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ON THE UNIVERSAL COMPACTIFICATION OF A CONE
MICHAEL FRIEDBERG

ABsTRACT. Herein we determine the universal (Bohr) com-
pactification of a wide class of semigroups with the discrete
topology; this class includes the positive additive rationals,
p-adic rationals, reals, as well as the interior of a closed proper
cone in R"™ Using the notion of the greatest semilattice
homomorphic image, we describe the structure of the universal
compactification of a closed proper cone in R" supplied with
the discrete topology.

0. Introduction. The universal compactification of the topo- -
logical semigroup S is a pair (U, u) where U is a compact semigroup,
u:S - U is a continuous homomorphism of S onto a dense sub-
semigroup of U, and for any other continuous homomorphism
f:8— T with T a compact semigroup there is a continuous homo-
morphism f : U— T such that f o u = f. The pair (U, ) is known to
exist for any topological semigroup (c.f [13] or [7]) and is unique
with respect to the obvious notion of equivalence.

First a comment on terminology: Several authors, including this
author, have referred to (U, u) as the Bohr compactification of S. In
[18], the Bohr compactification of S is a pair (B, b) where B is a
compact commutative semigroup in which the semicharacters (i.e.,
continuous homomorphisms into the semigroup of complex numbers z
with |z| = 1) separate points, b : S— B is a continuous homomorphism
of § onto a dense subsemigroup of B, and for any semicharacter y on
S there is a semicharacter y with y° b =1y. One sees immediately
that this definition is much more consistent with the terminology for
topological groups; in this sense, the Bohr and universal compactifica-
tions may differ (e.g., any non-degenerate compact connected semi-
lattice). We shall henceforth use this terminology.

Our purpose in this work is to make a contribution to the determina-
tion of the universal compactification of a closed proper cone in R™
§ 1 sets forth definitions, notation, references, and some general infor-
mation. In §2 we develop some techniques for computing certain
closed subgroups of the Bohr compactification of dense subgroups of
R with the discrete topology; at the end of the Section we give
examples using the techniques developed. In § 3, we give a descrip-
tion of the universal compactification of a wide class of subsemigroups
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(p-divisible K-semigroups) of R* with the discrete topology; these
include the additive semigroups of positive rationals, positive p-adic
rationals, positive reals, and the interior of a closed proper cone in
R~. The description is as a direct product of a certain compact group
and the universal compactification of a closed proper cone in R* with
the usual topology. We then give examples, some of which are known
and some of which are new. In §4, we show that the Archimedean
components of a closed proper cone in R" are the interiors of closed
proper sub-cones, and that the greatest semilattice 'homomorphic
image of a closed proper cone in R" satisfies the finite chain condition.
Lastly, in § 5 we use techniques developed by A. H. Clifford [5],
Hofmann and Mostert [12], and T. T. Bowman [1] to describe (as
a special case) the universal compactification of a closed proper cone
in R* with the discrete topology. Essentially it is the disjoint union
of universal compactifications of interiors of closed proper cones (as
described in § 3). Hopefully, our techniques will aid in the final deter-
mination of the universal compactification of a closed proper cone.
Our work is a result of an attempt to generalize the work by J. A.
Hildebrant in [9] and [10] as well as that of K. H. Hofmann in
[11] (Theorem III) and of Hofmann and Mostert in [12] (p. 140).
1. Preliminaries. If X is a set and AC X and BC X we denote by -
A\B the set theoretic difference and by A U B the disjoint union of A
and B. If, in addition, X is a topological space we denote by A* and
A? the closure and interior respectively of A. A topological semi-
group consists of a non-empty set S, an Hausdorff topology on S, and a
jointly continuous associative binary operation on S. Since we deal
primarily with commutative semigroups, we shall generally use addi-
tive notation. In particular, if AC Sand BC S, A + B is the complex
sum of A and B and if S is a group, A — B is the complex difference.
If S is a semigroup, S; denotes the topological semigroup consisting of
-S with the discrete topology. An iseomorphism of topological semi-
groups is a homomorphism which is a homeomorphism onto its image.
If S is a semigroup and o an equivalence relation on S we use the
notation S/o for the set of equivalence classes modulo o. In particular,
there is a smallest congruence p on S such that Sjp is a semilattice;
Slp is called the greatest semilattice homomorphic image of S, and the
congruence classes are called the Archimedean components of S.
Green’s H-relation on S is defined by saying (g, b) € J# only in case
{a}U(a+ S)= {b}U (b + 8S) and (S+ a)U {a} = (S + b) U {b};
in the commutative case, 54 is a congruence relation. If e2 = e is an
idempotent, H(e) denotes the J-class of e and is the largest subgroup
of Sc  "~inge. A compact holoid is a compact semigroup in which



COMPACTIFICATION OF A CONE 505

4 is degenerate (i.e., ad#b only in case a = b). We denote by R"
the topological vector space of real n-tuplets with the usual vector
operations and the Euclidean topology. A non-empty subset C of
R~ is a proper cone if C+ CC C,rCC C for r=0,and CN -C
= {0}. A semigroup S is (uniquely) p-divisible where p = 2 if for
each x € S there is a (unique) y € S with py = x, and § is (uniquely)
divisible if it is (uniquely) p-divisible for each integer p = 2. For a
discussion of divisible semigroups see [3], or [14]. The following
theorem is basic:

KemmeL’s ExtensioN ThHeorem ([14], 1.1). Let C be a closed
proper cone in R* and T a dense subsemigroup of C° such that
(T-T)NC°C T. Any homomorphism f:T;— S, where S is a
compact holoid, is continuous in the relative topology and f may be
extended in a unique way to a continuous homomorphism f: C — S.
Any semigroup T as in Keimel's Theorem we call a K-semigroup.

The category of locally compact Hausdorff Abelian topological
groups and continuous homomorphisms is denoted by LCA. If
G € LCA then G denotes the dual group of continuous characters on
G to RIZ. G € LCA and if f € Hom(G, H) where H € LCA then
f EHom(H, G) is defined by f(y)=y-° f for y E H. The Bohr
compactification of G is the (unique) pair (B(G), bc) where B(G) = (G),
and bg : G— B(G) is a continuous isomorphism of G onto a dense sub-
group of B(G) where [bg(g)] (y) = y(g) for g € G and y € (G);. The
pair (B(G), bg) is also the universal compactification of G. Finally we
denote by [0, ®)((0, «)) the additive semigroup of non-negative
(positive) real numbers with the usual topology. Our standard refer-
ence for algebraic semigroups is Clifford and Preston [6], for topologi-
cal semigroups is Hofmann and Mostert [12], and for topological
groups is Hewitt and Ross [8].

2. In this section we develop some techniques which will aid in
the calculation of certain compact Abelian groups which occur in
the universal compactification of a K-semigroup. For this purpose let
M be an arbitrary locally compact Abelian topological group, K a
dense subgroup of M, and i : K;— M the inclusion. Let H denote the
subgroup of B(K;) consisting of those h € B(K,) for which there is a
net k in K with h = lim b, (k) and with limk = 0 in the relative
topology inherited by K as a subset of M.

Proposrrion 2.1. H is a closed subgroup of B(K;) and if 7 : B(K;)
— B(M) is the continuous homomorphism induced by i : K;— M, then
7 is a surmorphism and has H as its kernel. Hence, the mapping
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I: B(Ky)/H— B(M) defined by I(h + H) = 7(h) is an iseomorphism of
B(K,)/H onto B(M).

