
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 8, Number 3, Summer 1978 

ON THE UNIVERSAL COMPACTIFICATION OF A CONE 
MICHAEL FRIEDBERG 

ABSTRACT. Herein we determine the universal (Bohr) com­
pactification of a wide class of semigroups with the discrete 
topology; this class includes the positive additive rationals, 
p-adic rationals, reals, as well as the interior of a closed proper 
cone in Hn. Using the notion of the greatest semilattice 
homomorphic image, we describe the structure of the universal 
compactification of a closed proper cone in Rn supplied with 
the discrete topology. 

0. Introduction. The universal compactification of the topo­
logical semigroup S is a pair (U, u) where U is a compact semigroup, 
u : S —> U is a continuous homomorphism of S onto a dense sub-
semigroup of U, and for any other continuous homomorphism 
/ : S—» T with T a compact semigroup there is a continuous homo­
morphism J : 17—• T such that J ° u = / . The pair (U, u) is known to 
exist for any topological semigroup (cf. [13] or [7]) and is unique 
with respect to the obvious notion of equivalence. 

First a comment on terminology: Several authors, including this 
author, have referred to (17, u) as the Bohr compactification of S. In 
[18], the Bohr compactification of S is a pair (B,b) where B is a 
compact commutative semigroup in which the semicharacters (i.e., 
continuous homomorphisms into the semigroup of complex numbers z 
with \z\ = 1) separate points, b : S —» B is a continuous homomorphism 
of S onto a dense subsemigroup of B, and for any semicharacter y on 
S there is a semicharacter y with y ° b = y. One sees immediately 
that this definition is much more consistent with the terminology for 
topological groups; in this sense, the Bohr and universal compactifica-
tions may differ (e.g., any non-degenerate compact connected semi-
lattice). We shall henceforth use this terminology. 

Our purpose in this work is to make a contribution to the determina­
tion of the universal compactification of a closed proper cone in Rn. 
§ 1 sets forth definitions, notation, references, and some general infor­
mation. In § 2 we develop some techniques for computing certain 
closed subgroups of the Bohr compactification of dense subgroups of 
fln with the discrete topology; at the end of the Section we give 
examples using the techniques developed. In § 3, we give a descrip-
tion of the universal compactification of a wide class of subsemigroups 
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(p-divisible K-semigroups) of Rn with the discrete topology; these 
include the additive semigroups of positive rationals, positive p-adic 
rationals, positive reals, and the interior of a closed proper cone in 
Rn. The description is as a direct product of a certain compact group 
and the universal compactification of a closed proper cone in Rn with 
the usual topology. We then give examples, some of which are known 
and some of which are new. In § 4, we show that the Archimedean 
components of a closed proper cone in Rn are the interiors of closed 
proper sub-cones, and that the greatest semilattice homomorphic 
image of a closed proper cone in Rn satisfies the finite chain condition. 
Lastly, in § 5 we use techniques developed by A. H. Clifford [5], 
Hofmann and Mostert [ 12], and T. T. Bowman [ 1] to describe (as 
a special case) the universal compactification of a closed proper cone 
in Rn with the discrete topology. Essentially it is the disjoint union 
of universal compactifications of interiors of closed proper cones (as 
described in § 3). Hopefully, our techniques will aid in the final deter­
mination of the universal compactification of a closed proper cone. 
Our work is a result of an attempt to generalize the work by J. A. 
Hildebrant in [9] and [10] as well as that of K. H. Hofmann in 
[11] (Theorem III) and of Hofmann and Mostert in [12] (p. 140). 

1. Preliminaries. If X is a set and AQ X and B Ç X w e denote by 
Ä\B the set theoretic difference and by A Û B the disjoint union of A 
and B. If, in addition, X is a topological space we denote by A* and 
A0 the closure and interior respectively of A A topological semi­
group consists of a non-empty set S, an Hausdorff topology on S, and a 
jointly continuous associative binary operation on S. Since we deal 
primarily with commutative semigroups, we shall generally use addi­
tive notation. In particular, if A Ç S and B Q S, A 4- B is the complex 
sum of A and B and if S is a group, A — B is the complex difference. 
If S is a semigroup, Sd denotes the topological semigroup consisting of 
S with the discrete topology. An iseomorphism of topological semi­
groups is a homomorphism which is a homeomorphism onto its image. 
If S is a semigroup and a an equivalence relation on S we use the 
notation Sia for the set of equivalence classes modulo a. In particular, 
there is a smallest congruence p on S such that Sip is a semilattice; 
Sip is called the greatest semilattice homomorphic image of S, and the 
congruence classes are called the Archimedean components of S. 
Green's J/-relation on S is defined by saying (a,b)Œ.Jj only in case 
{a} U (a + S) = {b} U (b + S) and (S + a) U {0} = (S + b) U {&}; 
in the commutative case, J / is a congruence relation. If e2 = e is an 
idempotent, H(e) denotes the J/-class of e and is the largest subgroup 
of S c "~*̂ g e- A compact holoid is a compact semigroup in which 
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cH is degenerate (i.e., a<=Hb only in case a = b). We denote by Rn 

the topological vector space of real n-tuplets with the usual vector 
operations and the Euclidean topology. A non-empty subset C of 
Rn is a proper cone if C + CC C, rCQ C for r e 0, and C Pi - C 
= {0}. A semigroup S is (uniquely) p-divisible where p ^ 2 if for 
each x G S there is a (unique) y G S with py = je, and S is (uniquely) 
divisible if it is (uniquely) p-divisible for each integer p ^ 2. For a 
discussion of divisible semigroups see [3] , or [14]. The following 
theorem is basic: 

KEIMEL'S EXTENSION THEOREM ([14], 1.1). Let C be a closed 
proper cone in Rn and T a dense subsemigroup of C° such that 
(T - T) fi C°C T. Any homomorphism / : Td-> S, where S is a 
compact holoid, is continuous in the relative topology and f may be 
extended in a unique way to a continuous homomorphism f:C—>S. 
Any semigroup T as in KeimeVs Theorem we call a K-semigroup. 

