROOF. Through the use of Lemma 5 instead of Lemma 1, this result 
can be established by a proof similar to the proof used to establish 
Lemma 4. 

THEOREM 2. Ifß > 0,fand h are functions from Rto N,F and G are 
functions from RX R to N, ß F exists, $h

a G exists, F has bounded 
variation on [a, b], G has bounded variation on [a,b] and \G\ < 
1 — ß on [a, b], then the following statements are equivalent: 

(1) fis quasi-continuous on [a, b] and 

j*af(v)G(u,v)[vll(l+F)] 

exists and isf(x) — h(x)for a^x^b, and 
(2) h is quasi-continuous on [a, b] and 

il [h{v) t °(u>v) ] [°n*a + F)(I - G)-1] 
exists and isf(x) — h(x)for a i x^b. 

PROOF. Through the use of Lemma 6 instead of Lemma 4, this result 
can be established by a proof similar to the proof used to establish 
Theorem 1. 

REMARK. The conditions on the function F in Theorems 1 and 2 are 
actually more stringent than what is needed to establish the equivalence 
of the two statements in their conclusions. These theorems remain true 
if the requirements that " J£ F exists and F has bounded variation on 
[a, b]" are replaced by the weaker requirements that "F is in OM*, 
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Sx H S2 and OP° on [a, b], fs
rL exists and is zero for a ê r < s â b 

and L has bounded variation on [a, b ] , where L denotes the interval 
function such that 

Ur,s) = rY['(l+F)-l-F(r,8) 

for a ^ r < s = fo." However, I decided not to complicate the state­
ment and proof of these results by using the more general conditions on 
F. 

When F is supposed to satisfy these more general conditions, the 
major complication is the need to establish that F + G is in OM* and 
OP° on [a, b]. That F + G does indeed satisfy these conditions can be 
established by using results from a previous paper by J. C. Helton [5, 
Theorem 1, p. 355 and Lemma 5, p. 358]. 
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