Proor. Let ¢ : K— B(K;)/H be defined by the rule: £(k) = bk, (k)
+ H. If k is any net in K converging to 0 in the relative topology on
K, then any cluster pomt of the net bg,(k) belongs to H; it follows that
£ is continuous at 0 in the relative topology on K and, hence, is con-
tinuous at each member of K. It is known ([8], p. 85) then that ¢
may be extended to a continuous homomorphism & : M— B(K,)/H
and £, may be extended to &, : B(M)— B(K;)/H satisfying & o bg =
&. Now since i:Ky;— M is both injective and eplc it follows
that 7 : B(K;) — B(M) is a surmorphism. If h € H there is a net k in
K, converging to 0 in the relative toiology on K such that h =
lim bk, (k). Hence, 7(h)= limt bg,( lim bg(k) = bg(lim k) =
bg(0) = 0; this establlshes that H is a subgroup of the kernel of 7.
It follows immediately that I: B(K;)/H— B(M) defined by I(h + H)
= 7(h), is a well-defined continuous homomorphism and is sur]ectlve
Now let k € K;; we have (&, ° I)(bk,(k) + H) = &(r(bks(k))) =
E)(bg(i(k))) = &o(i(k)) = &(k) = bx,(k) + H. Thus &1 is the
identity function on a dense subset of B(K;)/H and is, therefore,
equal to the identity everywhere. Now let g € M and k a net in K
with g = lim k; (I &)(ba(g)) = 1(éy(g)) = Klim £(K)) = lim I(4(k)) =
lim I(bx, (k) + H) = lim 7(bx, (k)) = lim bg(k) = be(g). Thus I° &,
is the identity function on B(M) and, hence, I and £, are mutually in-
verse. That H is the kernel of I is a consequence and the proof is com-
pleted.

Now, let M | K; denote the subgroup of (K3) consisting of restric-
tions to K of the characters of the topological group M. Since K is
dense in M, M| K, consists of those characters in (K;) which are
continuous in the relative topology on K as a subset of M.

ProposiTioN 2.2. The subgroup H of B(K;) is the annihilator of the
subgroup M| K, of (R}) That is, r € H only in case r(\) = 1 for
ANEM|K,

Proor. For the moment, let M+ denote the annihilator of the sub-
group M| K;. If h € H, there is a net k in K with limk = 0 and
lim bg,(k) = h. Now let A € M| Ky;; because the topology on

B(K,) is the topology of point-wise convergence on members of K,
it follows that h(\) = lim bk, (k)(A) = lim A(i) = 1 since X\ is continu-
ous. Thus h is identically equal to 1 on M | | K, and we have s shown
HC M!. For the reverse inclusion we let 1: B( ) — (B(Kd)IH) be
the 1somorphlsm induced by the iseomorphism I: B(K;)/H— B(M).
Let Gy = {y € B(Kd) y =1 on H}; Gy is the annihilator of the sub-
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group H of B(K;) and therefore G, is isomorphic to the character
group of B(K;)/H under the isomorphism a, where if A is a character
on B(K;)/H then a(\) is the character on B(K;) defined by the rule:
a(A)(h) = A(h + H) for h € B(K;) (cf. [8], p. 365). By Pontryagin
duality, there is an iseomorphism ¢ : (M);— B(M) defined by the
rule: ¢(u)(h) = h(w) for w € (M); and h € B(M). Thus, a° I° ¢:
(M)q— G, is an isomorphism and is surjective. Now lety € M* and
suppose_y &€ H. Thus, y(A\) =1 for all A € M| K, and there is a
F € B(K,) such that F(y) # 1 and F(u) = 1 for all u € H. It follows
that F € Gy; choose v € (M); such that (a°TI°¢)(¥)=F. Let
v* be the restriction of v to K; so that »* € M| K;. We have that
Fly) = [acI°¢@)]ly) = I@@)y + H) = ¢y + H)) =
d()(7(y)) = 7(y)(¥) = y(v*) = 1 since y € M*. But F(y) # 1 giving
a contradiction to M* C H and the proof of Proposition 2.2 is com-
plete. /

CoroLLary 2.3. If M is a locally compact Abelian group, then
B(M) is iseomorphic to B(My)/M where M L is the annihilator of the
subgroup M| M, of (M,) consisting of the continuous characters of
M

CoroLLary 2.4. If K is a dense subgroup of R" and H is the annihi-
lator of B | K,, then B(K,) is iseomorphic to H @ 3,,° where c denotes
the cardinality of the continuum and 3, is the a-adic solenoid with
a= (23,4, ) (ct [8])

Proor. The group R"| K, is a divisible subgroup of (K2) so there
is a homomorphic retraction r:(K;)— R"| K;. Define 7: B(Kj)
— B(K;) by the rule: #I)(A\) = I'A — r(A)) where T € B(K,;), A €
(Ka). It is a simple matter to check that 7 is a continuous homo-
morphic retraction of B(K;) onto H. It follows that B(K;) is iseomor-
phic to H & (B(K;)/H). By Propositions 2.1 and 2.2, B(Ky)/H is
iseomorphic with B(R") and the fact that B(R") is iseomorphic to
3,¢ is well-known. Thus, B(K};) is iseomorphic to H @ 3, and we are
done.

We believe the next proposition is probably known, but lacking a
reference we give a proof. Let M denote a dense subgroup of R"
which contains Z*. For j € Z" define a character § on (M/Z"), by the
rule: §(exp(2mix,), - - -, exp(2rix,)) = exp(2mi(x - j)) where (x,, * - -, x,)
=xE M and x *j denotes the ordinary scalar product in R*. We
denote the group (M/Z"); by G and let K= {(j, ;) : j € Z"}. Then K
is a subgroup of R" X G; we let N = {§;:j € Z"} and we note that
N is a subgroup of G. Finally, for v € R* and A € G we define a
function [v,A] € (M,) by the rule:
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[v,A] (x) = exp(—2mi(x - v)) * A(exp(2mix,), * - -, exp(2mix,,))
forx = (x, - - -, x,) €E M.

ProposiTioN 2.5. The ﬁmctwn (v, \) + K- [v, A] is an iseomor-
phism of (R* X G)IK onto (M). Further, (Ma)l(R"| My)), is iso-
morphic to (GIN),.

Proor. Let 0 M;— R" X (M/Z*); be defined by: 6(x)=
(x, (exp(2mix,), - exp(2mx,,))) Since @ is injective there is induced
an eplmorphlsm 'r; B X G— (My) such that n(y, A)x)=
y(x)A(exp(2mrix;), - -, exp(2mix,)) for x € M. If n(y, A\) = O then y(x)
= \(exp(2mix,), - exp(2mx ))~1so thatforx € Z",y(x) = 1. Thereis
thus a j € z such that y(x) = exp(—2mi(j - x)) for x € R*. If we
define y; € R* by the rule: y,(x) = exp(—2ri(j - x)) for x € R, then
it follows that the kernel of 9 is {(y;, §,) : j € Z"}.

Now let U be a neighborhood of 0 in R" such that U N Z» = {0}
and set V= U X {0}, a neighborhood of (0,0) in R* X (M/Z"),.
Clearly, V N 6(M,;) = {(0, 0)}, from which we conclude that 6(M,)
is a discrete, hence closed, subgroup of R* X (M/Z"),;. (We extend our
thanks to J. D. Lawson for this observatlon) The mclumgl\t a(M,)
— R* X (M/Z"); induces a surmorphism i Rix G 6(My) since
each character on 6(M,) can be extended to a character on R" X
(M/Zr),. The corestriction 00/@ a— 0(M,) of @ is an iseomorphism so
the induced morphism 0 6(My)—> M, is an iseomorphism. Finally,
9=1i0°@, so that n= 00° iis a surmorphism. Now R x ¢ is
o-compact and locally compact from which it follows that » is an open
mapping ([8], p. 42]. Hence, n induces an iseomorphism % of
A" X ¢ modulo {(vj» §) :j € Z*} onto (Md) and the first conclusion
follows by replacing the character y, € R* by the vector v € R" in
the canonical way.