The category of locally compact Hausdorff Abelian topological 
groups and continuous homomorphisms is denoted by LCA. If 
G G LCA then Ó denotes the dual group of continuous characters on 
G to RIZ. Ù G LCA and if / G Hom(G, H) where H G LCA then 
/ G Hom(#, Ô) is defined by / (y ) = y ° / for y G Ê. The Bohr 
compaetifìcation of G is the (unique) pair (B(G), bG) where B(G) = {Ô)d 

and bG : G—• B(G) is a continuous isomorphism of G onto a dense sub­
group of B(G) where [foG(g)] (r) = y(g) for g G G and y G (Ó)d. The 
pair (B(G), bG) is also the universal compaetifìcation of G. Finally we 
denote by [0, oo )((0, oo )) the additive semigroup of non-negative 
(positive) real numbers with the usual topology. Our standard refer­
ence for algebraic semigroups is Clifford and Preston [6], for topologi­
cal semigroups is Hofmann and Mostert [12], and for topological 
groups is Hewitt and Ross [8]. 

2. In this section we develop some techniques which will aid in 
the calculation of certain compact Abelian groups which occur in 
the universal compaetifìcation of a K-semigroup. For this purpose let 
M be an arbitrary locally compact Abelian topological group, K a 
dense subgroup of M, and i : K̂  —• M the inclusion. Let H denote the 
subgroup of B^Kd) consisting of those h G BiKj) for which there is a 
net 1c in K with h = lim bKd (k) and with lim Te = 0 in the relative 
topology inherited by K as a subset of M. 

PROPOSITION 2.1. H is a closed subgroup of B(Kd) and if T : B(Kd) 
—» B(M) is the continuous homomorphism induced by i : K^—* M, then 
T is a surmorphism and has H as its kernel. Hence, the mapping 
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J : 5(2^)/ / /-» B(M) defined by I(h + H) = r(h) is an iseomorphism of 
B(1Q)/H onto B(M). 

PROOF. Let f : K-> B^/H be defined by the rule: £(k) = bKd(k) 
+ H. If Tc is any net in K converging to 0 in the relative topology on 
K, then any cluster point of the net bKd(k) belongs to H; it follows that 
£ is continuous at 0 in the relative topology on K and, hence, is con­
tinuous at each member of K It is known ([8] , p. 85) then that f 
may be extended to a continuous homomorphism £0 : M —» B(Kd)IH 
and £0 may be extended to f0 '> B(M)^> B(Kd)IH satisfying f0 ° bG = 
£0. Now since i : Kd —» M is both injective and epic it follows 
that r : BiKd)-* B(M) is a surmorphism. If h G H there is a net £ in 
Krf converging to 0 in the relative topology on K such that h = 
lim bKd{k). Hence, r(h) = lim T b^à (k) = lim bG(^) = bG(lim Tc) = 
fcG(0) = 0; this establishes that H is a subgroup of the kernel of r. 
It follows immediately that I : B(Kd)IH-+ B(M) defined by I(h + H) 
= r(h), is a well-defined continuous homomorphism and is surjective. 
Now let kGKt; we have (?0 ° JX&K f̂c) + H) = l0(r(bkd(k))) = 
ìo(bG(i(k)))=Ì0(i(k))=Ì(k)=bKd(k) + H. Thus, ? 0 o j is the 
identity function on a dense subset of B{K^)IH and is, therefore, 
equal to the identity everywhere. Now let g G M and 2c a net in K 
with g = lim h (I * &)(*b(g)) = H€o(g)) = /(Mm «*)) = lim /(«*)) = 
lim J(bkd (fc) + tf ) = lim T(bki (£)) = lim bG(fc) = bG(g). Thus I ° £0 

is the identity function on B(M) and, hence, I and £0 are mutually in­
verse. That H is the kernel of I is a consequence and the proof is com­
pleted. 

Now, let M | Krf denote the subgroup of (Kd) consisting of restric­
tions to K of the characters of the topological group M. Since K is 
dense in M, M \ K^ consists of those characters in (Kj) which are 
continuous in the relative topology on K as a subset of M. 

PROPOSITION 2.2. The subgroup H of B(Kd) is the annihilator of the 
subgroup M | IQ of ( ^ ) . That is, r E H only in case r(k) = 1 for 
X E M I Krf. 

PROOF. For the moment, let M x denote the annihilator of the sub­
group A? | Krf. If h E H, there is a net J in K with lim £ = 0 and 
lim bKd(k) = /i. Now let X E M | K ;̂ because the topology on 
B(Kd) is the topology of point-wise convergence on members of K^ 
it follows that h(k) = lim l)Kd (£)(A) = lim X(fc) = 1 since X is continu­
ous. Thus h is identically equal to 1 on M |_Kd jjnd we have shown 
H C Mx. For the reverse inclusion we let 7 : B(M) -+ (B^K^H) be 
the isomorphism induced by the iseomorphism I : B(Kd)/H—• B(M). 
Let G0 = {y E B(Kd) : y = 1 on H}; G0 is the annihilator ol the sub-
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group H of B(Kd) and therefore G0 is isomorphic to the character 
group of B(Kd)IH under the isomorphism a, where if A. is a character 
on B(Ka)IH then a(X) is the character on B(Kd) defined by the rule: 
a(X)(/i) = k(h + H) for h E B(Krf) (cf. [8], p. 365). By Pontryagin 
duality, there is an iseomorphism <£ : (M)d —» B(M) defined by the 
rule: <l>(ti)(h) = h(n) for p E (M)d and h E B(M). Thus, a ° / ° ( / > : 
(M)d—» G0 is an isomorphism and is surjective. Now let y E M1 and 
suppose y (£ H. Thus, y(X) = 1 for all X E Af | Kj and there is a 
F E B ( ^ ) such that F(y) f 1 and F(/x) = 1 for all_/Lt E H. It follows 
that F E G0; choose ^ E (M)d such that (a ° J ° ^)(i/) = F. Let 
v* be the restriction of v to K^ so that v* E A? | K^ We have that 
F( y ) = [ a ° J ° 0 ( » ) ] ( y ) = 7(<t>(v))(y+H) = <*>(*>)(% + ff)) = 
<f>(p)(r(y)) = r(y)(i>) = y(^*) = 1 since y E M"1. But F(y) ^ 1 giving 
a contradiction to M 1 ^ H and the proof of Proposition 2.2 is com­
plete. 

COROLLARY 2.3. If M is a locally compact Abelian group, then 
B(M) is iseomorphic to B(Md)IM where M1 is the annihilator of the 
subgroup M\Md of (Md) consisting of the continuous characters of 
M. 

COROLLARY 2.4. If K is a dense subgroup of Rn and H is the annihi­
lator ofAn | Kd, then B(Kd) is iseomorphic to H © Xa

c where c denotes 
the cardinality of the continuum and Xa is the a-adic solenoid with 
a = ( 2 , 3 , 4 , •••)(€.£ [8]). 

PROOF. The group An | K^ is a divisible subgroup of (Kd) so there 
is a homomorphic retraction r : (Kd) —> An | K^. Define ? : B(Kd) 
-ZB(Ka) by the rule: ?(r)(X) = T(X - r(X)) where T E B(K^), X E 
(Kd). It is a simple matter to check that r is a continuous homo-
moiphic retraction of B(Kd) onto H. It follows that B(Kd) is iseomor­
phic to H®(B(Ka)IH). By Propositions 2.1 and 2.2, B(Ka)IH is 
iseomorphic with B(Rn) and the fact that B(Rn) is iseomorphic to 
Xa i s well-known. Thus, B(Kd) is iseomorphic to H © %a

c a n d we are 
done. 

We believe the next proposition is probably known, but lacking a 
reference we give a proof. Let M denote a dense subgroup of Rn 

which contains Zn. For j E Zn define a character § on (MIZn)d by the 
rule: §(exp(2n-ixi), • • -, exp(27rixn)) = exp(27ri(x 'j)) where (xi9 • • -,£„) 
= JC E M and x • j denotes the ordinary scalar product in Rn. We 
denote the group (MlZn)d by G and let K = {(7, £•) : j E Zn}. Then K 
is a subgroup of Rn X Ù; we let N = {^ : j 6 Zn} and we note that 
N is a subgroup of Ù. Finally, for v E Rn and X E Ù we define a 
function [v, X] E (Afd) by the rule: 
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[ü,X] (x) = exp( — 2iri(x • t;)) • X(exp(27rfac1), • • -, exp(27rixn)) 

forx = (x1? • • *,xn) G M. 

PROPOSITION 2.5. The function (v, X) + K—» \y, X] is an iseomor­
phism of (Rn X Ò)IK onto (Std). Further, ((Md)l(^ \ Md))d is iso­
morphic to (ÙN)d. 

PROOF. Let 0 : Md-> Rn X (M/Zn)d be defined by: 0(x) = 
(x, (exp(277-ix1), • • -, exp(27TÛn))). Since 0 is injective there is induced 
an epimorphism TJ : R" X Ó—> (Md) such that 17(7, X)(x) = 
y(x)X(exp(27riac1), • • -, exp(27rixn)) for x Œ M. If 17(7, X) = 0 then y(x) 
= X(exp(27rix1), • • •,exp(27rixn))~1sothatforx G Zn,y(x) = 1. There is 
thus a j £ ZB such that -y(x) = exp(^-27ri(j • x)) for x G Rn. If we 
define yj G Rn by the rule: yj(x) = exp( — 2ari(j • x)) for x G Rn, then 
it follows that the kernel of 17 is {(yp §) : j G Zn}. 

Now let 17 be a neighborhood of 0 in Rn such that U D Zn = {0} 
and set V = [ / X {0}, a neighborhood of (0,0) in Rn X (M/Zn)d. 
Clearly, V H 0(Md) = {(0, 0)}, from which we conclude that 0(Md) 
is a discrete, hence closed, subgroup of Rn X (M/Zn)d. (We extend our 
thanks to J. D. Lawson for this observation.) The inclusion i : 0(Md) 
—> Rn X (M/Zn)d induces a surmorphism 1 : RnX Ó—• 0(Md) since 
each character on 0(Md) can be extended to a character on Rn X 
(MIZn)d. The corestriction 0O : Afd—» 0(Md) of 0 is an iseomorphism so 
the induced morphism 0O

 : 0(Md)—» Md is an iseomorphism. Finally, 
0 = i ° 0O so that 7j = 0 0 o j is a surmorphism. Now R n x 6 is 
a-compact and locally compact from which it follows that 17 is an open 
mapping ( [8] , p. 42], Hence, 17 induces an iseomorphism rj of 
R " X 6 modulo {(yJ? §) : j £ Zn} onto (Md) and the first conclusion 
follows by replacing the character yv G R" by the vector v G Rn in 
the canonical way. 

Now suppose [Ü, X] ER"! Md; hence there is a u; G Rn such that 
[v, X] (x) = exp( —2TTÌ(X • tv)) for all x G M. By definition it follows 
that exp( — 2ari(v • x))X(exp(27riX!), • • -, exp(27rixj) = exp(-27ri(x • w)) 
for all x G M; it follows that X(exp(27rix1), • • -, exp(27rixn)) = exp(27ri(ü 
— w) • x) for x G M. Then since Zn C M we get j 0 = v — w G Zn and 
soX = €jo> We obtain [v,k] = [v,£J0] and it follows that (T?)_1(R" I Md) 
= {(*>> £,) + K : v G Rn, j G Zn}. There is induced an isomorphism of 
(R» X ÓIK)l(v)-W I Md) onto (Ä/d)/i? | Md. But fa)"1^ I Md) 
= (Rn X N)/K so we get (Rn X Ó)/Rn X N is isomorphic to (M )̂7 
(g*| Md) and finally that (Ó/N)d is isomorphic to ((Md)l(n?:\ Md))d 

which is the second assertion of this Proposition and we are finished. 
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Now let T be a K-semigroup where T is contained and dense in the 
interior of the closed cone C in R1 with Rn = C - C and (T - T) fl C° 
Ç T. We let G = T - T, the (dense) subgroup of Rn generated by T. 
Let H denote the subgroup of B(Gd) consisting of those h G B(Gd) for 
which there is a net g £ G with lim g = 0 and lim &Gd,(g) = h. Let H0 

denote the subset of H consisting of those h G B(Gd) for which there is 
a net If G T with lim 7 = 0 and lim bçd(J) = h. 