Now suppose [v, A] € fﬁl M,; hence there is a w € R such that
[v, A] (x) = exp(—2mi(x - w)) for all x € M. By definition it follows
that exp(—2mi(v * x))A(exp(2mix,), - - -, exp(21rix,,)) = exp(—2mi(x - w))
for all x € M; it follows that A(exp(2mix,), - - *, exp(2mix,)) = exp(2mi(v
— w) - x) for x € M. Then since Z* C M we getjo = v — w € Z" and
soX = £,. Weobtain [v,A] = [v, §,] and it follows that ()~ (R | M)
= {(v, §) + K:v ER,j € 7). There is induced an 1somorphlsm of
(R" X GIK)/(m)-\(R* | M;) onto (My/f*|Ma. But (m)-(R*| M,)

= (R* X N)/K so we get (R" X C)/R" X N is 1somorphlc to (Ma)/

(R"| My) and finally that (G/N), is isomorphic to (M) (R | My))a
whlch is the second assertion of this Proposition and we are finished.
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Now let T be a K-semigroup where T is contained and dense in the
interior of the closed cone C in R* with R* = C — Cand (T — T) N C°
C T. Welet G= T — T, the (dense) subgroup of R" generated by T.
Let H denote the subgroup of B(G,) consisting of those h € B(G,) for
which there is a net 3 € G with lim g = 0 and lim bc,(g) = h. Let H,
denote the subset of H consisting of those h € B(G,) for which there is
anett € T withlim? = 0 and lim bg,(f) = h.

Prorosition 2.6. Hy = H.

Proor. Clearly, the inclusion Hy C H is valid. Let h € B(G,) and
g a net in G with lim g = 0 and lim bg,: (§) = h; denote the directed
set which is the domain of g by D. For each positive integer n, let
0, = {c € C°| |c|| < 1/n} and note that O, is open. We have @ #
0,NTCO,N(T-T)=0,NCON(T—T)CO,NT and so
O0,NT=0,NG is open in G with respect to the relativized
Euclidean topology on G. With respect to this topology, G is a topo-
logical group and hence (O, N T) — (O, N T) is a relative neighbor-
hood of 0 in G. Let D' = {(a, n):a € D,n=1,and 3, € (0, N T)
— (0, N T)}; since lim g = 0 it follows that D’ is directed under the
partial order; (a, n) = (B, m) only in case «a=B and n=m. For
(o, n) € D' pick s(a,n) €O, N T and Ha,n) €O, N T with g, =
s(a, n) — (e, n), and finally let k(e, n) = g, It follows easily that k
is a subnet of g so lim bg,(k) = h. Also evident is the fact that
lins=lim?= 0. By taking subnets if necessary we get points
S0, to € B(Gg) with lim bg,(3) = s¢ and lim bg,(t) = t, and h =
o — to. Since, however sy, to € Hy and H, is clearly a closed sub-
group of B(G,) it follows that h = s, — t, € H, and the proof is com-
plete.

CoroLLARY 2.7. H, is iseomorphic with the character group of the
discrete Abelian group (G4R" | G,),.

Proor. By Proposition 2.2, H is the annihilator of the subgroup
R | Gy of (Gg). However, it is known (c.f. [8], p. 365) that the annihi-
lator of A" | G, is (iseomorphic to) the character group of (Gy)/R" | G,.
The conclusion now follows from Proposition 2.6.

We compute now the annihilator H of R | G, for some specific sub-
groups G of R*. These will be useful in § 3 in computing the universal
compactification of specific K-semigroups.

ExampLE 1. Let G = Q the additive group of rational numbers. By
Proposition 2.2, H is the annihilator of R| Qu; hence H is the char-
acter group of (Qd/RI Qu) and, by Proposition 2.5, also the character
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group of ((9/\/2)*le)¢ where N = {§;:j € Z}. Since (Qy) is uniquely
divisible, (Q)/R | Qq is a rational vector space. Now since Q/Z is
countably infinite, the cardinality of (Q/Z)q is ¢ (c.f. [8], p. 396) and
since N is countable the cardinality of (QZ);/N is also ¢. Hence
©2/R| Qy)q is a rational vector space of dimension ¢, and therefore
is the weak direct sum of c¢ copies of Q,. It follows that H is iseo-
morphic to 3,,° where 3, is the a-adic solenoid (c.f. [8], p. 114).

-~

ExampLE 2. Let G= R* H is the character group of ((Rg™)/
R | R;*),. Since Ry is a rational vector space of dimension c, (R?'
is iseomorphic to 3,°. Each 3, is uniquely divisible so that 3,° is a
rational vector space of cardinality, and hence dimension, 2¢. It
follows that Rj* is a rational vector space of dimension 2¢. However,
R~ | Ry is a rational vector space of dimension c; it follows that
((R")/R*| Ry")y is a rational vector space of dimension 2¢, and
therefore that H is iseomorphic to 3,,™ with m = 2¢.

ExampLE 3. Let G = Q, the additiv/e\group of p-adic rationals with
p a prime. We wish to compute (Q,/Z),/N, where N = {§;: ] € Z}.
Now Q,/Z=Z(p») and §(z)=# for x € Z(p» ). Note that
(Qp)a is iseomorphic to 3, the p-adic solenoid and since 3, is con-
nected it is divisible (c.f. [8], p. 385); it follows that (0,)4/R | (Q,)4
and therefore (Z(px))/N /is_\divisible, For each prime g, let G,
denote the subgroup of (Z(px),/N consisting of the g"-th roots of

unity for n=1, 2, - - . For each A € (Z(pw), there is a sequence
of intergers {m,};_, such that m, = m, ,(p") and A(exp(2mip~")) =
exp(2mim,p~™) for n=1, 2, 3, - --. If {r,}%_, is another such se-

quence corresponding to A, then r,=m,(p") for n=1, 2, -~
Conversely, any such sequence defines an element of (Z(p®)),
in the way described. Let A € (Q,); and suppose p"A € R | (Q,)a-
Thus, there is a number r € R such that (p™\)(x) = exp(2mrirx)
for x€Q,, or A(px)= exp(2mirx) for x € Q,. Since Q, is
p-divisible we get A(z) = exp(2mi(rp~™)z) for z € Q,. We have
shown that the only p"-th root o‘f)gity in (Qp)a/R|(Q,)a is the
identity and thus the same holds for Z(px'),/N.

Let g be a prime, g # p, and ky= 1. For each n=1 choose
integers k, and j, with k,g* + j,p* = 1. Suppose A € Z@d with
g*\ € N and let {m,};_, be a defining sequence for A. There is an
integer n, such that gro=§,; then exp(@rigkomp—")=
exp(2mingp ") forn = 1,2, - - -. Thus, ng = gkom,(p")forn= 1,2, - - -;
we get mk, = k,g*m, = (1—j,p")m, = m,(p"). Hence,
A(exp(2mip—™)) = exp(2mingk,p~")forn = 1,2, - - .. Forny € Z, define
An, € Z(po),; as that character corresponding to the sequence
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{m,}n-1 with m, = n¢k,. Note that m, —m,,., = (k, — k,.)no;
but (kn - kn+l)qk° + (jn —jn+1P)P" =0 so (kn - kn+l)qkoE O(P")
so k, = k,.,(p") and thus m, = m,,,,(p") forn= 1,2, - - -, so we have
checked that the sequence _{m,} 7, is of the proper kind. The func-
tion ng— Ay, + N: Z— Z(px),/N is a homomorphism and, by our
preceding remarks, is onto the g*o roots of unity of Z(pe'),/N. Suppose
A, EN and choose j € Z with A, = §; then exp(2minok,p—™) =
exp(2mijp~™) forn = 1,2, - - -. We conclude nok, = j(p") forn =1, 2,
©; then nokagto= jqhpr) and no(1— jup™) = jqpr) s0 mo=
jg*o(p~) for all n. Thus ny = jg*o so the kernel of the map ny— A,
+ N is the cyclic subgroup (q"o)/of\Z generated by go. Consequently,
the set of g*o roots of unity of Z(p>),/N is isomorphic to Z/(g*o) and it
follows that G, is isomorphic to Z(g ). The torsion subgroup F of
Z(/p?)d/N is isomorphic to the weak direct sum 3*{Z(q®) : q a prime,
q # p}. Note that F is countable so that (Z(p®)4/N)/F is a rational
vector space of cardinality, and hence dimension, ¢. Since F is divis-
ible,(Z@djN is isomorphic to (3*{Z(q® ) : g a prime g # p}) X Q4"
where Q,°* is the weak direct sum of ¢ copies of Q. Hence, H is
iseomorphic to 7{A,:q a prime, g 7‘ p} X 3,° where A, is the
compact group of g-adic integers (c.f. [8], p. 107).

3. For the purposes of this section, we let T denote a fixed p-
divisible K-semigroup where p = 2, and C denotes a closed proper
cone in R" such that T is a dense subsemigroup of C° (T — T) N C°
C T, and R* = C — C. Denote by (U, u) the universal compactifica-
tion of T, and by (A, a) the universal compactification of the semi-
group C endowed with the usual topology of R". Finally, let G =
T — T, the subgroup of R" generated by T; notice that G is p-divisible.

LemMma 3.1. (a) The semigroup A is uniquely divisible and U is
uniquely p-divisible. Both A and U are commutative.
(b) The element a(0) is an identity for A and H(a(0)) = {a(0)}.
(c) The mapping a : C— A is an iseomorphism of C onto a(C).
(d) U has an identity 6 and H(0)= N{u({t ET: ||t| <e})*:e
> 0}.

Proor. (a) is fairly well-known and the fact that a(0) is an identity for
A is obvious. Let C~ denote the one-point compactification of C with
addition extended such that ¢+ ©® = o + ¢= ® for all cEC*™;
C~ is a compact semigroup. Let i : C— C~ denote the inclusion and
let w: A— C~ be the unique continuous homomorphism satisfying
peoa=i. Since u(a(0)) =i0)=0 and H(0) = {0} it follows that
u(x) = 0 for all x € H(a(0)). Let x € H(a(0)) and Z a net in C with
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x = lim a(z); then 0 = u(x) = lim p(a(z)) = limz and thus a(0) =
lim a(%) = x proving (b). IfZ is any net in C with lim a(Z) = a(z,) then
lim Z = lim u(a(Z)) = w(a(zo)) = 2o and part (c) is done. We do not
give a proof for (d) because of the similarity with the proof of Theorem
III, [11]. Now let ¥ denote Green’s relation on U (i.e., b,#b, only
in case b, + U = b, + U) which in the present case is a closed con-
gruence on U. Let p: U—» U/J# denote the natural homomorphism.
Further, let U/H(6) denote the quotient semigroup of U modulo the
action of H(@) on U and 7: U—» U/H(6) the natural homomorphism.
Thus 7(x) = 7(y) only in case there is a g € H(f) with x =y + g.
There is a unique continuous homomorphism ¢ : U/H(6)—» U/
satisfying ¢ o 7 = p.

LemMa 3.2. There is a continuous homomorphism m : C— U/H(6)
for whichn(t) = 7(u(t)) forallt € T.

Proor. Notice that U/ is a compact holoid (i.e., all subgroups are
trivial). By Keimel's Extension Theorem (see § 1), po u: T— U/J# is
continuous with the relative topology of R on T, and can be extended
to a continuous homomorphism p:C— U/ Hence, p(t) =
p(u(t)) for t € T. Now let z € C; since ¢ is surjective there is an
x € U/H(6) such that ¢(x) = p(z). Suppose also that y € U/H(6)
and Y(y) = p(z); pick x', y’ € U such that 7(x') = x and 7(y') = y.
It follows that p(x') = p(y ') and thusx’ + U = y' + U. Choose b,c €
U with x' =y’ + b, y' =z’ + c. We have p(z) = ¢(x) = ¥((x"))
=p(x')=p(b) + p(y') = p(b) + p(z). Inductively we obtain
p(z) = kp(b) + p(z) for all k=1; setting k=pm it follows
pmp(p~—™z) = p™p(b) + p™p(p~™z) for all m = 1. As is easily proven,
UlJ# is uniquely p-divisible, from which it follows that p(p—™z) =
p(b) + p(p~™z). By continuity of p we get p(0) = p(b) + p(0).
However, since p(u(T)) is dense in U/J# then so is p(C). Hence p(0)
is an identity for U/# and therefore p(0) = p(6). Thus, p(b) =
p(0) from which it follows that b € H() and 7(x’) = 7(y’) and so
x =y. We have shown that for each z € C there is a unique x €
U/H(0) with ¢(x) = p(z); we define n(z) = x. That n: C— U/H(0)
is a homomorphism is clear. Let Z be a net in C converging to z, € C
and let x, and x, be cluster points of the net n(Z). Consequently,
¥(x,) and ¥ (x,) are cluster points of the net Y(n(z)) = p(z). Since
limz =2z, we get limp(z) = p(z) so that ¢(x;) = ¥(x;) = p(z0)
and therefore x, = x, = 7(z), giving the continuity of . Finally, if
t € T then p(t) = p(u(t)) = Y(r(u(t))) so by definition n(t) = 7(u(t))
and the proof of Lemma 3.2 is complete.

By the universal properties of (A, a) there is a continuous homo-
morphism 7 : A— U/H(0) satisfying#j > a = 7.
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Lemma 3.3. The mapping %: A— U/H(0) is an iseomorphism of
Aonto U/H(6). Furthermore,#(a(t)) = t(u(t)) forallt € T.

Proor. Let j: T;— C denote the inclusion and set m =a-°j: T,
— A. There is induced a continuous homomorphism m : U— A for
which m e u = m. Since H(a(0)) = {a(0)} there is a continuous homo-
morphism ¢ : U/H(8) — A such that ¢° 7 = m. We claim ¢ is a two-
sided inverse of #. In fact, let tET; then (- 9)(a(j(t))) =
dm(j(1) = dn(t)) = $(r(u(t))) = m(u(t)) = m(t) = a(j(t)). Thus,
¢ ° 7 agrees with the identity function on the dense subset a(j(T)) of
A and hence is the identity function on A. Similarly, % ¢ agrees
with the identity function on the dense subset 7(u(T)) of U/H(6) and
is therefore equal to the identity function everywhere. This completes
the proof of Lemma 3.3.

CoroLLAry 3.3. The mapping n=%°a: C— U/H(0) is an iseo-
morphism of C onton(C) and n(t) = 7(u(t)) forallt € T.

We now fix a basis ey, ey, * * *, e, for the real vector space R" consist-
ing of elements of C. For 1=i=n set J;= (n({Ae;: A= 0}))* in
U/H(9). Clearly each J; is a compact solenoidal semigroup, H(6)
C 7-Y(J;) and 7-1(J;)/H(8) is iseomorphic to J;. One may find a one-
parameter semigroup o;: [0, ®)—771(];) such that o(0) = 6 and
o(b) € H@) for b>0 (cf [16]). It follows that 7(oy([0, )))
= n({re;: A= 0}). WesetP = 3{0y([0,°)):1=i= n}; notethat Pis
a subsemigroup of U and P N H(8) = {6}.

LemMa 3.4. The restriction of  to P is injective.