PROPOSITION 2.6. H0 = H. 

PROOF. Clearly, the inclusion H0 C H is valid. Let /i G B(Gd) and 
g a net in G with lim g = 0 and lim bcd, (g) = h; denote the directed 
set which is the domain of g by Ï2\ For each positive integer n, let 
On = {c G C° | ||c|| < 1/n} and note that On is open: We have 0 f 

on n r c on n (r - r) = (on n c°) n (r - T) C on n T and so 
On n T = On n G is open in G with respect to the relativized 
Euclidean topology on G. With respect to this topology, G is a topo­
logical group and hence (On H T) — (On fi T) is a relative neighbor­
hood of 0 in G. Let 2V = {(a, n) : a G !à, n è 1, and g, G (On fi T) 
— (On H T)}; since lim g = 0 it follows that £> ' is directed under the 
partial order; (a, n) Si (ß, m) only in case a^ß and n^m. For 
(a, n) G Î2̂ ' pick *(a, n) G On H T and *(a, n) G On Pi T with g, = 
s(a, n) — t(oty n), and finally let k(a, n) = g^. It follows easily that Ti 
is a subnet of g so lim Ì>Gd(k) = -̂ Also evident is the fact that 
lim s = lim t = 0. By taking subnets if necessary we get points 
s0, t0 G B(Gd) with lim &Gd(S) = So and limb{Gd(t) = t0 and /* = 
$0 — t0. Since, however % t0 G H0 and H0 is clearly a closed sub­
group of B(Gd) it follows that h = s0 — t0 G if0 and the proof is com­
plete. 

COROLLARY 2.7. H0 is iseomorphic with the character group of the 
discrete Abelian group (CdIÈn \ Gd)d. 

PROOF. By Proposition 2.2, H is the annihilator of the subgroup 
Rn | Gd of (Gd). However, it is known (cf. [8] , p. 365) thatjthe annihi­
lator of An | Gd is (iseomorphic to) the character group of (Gd)IÈn \ Gd. 
The conclusion now follows from Proposition 2.6. 

We compute now the annihilator H of Én | Gd for some specific sub­
groups G of R1. These will be useful in § 3 in computing the universal 
compactification of specific K-semigroups. 

EXAMPLE 1. Let G = Ç the additive group of rational numbers. By 
Proposition 2.2, H is the annihilator of A | Qd; hence H is the char­
acter group of (QjA | Qd) and, by Proposition 2.5, also the character 
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group of ({QIZ))JN)d where N = {£, : j G Z}. Since ((^) is uniquely 
divisible, (Qd))IÈ | Çd is a rational vector space. Now since Q/Z is 
countably infinite, the cardinality of (QIZ)d is c (c.f. [8], p. 396) and 
since N is countable the cardinality of (QZ)djN is also c. Hence 
(Qdl&\ Qd)d is a rational vector space of dimension c, and therefore 
is the weak direct sum of c copies of Qd. It follows that H is iseo-
morphic to Xa

c where £ a is the a-adic solenoid (c.f. [8], p. 114). 

EXAMPLE 2. Let G= Rn; H is the character group of ((Rdn)l 
An | Rdn)d- Since Rj1 is a rational vector space of dimension c, (R/1) 
is iseomorphic to Xa

c- Each Xa *s uniquely divisible so that 2 / is a 
rational vector space of cardinality, and hence dimension, 2C. It 
follows that Rdn is a rational vector space of dimension 2C. However, 
Én | Rj1 is a rational vector space of dimension c; it follows that 
((Rdn)l&n | Rdn)d i s a rational vector space of dimension 2C, and 
therefore that H is iseomorphic to Xa

m with m = 2C. 

EXAMPLE 3. Let G =• Qp the additive group of p-adic rationals with 
p a prime. We wish to compute (QplZ)dJN, where N = {£,- : / G Z}. 
Now QPIZ = Z(poo ) and §(*) = # "lòr x G Z(p*> ). Note that 
(Qp)d is iseomorphic to XP the p-adic solenoid and since 2 P is con­
nected it is divisible (c.f. [8], p. 385); it follows that (Qp)dIR \ (Qp)d 

and therefore (Z(poo))d/N is divisible. For each prime q, let Gq 

denote the subgroup of (Z(p<x>)d/N consisting of the qn-th roots of 
unity for n = 1, 2, • • \ For each X G (Z(p«> )d there is a sequence 
of intergers {m n}*= 1 such that mn = mn+l(p

n) and X(exp(27rip~n)) = 
exp(27rimnp~n) for n = 1, 2, 3, • • •. If {rn}n=i is another such se­
quence corresponding to X, then rn = mn(p

n) for n = 1, 2, •'••. 
Conversely, any such sequence defines an element of (Z(p <»))<* 
in the way described. Let X G (Qp)d and suppose pnX G A \ (Qp)d. 
Thus, there is a number r G R such that (pnX)(x) = exp(2n-irx) 
for x G Qp, or X(pnx) = exp(27rin:) for x G Qp. Since Qp is 
p-divisible we get \(z) = exp(27ri(rp~n)z) for z G Ç>p. We have 
shown that the only pn-th root of unity in (QP)dIÈ \ (Qp)d is the 
identity and thus the same holds for Z(p<» )JN. 