Proor. Let s,t € P such that 7(s) = 7(t); there is a g € H(6) such
that s=¢t+ g. Choose t;, 5, € [0,®), 1=i=mn, such that ¢=
{oi(t:):1=i=n} and s= Z{oy(s;):1=i=n}. Set A= {i: ;=
s;}andB= {j:s;< t},then AU B= {1,2, - - -,n}. We consider only
the case A # ¢ # B, the remaining cases being much less difficult
(also c.f. [2], Theorem 2.2). For each i € A set s;=1t;+ b, b; €
[0, »), and for j E B, set t; =s; + ¢;, ¢; € (0, «). Finally, let b =
2{0,(b¢) X} E A}, cC= 2{0}(0}) Zj (= B} and d = (E{O'j(Sj) Zj E B})
+ (2{oy(t;): i € A}). It follows that d+b=d+c+ g Then
d+ptb=d+ pm(c + g) for all m=1. Since U is uniquely p-
divisible and the p™-th roots of d converge to 6 we get b= c + g.
Let t(oy(b)) = (), L= 0, for i € A and 7(0y(c)) = n(we):
=0, for j € B. We obtain n(3{\e; : i € A}) = (3 {we; : j € B}) and,
since by Corollary 3.3 n is injective, 3 {\e;: i € A} = 3{we;:j € B}.
By the linear independence of {e,, e, * - -, e,} we get \; = p; = 0 for
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i€EA, jEB Then 7(gj(c)) = n(pse;) =n(0)=7(9) so oyc) €
H(6), a contradiction since ¢; > 0. This establishes that the case A
@ # B is impossible, concluding the proof of Lemma 3.4.

Now, fix tET; by Corollary 3.3, n(t)= r(u(t)). Write t=
S{\e;:1=i=n} where , ER, and set A= {i:\;=0} and
B= {j:A>0}. Letting x= 3{(—\)e; zGA} and y = 3 {Ng
€ B} then x, y € C and ¢ + x = y (note that since ¢t € C°, B7‘¢’
However, if A= @ set x = 0). There is a w and z € P such that
7(w) = n(x) and 7(z) = n(y). Since t + x = y, 7(t) + n(x) = n(y) and
thus 7(u(t) + w) = 7(z). We may therefore choose g € H() such
that u(t) + w =z + g. Supposew’,z' € P, g’ € H() and u(t) + w'
=z'+g'5then w +z2=w+ 2"+ (g' — g) so that r(w’ + 2) =
7(w + z') and by Lemma 3.4, w’ + z = w + z’. Again using unique
p-divisibility we conclude that g’ — g = or g’ = g. This observation
allows us to define a function B: T,— H(6) by the rule: B(t) = g
exactly when there exist w, z € Pwithu(t) + w =z + g.

Lemma 3.5. The function B : T;— H(8) is a homomorphism.
Proor. Clear (or see [2], Theorem 2.2).

By the universal properties of (U, u) there is a continuous homo-
morphism B :U — H(6) which satisfies B> u = B.

LEmMMA 36. The function B:U— H(6) is a continuous homo-
morphic retraction of U onto H(#).

Proor. Let g € H(6) and ¢ a net in T with g = lim u(f). For each
a in the domain of £ there is a decomposmon A,UB,={1,2, n}
and t= € [0, ©) such that u(t,) + (2 {o:(t?): i E A}) = (2 {o (t ) i f
€ B,}) + B(t,). By taking a subnet if necessary we may assume A,
= Ay and B, = B, for all a. Thus
(0 u(t) + (S{ouf) : 1 € Ag}) = (S{oy(,) : j. € Bo}) + B(t).
For i € Ay choose a net X; € [0, ©) such that n(\;e;) = 7(0y(£;)) and
for j € By a net ji; € [0, @) such that n(Ge;) = 7(0;(f;)). Since n(f)
= 7(u(t)) it follows that n(f + S{\ie;:i € Ay}) = n(2{fe;:j € Bo})
and by Corollary 3.3, t + 3{\ei:i € A} = 3{jis;:j € By}. Now
since g = limu(t) we get n(0) = 7(6) = 7(g) = lim m( ) = limn(f);
again by Corollary 3.3,lim ¢ = 0. This implies thatlimX; = lim &, = 0
for all i € Ay and j € B,. It follows that lim 7(a;(f)) = 7(6) for all i,
1=i=n, and thus limo;(f;) = 0 for each i. Recalling that B(t) =
E(u( t)) and using (%) it follows that g = lim u( ) = hm[u(t) +

3{oi(t:) i € Ag)] = lim[ Z{oy()): JEBo}+I3( u())] = limB(u(t))
= B(g) and we are done with the proof.
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LEmMMa 3.7. If B:U— H(6) is any continuous homomorphic re-
traction, then A = B X 7 is an iseomorphism of U onto H(8) X
(UIH(9)).

Proor. Clearly, A is continuous; suppose A(x)= A(y). Then
7(x) = 7(y), which implies there is a g € H(6) with x = y + g. How-
ever, since B(x) = B(y) we get B(x) = B(y) + B(g) =B(x) + g and ¢
= @ implying x =y. Let (g,7(x)) € H(6) X U/H(6) where x € U;
set y=ax+ (g—B(x). Clearly 7(y)= 7(x); further B(y) = B(x)
+B(g — B(x) =B(x) + (g —B(x)) =g and A(y) = (g, 7(x)). This

establishes Lemma 2.7.
We are now in a position to state and prove our first main result:

TueoreMm 1. Let T be a p-divisible K-semigroup, p = 2, C a closed
proper cone in R* with R* = C — C, T a dense subsemigroup of C°,
with (T — T) N C°C T. Let (A, a) denote the universal compactifica-
tion of C in the usual topology of R and let (B, b) denote the Bohr
compactification of the discrete Abelian group G, = (T — T),. Finally,
leti: Ty— Gyandj: T;— C denote the inclusions, then:

(i) The universal compactification of T, is (B, (b i) X (a-j))
where B = [(be° i) X (a°j)(T,)]*in B X A.
(ii) There is a continuous homomorphic retraction p: B X A— B.

(iii) B is iseomorphic to Hy X A where H, is the closed subgroup
of B to which an element g belongs only in case there isanett in T
withlim{ = Oandlim b(f) = g.

Proor. Consider the homomorphism B: T— H(6) of Lemma 3.5.
Extend to a homomorphism, which we also denote by g, from G, to
H(6) by defining B(t; — t;) = B(t,) — B(t;). Since B(f) = B(u(?)) it
follows that B(T) and, therefore, B(G) is dense in H(6). By the univer-
sal properties of (B, b) there is a continuous homomorphism g*: B
— H(6) satisfying B*ob=pg. By Lemma 36, B:U— H(9) is a
continuous homomorphic retraction and by Lemma 3.7, A =8 X 7
is an iseomorphism of U onto H(8) X (U/H(@)). Set u= A-1o (B*
X%):BX A—> U where %:A— U/H() is the iseomorphism of
Lemma 33. Let t& T and recall that #(a(t)) = 7(u(t)); then
B*XxXA) (beiXacj)(t) = (B*eb(i(t), 9°a(j(t) = (Bi?),
7(u(t)) = (B(t), 7(u(t)). But A-YB(t), 7(u(t))) = u(t) so we have
[meo(beiX acj)](t)=u(t). We have shown that if (U,u) is the
universal compactification of T, there is a continuous homomorphism
w:BX A—>U such that pue (beiXacj)=wu Thus, if (i) is
established, (ii) follows immediately. Let S be a compact semigroup
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and f: T;— S a homomorphism; there is a continuous homomorphism
f¥*:U—>S with f¥*ou=f Let f' denote the restriction of f*- p
to B; if tET then [f'c(beiXacj)](t)= fHpe(beiX
acj)(t)) = f*u(t)) = f(t). Thus, (B, beiXacj) satisfies the
requirements in order to be the universal compactification of T, hence
(i) is proved. By Lemma 3.7, B is iscomorphic to H X ( B/H) where
H is the maximal subgroup of B containing the identity of B.
Further, by Lemma 3.3, B/H is iscomorphic to A. If (g, x) € H by
Lemma 3.1 (c), there is a net ¢tin T such that lim{ =0 and
hm((b i)(t), (a°j)t)) = (g x). Thus, x=a(0) and g = lim b(( ))
0 g € Hy. Conversely, if g € Hy and lim¢ = 0 where lim b(f) =
then (g a(0))=lim[(b° i) X (a° j)](f) so (g a(0)) E B and 1s
clearly a unit. Hence, H = H, X {a(0)} and we have completed the
proof of (iii) and of Theorem 1.