Let q be a prime, q ^ p, and fc0 ^ 1. For each n è 1 choose 
integers fcn and j n with fcn</*° + jnp

n = 1. Suppose X G Z(p°° )d with 
g*°X G N and let {m n}*= 1 be a defining sequence for X. There is an 
integer n0 such that qk° = f̂ ; then exp(2m-iqk°mnp~n) = 
exp(27rtn0p~n) for n = 1,2, • •. Thus, n0 = qk<mn(p

n) for n = 1,2, • •; 
we get n0fcn = knq

k<>mn = (l - jnp
n)mn = ran(p

n). Hence, 
X(exp(2^ip_n)) = exp(2xrm0fcnp~n)forn = 1,2, • • \ Forn 0 G Z, define 
X^ G Z(p«> )d as that character corresponding to the sequence 
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{mn}*= 1 with mn = n0kn. Note that mn - mn+1 = (kn - kn+l)n0; 
but (kn-kn+l)q

ko+(jn-jn+lp)p» = 0 so (kn-kn+1)q
ko=0(p») 

so &n = kn+i(p
n) and thus mn = mn+l(p

n) for n = 1, 2, • • -, so we have 
checked that the sequence Own}£=1 is of the proper kind. The func­
tion n0—• A^ + N : Z—• Z(p» )d/2V is a homomorphism and, by our 
preceding remarks, is onto the qk<> roots of unity of Z(p oo )d/N. Suppose 
^ G N and choose j E. Z with A^ = §; then exp(2jrin0knp~n) = 
exp(27ri/p~n) for n = 1, 2, • • \ We conclude n0kn =7'(pn) for n = 1, 2, 
• • •; then n0knqk° = j qk°(pn) and n0(l — jnpn) = j qk°(pn) so n0— 

jqk°(pn) for all n. Thus n0 = j qk° so the kernel of the map n0—»A^ 
+ N is the cyclic subgroup (qk°)o£Z generated by qk<>. Consequently, 
the set of qk° roots of unity of Z(p°° )JN is isomorphic to Zl(qk°) and it 
follows that Gq is isomorphic to Z(qra> ). The torsion subgroup F of 
Z(poo)d/N is isomorphic to the weak direct sum X*{Z(qœ ) : q a prime, 
q ^ p}. Note that F is countable so that (Z(poo)JN)IF is a rational 
vector space of cardinality, and hence dimension, c. Since F is divis-
ible^Z^poo^/N is isomorphic to (2*{Z((/oo ) : q a prime 9 ^ p}) X Ç)/* 
where Çd

c* is the weak direct sum of c copies of Qd. Hence, H is 
iseomorphic to 7r{Aq:q a prime, q ^ p] X Xa

c where Aq is the 
compact group of </-adic integers (cf. [8], p. 107). 

3. For the purposes of this section, we let T denote a fixed p-
divisible K-semigroup where p = 2, and C denotes a closed proper 
cone in fln such that T is a dense subsemigroup of C°, (T — T) fi C° 
C T, and Rn = C — C. Denote by (U, u) the universal compactifica-
tion of Td and by (A, a) the universal compactification of the semi­
group C endowed with the usual topology of Rn. Finally, let G = 
T — T, the subgroup of Rn generated by T; notice that G is p-divisible. 

LEMMA 3.1. (a) The semigroup A is uniquely divisible and U is 
uniquely p-divisible. Both A and U are commutative. 

(b) The element a(0) is an identity for AandH(a(0)) = {a(0)}. 
(c) The mapping a: C —> A is an iseomorphism ofC onto a(C). 
(d) U has an identity 6 and H(6) = D{u({tŒT: \\t\\ < € } ) * : € 

> 0 } . 

PROOF, (a) is fairly well-known and the fact that a(0) is an identity for 
A is obvious. Let C00 denote the one-point compactification of C with 
addition extended such that c + 00 = 00 + c = 00 for all c G C00; 
C00 is a compact semigroup. Let i: C—» C°° denote the inclusion and 
let ix. A—>C°° be the unique continuous homomorphism satisfying 
ixo a = i. Since fx(a(0)) = i(0) = 0 and tf(0) = {0} it follows that 
/Lt(x) = 0 for all x G H(a(0)). Let x E H(a(0)) and z a net in C with 



512 M. FRIEDBERG 

x = lim a(z); then 0 = p,(x) = lim p,(a(z)) = lim z and thus a(0) = 
lim a(z) = x proving (b). If z is any net in C with lim a(z) = a(z0) then 
lim z = lim ii(a(zj) = p,(ö(z0)) = z0

 anc* P a r t (c) i s done. We do not 
give a proof for (d) because of the similarity with the proof of Theorem 
III, [11]. Now let JI denote Green's relation on U (i.e., bxJfb2 only 
in case bl + U = b2 4- (7) which in the present case is a closed con­
gruence on U. Let p :U-^>> \J\cH denote the natural homomorphism. 
Further, let UIH(d) denote the quotient semigroup of U modulo the 
action of H(0) on U and r : t / - » UIH(6) the natural homomorphism. 
Thus r(x) = r(t/) only in case there is a g G H($) with x = y + g. 
There is a unique continuous homomorphism \fß : l//H(0)—» C7/J/ 
satisfying i(( ° T = p. 

LEMMA 3.2. TTiere is a continuous homomorphism r) : C—» UIH($) 
forwhichr)(t) = T(u(t)) for all t G T. 

PROOF. Notice that (7/J/ is a compact holoid (i.e., all subgroups are 
trivial). By Keimel's Extension Theorem (see § 1), p ° u : T—» (7/J/ is 
continuous with the relative topology of Rn on T, and can be extended 
to a continuous homomorphism p : C—» t//« /̂. Hence, p(£) = 
p(u(t)) for t Œ T. Now let z £ C ; since I/J is surjective there is an 
x G C//H(0) such that i/f(x) = p(z). Suppose also that y G UIH(ß) 
and i/f(t/) = p(z); pick x', y' G [/ such that T(X') = x and r{y') = y. 
It follows that p(x') = p(y') and thus x' + U = y' + U. Choose fo,c G 
C7 with x' = V + &> !/' = *' + c. We have p(z) = </*(*) = * (T(X') ) 

= p(x') = p(b) + p(t/') = p(&) + p(%). Inductively we obtain 
p(z) = kp(b) + p(z) for all k ^ 1; setting k= pm it follows 
pmp(p~mz) = pmp(b) + pmp(p~mz) for all m ê l . As is easily proven, 
17/J/ is uniquely p-divisible, from which it follows that p(p-mz) = 
p(fc) + p(p-mz). By continuity of p we get p(0) = p(b) + p(0). 
However, since p(u(T)) is dense in C7/J/ then so is p(C). Hence p(0) 
is an identity for U/Jf and therefore p(0) = p(0). Thus, p(&) = 
p(0) from which it follows that b G H(0) and T(X') = T(J/') and so 
x = y. We have shown that for each z G C there is a unique x G 
t//H(0) with $(x) = p(z); we define ri(z) = x. That TJ : C-» UIH(fl) 
is a homomorphism is clear. Let z be a net in C converging to z0 G C 
and let xx and x2 be cluster points of the net TJ(Z). Consequently, 
^(*i) and </f(x2) are cluster points of the net ^(17(2)) = p(z). Since 
lim z = z0

 w e get limp(z) = p(^o) s o that <M*i) = ^(x2> = P(zo) 
and therefore xx = x2 = t?(zo)> giving the continuity of t\. Finally, if 
t G T then p(t) = p(u(t)) = ^(T(U(*))) SO by definition TJ(J) = T(II(*)) 

and the proof of Lemma 3.2 is complete. 

By the universal properties of (A, a) there is a continuous homo­
morphism fj : A—> UIH(ß) satisfyingfj ° a = TJ. 

file:///J/cH
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LEMMA 3.3. The mapping 17 : A—> U/H(6) is an iseomorphism of 
A onto UIH(O). Furthermore, rj(a(t)) = r{u{t))for all t G T. 

PROOF. Let j : Td—* C denote the inclusion and set m = a ° j : Td 

-» A. There is induced a continuous homomorphism m : U —> A for 
which m ° u = ra. Since H(a(0)) = {a(0)} there is a continuous homo­
morphism 0 : UIH($) —> A such that <f>° r = m. We claim 0 is a two-
sided inverse of TJ. In fact, let t G T; then (0 ° fj)(a(j(t))) = 
<Kv(j(t))) = *fa(*)) = <Kr(u(*))) = m(u(0) = m(t) = a(/(t)).' Thus, 
0 ° 17 agrees with the identity function on the dense subset a(j(T)) of 
A and hence is the identity function on A. Similarly, fj° <f> agrees 
with the identity function on the dense subset T(U(T)) of U/H(6) and 
is therefore equal to the identity function everywhere. This completes 
the proof of Lemma 3.3. 

COROLLARY 3.3. The mapping 17 = rj ° a : C—• U/H(6) is an iseo­
morphism ofC ontorf(C) andr)(t) = r(u(t)) for all t G T. 

We now fix a basis ex, e2, • • *, en for the real vector space Rn consist­
ing of elements of C. For l ^ i ^ n set J{ = (^({X^ : X ^ 0}))* in 
UIH($). Clearly each J{ is a compact solenoidal semigroup, H(6) 
C r~l(Ji) and T~l(Ji)IH($) is iseomorphic to /*. One may find a one-
parameter semigroup <j{ : [0, 0 0 ) ^ r - 1 ( / i ) such that <r(0) = 6 and 
<r(b)$H(0) for b > 0 (cf. [16]). It follows that rto([0, 00))) 
= r)({kei : X ^ 0}). WesetP = 2 t o ( [ 0 , o o ) ) : l ^ i ^ n}; notethatPis 
a subsemigroup of U and P Pi H(0) = {$}. 

LEMMA 3.4. The restriction of 7 to Pis injective. 

PROOF. Let s,t GP such that r(s) = r(t); there is a g G H(ß) such 
that s = t + g. Choose ^ ^ G [0, 00 ), l â i â n , such that £ = 
X{<Ti(ti) : l â i â n } and 5 = ï j a ^ ) : l g i S n } . Set A = {i : t{ g 
s<} and B = {j> : ty < *,}, then A Ü B = {1,2, • • -, n}. We consider only 
the case Aj*<f>j£B, the remaining cases being much less difficult 
(also cf. [2] , Theorem 2.2). For each i G A set s{ = t{ + bif b{ G 
[0, 00 ), and for j G B, set tj = Sj + Cj, Cj G (0, 00 ). Finally, let b = 
XiVifa) : i G A}, c = 2{otfc,) :j G B} and d = ( 2 t o t e ) :j G B}) 
+ ( 2 t o t e ) : i G A}). It follows that d + f o = d + c + g. Then 
d + pmfe = d + pm(c -f g) for all m i? 1. Since C7 is uniquely p-
divisible and the pm-th roots of d converge to $ we get b = c + g. 
Let r(ai(bi)) = T?(X^), X* è 0, for i G A and r(o/(ci)) = rç(M^), M> 
^ 0 , for; G B. We obtain i?(2{A*4 : ï G A}) = Ì ? ( £ { / Ì ^ :; G B}) and, 
since by Corollary 3.3 17 is injective, 2{Xi^ : f G A} = 2{/ty£j • j G B}. 
By the linear independence of { ^ e2, • • •, en} we get ki= /JLJ= 0 for 
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i G A, jGB. TTien T(<TJ(CJ)) = D^ify) = 17(0) = r(0) so <rfa) G 
H(0), a contradiction since Cj > 0. This establishes that the case A ^ 
0 ^ B is impossible, concluding the proof of Lemma 3.4. 