Remark. Since H = H, X {a(0)} the identity of B is (b(0), a(0)).

We now combine the results of § 2 with Theorem 1 to compute the
universal compactification of some specific K-semigroups.

ExampLE 4. We take T = Q+, the additive semigroup of positive
rational numbers. In this case, C = [0, ®) and G = Q. The universal
compactiﬁcation of C is the universal compact solenoidal semigroup

® (cf. [12], Theorem II). The group H, is, by Corollary 2.7, the
character group of ((Qy) )IR| Q4) which, as computed in Example 1,
§ 2, is iscomorphic to 3,°. By Theorem 1 (iii), the universal compactifi-
cation of Q,* is 3,5 X ®. This result was first obtained by J. Hilde-
brant [9].

ExampLE 5. We take T = Q,* the positive p-adic rationals where
p is a prime. Again C = [0, ©) and by Example 3, § 2 and Theorem
1 (ul) the universal compactification of the positive p-adic rationals
(Qp*)a is [] {Aq:q # p, q a prime} X 3,° X ®. Again this result
first appears in [10] by J. Hildebrant.

ExampLE 6. Here we take T = C° where C is a closed cone in R*
and R = C — C. Here H, is iseomorphic to 3,”, where m = 2°, by
Example 2, §2. Hence the universal compactification of C° is
3,™ X A, m=2¢ and A is the universal compactification of C. Thus,
if T = (0, »), the additive positive reals, the universal compactifica-
tion of (0, ® ), is 3, X ® with m = 2°. Slightly more generally, if

= (0, ) the universal compactification of ((0, ®)), is Z,m X "
where m = 2.

4. Let C be a closed proper cone in R* with R* = C — C and let
G denote a dense p-divisible subgroup of R". We set S, = G N C and
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S = Sp\{0}. In this section we give a concrete realization of the great-
est semilattice homomorphic image £ (c.f. [6], p. 131) of S and we
then show that £ satisfies the finite chain condition and that S is a
semilattice £ of p-divisible K-semigroups.

LemMa 4.1. S is a p-divisible subsemigroup of C. If T denotes the
part of S in the interior of C relative to C— C=R" then T is a
p-divisible K-semigroup.

DerFiniTioN A, A p-divisible subsemigroup E of S is a p-divisible
filtre on S if E = S or S\E is an ideal in S. An S-cone is a p-divisible
filtre on S which is closed in S with respect to the relative Euclidean

topology.

Lemma 4.2. Every proper p-divisible filtre on S is contained in
the boundary of C relative to C — C = R*. Every p-divisible sub-
semigroup of S contained in the boundary of C is contained in a
proper S-cone.

ProoF. Let E be a proper p-divisible filtre on S and suppose y € E
and y € CO relative to R*. Thus, y — C° is a neighborhood of 0 in
R if x €S there is a n=1 such that p"x Ey — C%. But then
s=y—p " xEG—GNC'CGNC’°=T; hence p"s ES and
p"s + x = p"y € E. However, since S\E is an ideal in S we must
have x € E. Consequently, S C E and E is not proper. For the second
assertion we let E, be a p-divisible subsemigroup of S contained in
the boundary of C relative to R". Denote by -M the collection of all
p-divisible subsemigroups of S contained in the boundary of C and
which contain E,. Let & be a maximal tower in M and let E =UA;
clearly E € M. Furthermore if E* is the closure of E in R" then
E*N S € M so by the maximality of #, E= E*N S is closed in S.
Now, suppose x,y €S with x € E but x + y EE. Denote by
P={(z€S|z€E or z+ ry €EE for some positive p-adic rational
r} and notice that E C P since x € P\E. That P is a p-divisible sub-
semigroup of S containing E, is clear. Suppose z € P N CY there
must be a positive p-adic rational r such that z + ry € E. Notice that
T itself is an ideal in S and z € T. It follows that z + ry € E N C°,
a contradiction. We have shown that P is a subset of the boundary of
C and consequently P € M. But E C P contradicting the maximality
of A. It now follows that S\E is an ideal of S and finally that E is a
proper S-cone containing E,.

DerintTioN B. If E is an S-cone, denote by T(E) the part of S in the
interior of E* relative to the closed subspace E* — E* of R".
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RemMark. If E is an S-cone and G’ = E — E then G’ is a dense p-
divisible subgroup of the closed subspace E* — E* of R". Setting
C'=E*S) =G NC', 8" =85,\{0} and T' = T(E) then Lemma
4.1 and Lemma 4.2 remain valid for G’, §’, T’, C’, and E* — E*
Further, S'=M; in fact, S,'=G'NC'CGNC'=GNE*
=GNCNE* =S NE* = {0}U(SNE* = {0}UE so that
S’ C E. The reverse inclusion is obvious. We also observe that by
Lemma 4.1, T(E) is a p-divisible K-semigroup dense in the interior
(relative to E* — E*) of the cone E*,

LemMa 4.3. If E| and E, are distinct S-cones, then T(E,) N T(E,)
= ¢.

Proor. If E, and E, are disjoint we are through. On the other hand,
if E, meets E, then E, N E, is a proper Ej-cone and, hence, by
Lemma 4.2 is contained in the boundary of E,* relative to E;* — E*,,
Hence no point of T(E,) may belong to E;, so T(E;) N T(E;) = ¢.

Now we let £ denote the collection of S-cones and for E,, E, € &,
E, V E, denotes the intersection of all S-cones containing E; U E,.

LemMa 4.4. (£,V) is a semilattice satisfying the finite chain condi-
tion.

Proor. That (&,V)is a semilattice is obvious. Suppose E,, E, € £
and E, C E,. Since E, is a proper Ey-cone, E, is contained in the
boundary of E,* relative to E;* — Ey *. Thus, the closed cone E,* is
a subset of the boundary of E,* relative to E,* — E,* Hence the
inductive dimension of E,* is strictly less than the inductive dimension
of E;*. Thus, there cannot be any infinite chains in £, since the induc-
tive dimension of E*, E € £, is bounded by n, where again C — C
= R~

LemMa 45. IfE |, E; € £, then T(E,) + T(E,;)C E, V E,).

Proor. Let E; = E, V E,; if E; = E, then E,C E, and since
T(E,) is an ideal in E, we get T(E,) + T(E,;) C T(E,) = T(E, V E,),
The conclusion follows likewise if E; = E,.. Hence we may assume
E, and E, are proper Ej-cones. By Lemma 4.2, E, U E, is con-
tained in the boundary F of E;* relative to E;* — Eg* Suppose
E,+ E;CF; then E,UE,UE, + E, is a p-divisible sub-
semigroup of E; contained in F. By Lemma 4.2 there is an Ej;-cone
E containing E;, U E, U E, + E, and contained in F. It is easily
verified that E is an S-cone primarily because S\E; is an ideal in S
and E,\E is an ideal in E;. However, EC E; which contradicts the
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definition of E, V E, = E;. Hence, we may assume there exist
x EE,, y EE, with x + y € F; since E, U E, C E, it follows that
x + y € T(E;). Let 2, € T(E,) and 2z, € T(E,), let U and V denote
respectively the interior of E,* relative to E;* — E;* and the interior
of E,* relative to Ex* — Ey*. Then z, — U and 2, — V are neighbor-
hoods of 0 in E* — E\* and E;* — E,* respectively. There is an
integer ny = 1 such that for m=n,, p™x €2z, — U and p~™y E 2,
— V. Thenz, —p™ € (E,— E))NUC GNE*=GNCNE*
=S NE*={0}U(SNE*)= {0} U E;; hence we may assume
that for m = ny, z; — p~™x € E, and similarly that z, — p~™y € E,.
Then (z, + z,) —p™(x + y) EE, + E;C E; for m= n,. Hence,
Zy+z,=p™x+y)+ z; where z3 € E;. Since x+ y € T(E;)
then p~™(x + y) € T(E;) for m = n, and since T(E;) is an ideal in
E;, 2, + 2 = p~™(x + y) + z3 € T(E3) and we are done.