Now, fix t G T; by Corollary 3.3, ij(f) = T(U(*)). Write t = 
2 { X t ^ : l ^ f ^ n } where À< G R, and set A = {i : A ^ 0} and 
B = {/ : X, > 0}. Letting x = Stf-A*)^ : i £ A } and t/ = 2 { V i j J 
G B} then x, y E C and * + x = j / (note that since t Ë C ° , B / £ ) . 
However, if A = 0 set x = 0). There is a u; and ZELP such that 
r(w) = ij(x) and r(z) = r)(y). Since t + x= y, 17(f) + iy(x) = 17(1/) and 
thus r(u(t) + w) =• r(z). We may therefore choose g G H(0) such 
that t*(t) + w = z + g. Suppose u j ' , z ' G F , g ' £ H(0) and u(f) + w ' 
= z ' + g ' ; then u;' + z = u ; + z ' + (g '— g) so that T(W' + 2) = 
T(U; + Z ' ) and by Lemma 3.4, a / + z = IÜ + z ' . Again using unique 
p-divisibility we conclude that g ' — g = 0 o r g ' = g. This observation 
allows us to define a function ß : Td —> H(6) by the rule: ß(t) = g 
exactly when there exist W,ZELP with u(t) + w = z + g. 

LEMMA 3.5. The function ß : Td—» H(0) is a homomorphism. 

PROOF. Clear (or see [2], Theorem2.2). 

By the universal properties of (U, u) there is a continuous homo­
morphism ß :U —> H(0) which satisfies ß ° u = ß. 

LEMMA 3.6. The function ß : U—> H(0) is a continuous homo-
morphic retraction ofU onto H(0). 

PROOF. Let g G H(0) and f a net in T with g = lim u(f ). For each 
a in the domain of f there is a decomposition A„ U Ba = {1, 2, • • -, n} 
and V* G [0,̂ oo ) such that u(ta) + (X toft») : ^ 4 } ) = U to(*/) : j 
E Ba}) + ß(ta). By taking a subnet if necessary we may assume A„ 
= Ao and Ba = B0 for all a. Thus 

.(*) u(t)+ '(*{*&) : i G Ao}) = (2{a/(f,) : j , G B0}) + j8(t). 

For i G Ao choose a net Xf G [0, 00 ) such that i^X*^) = r t o ß ) ) and 
for j G B0 a net /£,• G [0, 00 ) such that ^{fafij) = T(<Tj(tj)). Since 17(f) 
= r(w(f )) it follows that rj(f + SfX^ : i G Ao}) = i?(2{/f^j : j G B0}) 
and by Corollary 3.3, f + X^i : i G Ao} = S { ^ : j E B 0 } . Now 
since g = limtt(f ) we get 17(0) = r(0) = r(g) = limrw(f ) = lim 17(f); 
again by Corollary 3.3, lim f = 0. This implies that lim X* = lim fa, = 0 
for all f G Ao and j G B0. It follows that l i m r ^ ^ f )) = r(0) for all f, 
1 S f ^ n, and thus limo^fi) = 0 for each i. Recalling that ß(t ) = 
ß(u(t)) and using (*) it follows that g = lim u(f) = lim[u(f) + 
J{a,(f,) : i G Ao}] = lim [ S t o ß ) : J G B0} + JB(t#(f ))] = limJ3(u(f )) 
= ß(g) and we are done with the proof. 
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LEMMA 3.7. If ß :JJ—> H($) is any continuous homomorphic re­
traction, then A = J 8 X T is an iseomorphism of U onto H (6) X 
(UIH(0)). 

PROOF. Clearly, A is continuous; suppose A(x) = A(t/). Then 
r(x) = r(y), which implies there is a g G H(6) with x = y + g. How­
ever, since ß(x) = ß(y) we get ß(x) = ß(y) + ß(g) = J8(x) + g and g 
= 0 implying x = j / . Let (g,r(ac)) G H(0) X C//if(0) where x EAJ; 
set_ t/ = x + (g - /3(x)). Clearly r(y) = T(X); further j%) = 0(x) 
+ 0(g - ß(*)) = 0(*) + (g - ß(*)) = g a n d A(î/) = (& T(X)). TTiis 
establishes Lemma 2.7. 

We are now in a position to state and prove our first main result: 

THEOREM 1. Let T be a p-divisible K-semigroup, p ^ 2, C a closed 
proper cone in Rn with Rn = C — C, T a dense subsemigroup of C°, 
with (T — T) H C° C T. Le£ (A, a) denote the universal compactifica-
tion of C in the usual topology of Rn and let (B, b) denote the Bohr 
compactification of the discrete Abelian group Gd = (T — T)d. Finally, 
let i : T4—* Gd andj : Td —» C denote the inclusions, then: 

(i) The universal compactification of Td is (!B, (b° Ï) X (a° j)) 
where &= [(b° i)X (a°j)(Td)] *inBX A. 

(ii) There is a continuous homomorphic retraction fi : B X A-» S , 
(iii) !B is iseomorphic to H0X A where H0 is the closed subgroup 

of B to which an element g belongs only in case there is a net t in T 
with lim t = 0 and lim 6(f) = g. 

PROOF. Consider the homomorphism ß : T—» H(0) of Lemma 3.5. 
Extend to a homomorphism, which we also denote by ß, from Gd to 
H($) by defining ß(tx - t2) = ß(tx) - ß(t2). Since ß(t) = ß(u(t)) it 
follows that ß(T) and, therefore, ß(G) is dense in H(6). By the univer­
sal properties of (B, b) there is a continuous homomorphism ß* : B 
-+ H(6) satisfying ß* <> b = ß. By Lemma 3.6, ß : L/-> H(0)_is a 
continuous homomorphic retraction and by Lemma 3.7, A = ß X r 
is an iseomorphism of U onto ff(0) X (UIH(O)). Set jx = A"1 ° (ß* 
X fj) : B X A—>U where fj : A-» U/H(6) is the iseomorphism of 
Lemma 3.3. Let i G T and recall that ïj(a(*)) = r(u(t)); then 
(0*X<rj) (boiXaoj)(t) = 08*ob(i(t)), i)oa(j(t))) = (£(<(*)), 
r(u(t)) = (ß(t), T(u(t)). But A-1(/3(0,r(w(f))) = 11(f) so we have 
[ / i ° ( fc° iXaoj) ] ( f ) = M(f), We have shown that if (C7,n) is the 
universal compactification of Td, there is a continuous homomorphism 
fiiB X A-» t/ such that p0 (b ° i X a° j) = u. Thus, if (i) is 
established, (ii) follows immediately. Let S be a compact semigroup 
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and / : Td —> S a homomorphism; there is a continuous homomorphism 
f* : 17—• S with f* ° u = f. Let / ' denote the restriction of f* ° \i 
to ®; if t e r then [/' ° (b ° f X a ° j)] (t) = /*(/* ° (fco i x 
« ° ./)(*)) = /*("(*)) = /(*)• Th™* ( S , bo ix a°j) satisfies the 
requirements in order to be the universal compactification of Td, hence 
(i) is proved. By Lemma 3.7, !B is iseomorphic to H X ( !B/H) where 
H is the maximal subgroup of !B containing the identity of JB. 
Further, by Lemma 3.3, !BIH is iseomorphic to A. If (g, x) E. H by 
Lemma 3.1 (c), there is a net t in T such that lim f = 0 and 
lim((feo i)(t), (aoj)(t)) = (g, x). Thus, s =^a(0) and g = limfc(t(f )), 
so g e H0. Conversely, if g e H0 and lim ? = 0 where lim b(t) = g 
then (g, a(0))=lim[(b° i) X (a° j)](t) so (g, a(0)) e B and is 
clearly a unit. Hence, H = H0 X {a(0)} and we have completed the 
proof of (iii) and of Theorem 1. 