We are now prepared to state the major result of this section. The
result is in the same vein as the result by Brown and La Torre ([4],
Theorem 1) where it is shown that a uniquely divisible commutative
semigroup is a semilattice of semigroups each of which is the direct
sum of a rational vector space and a cone of a rational vector space.

TueoreM 2. Let G be a p-divisible dense subgroup of R* and C a
closed cone in R* with R"=C—C. Iet Sg=GNC and S=
So\{0} and denote by (£,V ) the semilattice of S-cones. Let £, denote
the semilattice obtained by adjoining an identity 0 to £. Define
T(0) = {0} and for E € £ define T(E) as in Definition B.

(i) So= U{T(E): E € &} is a semilattice decomposition of S
into subsemigroups of S,.

(ii) For E € &, T(E) is a p-divisible K-semigroup.

(iii) (&o, V) is a semilattice satisfying the finite chain condition.

(iv) (&0, V) is the greatest semilattice homomorphic image of S,.

Proor. In view of Lemmas 4.3 and 4.5 it suffices for (i) to show that
each element of S, belongs to T(E) for some E € £ Hence, let
x €Sy, x # 0, and denote by E the intersection of all S-cones con-
taining x; clearly E is an S-cone. If x QE T(E) then x belongs to the
boundary of E* relative to E* — E*. Then M = {rx|r a positive
p-adic rational} is a p-divisible subsemigroup of E contained in the
boundary of E* relative to E* — E*. By Lemma 4.2, there is an E-
cone E, containing M (and therefore x) which is contained in the
boundary of E* relative to E* — E*. Since E is an S-cone it follows
that E, is an S-cone containing x. However E, CE contradicting
the choice of E, and x € T(E). Part (ii) is simply a restatement of the



520 M. FRIEDBERG

remark preceding Lemma 4.3. Part (iii) is Lemma 4.4. For (iv), note
that the greatest semilattice homomorphic image of S, is Solp where
p is the intersection of all congruences o on S, with Sy/o a semilattice.
Clearly, if o denotes the relation on S, with xoy only in case x,y
€ T(E) for some E € &, then o is a congruence and Sy/o is isomorphic
to &, so that p C 0. Suppose xay where x,y € T(E) for E € £, Let
U denote the interior of the cone E* relative to E* — E*; since
x € U, x — U is a neighborhood of 0 in E* — E* There is an integer
m with p~™y € x — U. Consequently x — p~™y E(E— E)NUC E
(see the proof of Lemma 4.5). Hence, x divides a power of y in S, and
similarly y divides a power of x in S,. This is exactly the statement
that xpy ([6], Theorem 4.12) and o C p; thus ¢ = p and (iv) follows.

ExampLE 7. Let G = R3 and C the cone with lateral cross-section
given by Figure 1.

7 D =
=

b

Figure 1
X .

Here Sy = C; the S-cones are C\ {0}, the open rays on the boundary
of C passing through semicircle D, and the two-dimensional cone P
on the boundary. The semilattice &, is described by Figure 2.
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D\ e

N

Figure 2

The Archimedean components of C are {0}, the open rays passing
through D, the interior of the two-dimensional cone P and CO.

5. Let G denote a fixed p-divisible dense subgroup of R", C a
closed proper cone in R*, and Sy = G M C. In this section, we exploit
the results of the previous sections to obtain a concrete realization of
the universal compactification of (So),.

Let S = Sy\{0} and let (£,V) be the semilattice of S-cones. Setting
T(0) = {0}, Theorem 2 asserts that S, is a semilattice &£, of semi-
groups T(E) where, for E € &, T(E) is a p-divisible K-semigroup.

We shall need a representation for the universal compactification of
(£0)a; let (Q, V) denote an arbitrary (upper) semilattice satisfying the
finite chain condition. Denote by % the collection of prime ideals of
Q (ie., P € P only in case P is a semilattice ideal and OQ\P is a sub-
semilattice of Q or P= (). ForeE Qletel = {fEN:eV f= ¢}
and we note that Q\el € P. Fore € Qand P, P,, * - -, P, € P with
e €EMNi=1P; let Ve, P, -+, P)=-el N (N}, P,) and denote by
A the collection of all possible subsets of Q) of the form V(e, Py, - - -, P,).
It is easy to see that o4 is a basis for an Hausdorff topology T on ().

PropositrioNn 5.1. The universal compactification of (Qy V) is
(v, T), i) where i: Qy— Q is the inclusion. Further, (Q, T) is
0-dimensional.



522 M. FRIEDBERG

Proor. Let 2 denote the upper semilattice ({0,1},V) and X =
Hom(()y, 2) the collection of semilattice homomorphisms of €, into 2.
If AC Q, we denote by 1, the characteristic function of A. We have
that X € Hom(, 2) only in case X = 1p for some P € @. The evalua-
tion map : (1— 2% is an isomorphism of (2 into 2X. Hence, 6(Q) is a
subsemilattice of 2X satisfying the finite chain condition. By a theorem
due to J. W. Stepp ([17], Lemma 8), 6(Q) is a closed and, hence,
compact subset of 2X in the product topology. It follows that (€,V)
is a compact 0-dimensional topological semilattice with respect to
the weak topology 7 ' generated by the functions in X = Hom(Qy, 2).
The identity function j: (Q, T')— (Q, J) is easily seen to be con-
tinuous and is thus a homeomorphism and an isomorphism. Hence,
(Q,V, J) is a compact 0-dimensional semilattice. If (U(Qy), u) is the
universal compactification of (4, V) then since u is an isomorphism
(in this case) and () satisfies the finite chain condition we get u : Q,
— U(Qy) is an isomorphism onto. The identity function i: Q;—
(Q, V, J)induces i* : U(Qy)— (Q, V, T) and by our previous observa-
tions, i* is an iscomorphism onto. It now follows that ((Q, V, 7), 1) is
the universal compactification of ;.

For each E € & T(E) is a p-divisible K-semigroup. Let Gg =
T(E) — T(E), the subgroup of R" generated by T(E). Obviously
Gg C E — E; choose arbitrarily t € T(E), then since T(E) is an ideal
in EEf E-—E=(E+1t)— (E+t)CT(E)— T(E)= Gg so that Gg
= E — E. Denote by (Bg, bg) the Bohr compactification of (Gg); and
by (Ag, ag) the universal compactification of the closed proper cone
Cg = E* with the relative Euclidean topology. Let iz : T(E)— Gg
and jg:T(E)— Cg denote the inclusions and Bg = (bg e ig) X
(ag ° jg); by Theorem 1(i), ( Bg, Bg) is the universal compactification
of T(E); where Bg is the closure of Bg(T(E)) in B X Ag. In £ X
(U{Bg X Ag: E € £}) let Dg denote the subset consisting of those
pairs (E, z) where z € By X Ag and let D= U{Dg: E € £}. We
shall use a technique developed by A. H. Clifford [5] to introduce
an associative operation on D. We will then use a construction
principle to introduce a topology on D which was first formulated by
Hofmann and Mostert in their work on hormoi (c.f. [12], p. 140, 5.3).
The combination of the two techniques was used previously by T. T.
Bowman ([1], Theorem 1.3) to determine the structure of compact
semigroups S in which Green’s J/-relation is a congruence and S/ is
a Lawson semilattice, which is the topological version of Clifford’s
work previously cited.

IfE,FE £and E V F = F then Gg C Gy and Cg C Cg. Denote by
[E, F] : Bg X Ag— Bp X Ag the continuous homomorphism induced
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by the inclusion Gg X Cg— G X Cp (recall that By X Ag is the
universal compactification of Gg X Cg). In particular, for x € Gg, y
€ Cy, [E, F](bg(x), ae(y)) = (bp(x), ap(y)). If E,, E,, E; € £ with
E,C E,C E; then [E,, Ej] ° [E,, Eo] = [E,, E3]. For 2= (E, x)
€ Dg and §j = (F, y) € Dy define:

(%) ¥+ §=(EVF,[EENV F|(x)+ [F, EV F](y))

This is essentially Clifford’s technique in [5], and (%, §)—> % + § is
easily seen to be an associative commutative binary operation on D.

In order to introduce a topology in D (via the technique of Hofmann-
and Mostert) we let F € £and V= V(F, P,, - - -, P,) € A as defined
preceding Proposition 5.1. Choose an open set U in the product
topology of Br X A and define:

(*%)  W(U, V)= {(E,x) ED: E € Vand [E, F](x) € U}.

The collection of all subsets of D of the form (**) constitutes a basis
for a topology on D, which we refer to as the W(U, V)-topology. The
net (E, %) in D converges to (E, x) in D with respect to the W(U, V)-
topology only in case lim E = E in the T topology of Proposition 5.1,
and lim[ E, E] (%) = x in the product topology on Bg X Ag.

ProposiTioN 5.2. The set D together with the binary operation
(*) and the W(U, V)-topology defined by (**) is a compact commuta-
tive topological semigroup. The function x— (E, x): By X Ag— Dg
is an iseomorphism of Bg X Ag onto the compact subsemigroup D
of D.

Proor. The proof is almost identical with that given by Bowman in
proving Theorem 1.3 [1], and, in any case is straightforward, so we
omit it.

Let D, denote the compact semigroup obtained by adjoining an
identity 0 to D as an isolated point. Define B: Sy— D, by the rule:
B(0) = 0 and B(x) = (E, Bg(x)) for x E T(E). For E € &, let B =
{(E, 2):2€ B} and let B= (U{Bg:EE £})U {0}; hence
B(S0) € B.

THEOREM 3. Let G be a dense p-divisible subsemigroup of R" and
C a closed proper cone in R* with R* = C — C. The universal com-
pactification of (So)q = (G N C), is the pair (B, B), where B has the
operation defined by (*), the relative W(U, V)-topology defined by
(#x), and B\{0} is the disjoint union of universal compactifications of
p-divisible K-semigroups.
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Proor. Let x, y €S with x € T(E) and y € T(F); since x + y
ETEV F),Bx+y)=(EVF, Bpyp(x+y)=(EVF, (bpygx
+y), apve(x+y)) = (EVF, (beve(x), apve(x)) + (bevr(y),
apv2(y)) = (EV F, [E, EV F)(bg(x), as(x))) + [F, E V F] (be(y),
ar(y))) = (E, (bg(x), ag(x))) + (F, (be(y), ar(y))) = B(x) + B(y). Thus
B is a homomorphism (in fact, an isomorphism into). Since Bg(T(E)) is
dense in B, it follows that B C B(So)* and thus B C B(So)*. Now
let x € Dg and suppose x € B(So)*; there is a net Z in S, such that
limB(Z) = x in the W(U, V) topology. Since £, satisfies the finite
chain condition, there is an Ey € &, such that E,V E=E, E,# E
andif FE Ewith E,VF=F, FVE= EandEothhenF E.
There is a net F in £ such that Z € T(F) and since lim 8(z) = x it
follows that lim F = Ein the T topology. Eventually, F € V(E, £\E,|)
so that EOV F#Ey and, EgV (E)V F)=EyV F, and (E, V F)
VE=E,V (FVE)=E,V E=E. Hence by the choice of E,
we may assume E,V F = E. Now if E,= {0} then F = E and it
follows that x € Bz. Hence, we assume E, € £; choose arbitrarily
t € T(E;). Then % € T(F) implies z + ¢t € T(F v Ey) = T(E) and
B(z) + B(t) = Bz + t) = (E, Be(z + 1)) € Bg; by continuity of addi-
tion in D and the fact that By is closed in D we get x + B(t) EBE
for all t € T(E,). Since B(T(E,)) is dense in By, we get x + y € By
for all y € Bg,. In particular, by the remark following Theorem 1,
(Eo» (bk,(0), ag,(0))) € B, and thus x + (Eo, (bg,(0), ag,(0)) € Bg.
Let x = (E, (g, k)) where g € Bg and k € Ag; then x + (EO, (bg,(0),
ag,(0)) = (E, (g, k) + [Eo, E](bg,(0), ag,(0))) = (E, (g, k) + (bg(0),
ag(0))) = (E, (g, k)) = x. Hence x € B and we have estabhshed that
B = B(Sy)*; thlS also establishes the fact that B is a compact sub-
semigroup of D,, since 8 is a homomorphism.

Now suppose f: (Sp)— W is a homomorphism of S, into a dense
subsemigroup of the compact semigroup W. Clearly, W has an
identity 1 and f(0)=1. For E € &, let fz: T(E)— W denote the
restriction of f to T(E). There is a continuous homomorphism
fe*:Bg— W for which fg*oBg = fz. We now define f*:. B> W
by the rule: f*¥0)=1 and fXE, x)= fy*(x) where (E, x) € Bg.
This clearly defines a functlon on B to W. Further for x € T(E),
( f"‘ B) f" (E, BE = fg*(Be(x)) = fe(x) and consequentl!

ose B(t) is a net in B(S,) converging to (E, x) € Bg
where t E T(E? Then lim E = E and hm[E E](BE(t )) = x; note
that [E, EJ(Be(E)) = [E, E)(bi(F), acf) = (bi(f), ac(F)). Now
fHE, x)= fg*x)= fg* (lim(bg(t), ag(t)))= lim fe*(be(t), ex(t))
= lim fg*(Bg(t)) = lim fg(t) = lim f{t ) = lim fp(¢) = lim fz*(Bg(t))
= lim fX(E, Be(f)) = lim f*(B(f)). We have shown that f* is a
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.

function on B to W and there is a dense set (namely B(So)) such

that if 8(f) is a net m B(So) converging to (E, x) € B then f*(B(f))

converges to f*(E, x). By ([15], Lemma 1), f* is continuous. Since

f*°B = f it follows that f* is a homomorphism on B(S;) and thus,

by continuity, on B(Sp)* = B. We may now conclude that (B, B) is

the universal compactification of (So);. Finally, the function x — (E, x)
: Bp— Bgis clearly an iseomorphism onto.

CoroLLary. Let C be a closed proper cone in R" with R" = C — C,
and let (B, B) be the universal compactification of C; as described
above. The connected components of B are the subsemigroups
Bg, EE€ &, and {0}. Each By is iscomorphic to 3, X Ap where
m = 2C€ and Ag is the universal compactification of the closed proper
cone E*,

Proor. Each B is iscomorphic to Bg; recall that E is a (C\{0})-
cone and is therefore closed in C\{O}. Hence E* = EU {0} is a
closed proper cone; since T(E) is the part of C\{0} in the interior of
E* relative to E* — E*, it follows that T(E) is equal to the interior of
the cone E*. By example 6, the universal compactification of T(E) is
3,™ X Ag where m = 2C; hence By is iseomorphic to X,™ X Ag and
is connected. The function (E, x)— E: B — &, is continuous; since
&, is 0-dimensional by Proposition 5.1, it follows that By is a maximal
connected set and we are done.
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