REMARK. Since H = H0 X {a(0)} the identity of !B is (6(0), a(0)). 
We now combine the results of § 2 with Theorem 1 to compute the 

universal compactification of some specific K-semigroups. 

EXAMPLE 4. We take T = Q+, the additive semigroup of positive 
rational numbers. In this case, C = [0, oo ) and G = Q. The universal 
compactification of C is the universal compact solenoidal semigroup 
<b (cf. [12], Theorem II). The group H0 is, by Corollary 2.7, the 
character group of ((^)/Ô | Qd) which, as computed in Example 1, 
§ 2, is iseomorphic to Xoc- By Theorem 1 (iii), the universal compactifi­
cation of Qd

+ is Soc * *• This result was first obtained by J. Hilde-
brant [9]. 

EXAMPLE 5. We take T = Qp
+ the positive p-adic rationals where 

p is a prime. Again C = [0, oo ) and by Example 3, § 2 and Theorem 
1 (iii), the universal compactification of the positive p-adic rationals 
(Qv )d i s I I {&q : 9 ^ P> q a prime} X Xa

c x *• Again this result 
first appears in [ 10] by J. Hildebrant. 

EXAMPLE 6. Here we take T = C° where C is a closed cone in R1 

and Rn = C — C. Here H0 is iseomorphic to Xa
m> where m = 2C, by 

Example 2, § 2. Hence the universal compactification of C° is 
2 a

m X A, m= 2C, and A is the universal compactification of C. Thus, 
if T = (0, oo ), the additive positive reals, the universal compactifica­
tion of (0, oo )d is Xam x * w i th m = 2C. Slightly more generally, if 
T = (0, oo )» the universal compactification of ((0, oo )«)d is £a

m X 4>n 

where m = 2C. 

4. Let C be a closed proper cone in Rn with Rn = C — C and let 
G denote a dense p-divisible subgroup of Rn. We set S0 = G fi C and 
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S = So\{0}. In this section we give a concrete realization of the great­
est semilattice homomorphic image S (cf. [6] , p. 131) of S and we 
then show that B satisfies the finite chain condition and that S is a 
semilattice <£ of p-divisible K-semigroups. 

LEMMA 4.1. S is a p-divisible subsemigroup ofC. IfT denotes the 
part of S in the interior of C relative to C — C = Rn then T is a 
p-divisible K-semigroup. 

DEFINITION A. A p-divisible subsemigroup £ of S is a p-divisible 
filtre on S if E = S or S\E is an ideal in S. An S-cone is a p-divisible 
filtre on S which is closed in S with respect to the relative Euclidean 
topology. 

LEMMA 4.2. Every proper p-divisible filtre on S is contained in 
the boundary of C relative to C — C = R". Every p-divisible sub-
semigroup of S contained in the boundary of C is contained in a 
proper S-cone. 

PROOF. Let E be a proper p-divisible filtre on S and suppose y G E 
and y G C° relative to fln. Thus, y — C° is a neighborhood of 0 in 
Rn; if x G S there i s a n g l such that p~nx G y - C°. But then 
s = y - p - n - * G G - G n C 0 Ç G n c ° = T; hence pns G S and 
pns + x = pny G E. However, since S\E is an ideal in S we must 
have x G E. Consequently, S Ç E and E is not proper. For the second 
assertion we let E0 be a p-divisible subsemigroup of S contained in 
the boundary of C relative to fl". Denote by *M the collection of all 
p-divisible subsemigroups of S contained in the boundary of C and 
which contain E0. Let J\ be a maximal tower in J[\ and let E =U^4; 
clearly E G JH Furthermore if E* is the closure of E in Rn then 
E* PI S G JK so by the maximality of Jf, E = E* fi S is closed in S. 
Now, suppose x, y G S with x ($: E but x + y G E. Denote by 
F = {2 E S I z E £ or z + n/ G E for some positive p-adic rational 
r} and notice that E <^P since x G F\E. That F is a p-divisible sub-
semigroup of S containing E0 is clear. Suppose z E P f i C°; there 
must be a positive p-adic rational r such that z + ry G E. Notice that 
T itself is an ideal in S and z G 7\ It follows that z H- ry G E Pi C°, 
a contradiction. We have shown that F is a subset of the boundary of 
C and consequently F G ^R. But E ^ F contradicting the maximality 
of <s4. It now follows that S\E is an ideal of S and finally that E is a 
proper S-cone containing E0. 

DEFINITION B. If E is an S-cone, denote by T(E) the part of S in the 
interior of E* relative to the closed subspace E* — E* of fln. 
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REMARK. If E is an S-cone and G' = E — E then G' is a dense p-
divisible subgroup of the closed subspace E* — E* of Rn. Setting 
C = E*, S0 ' = G' H C ' , S' = S0 ' \{0} and T' = T(E) then Lemma 
4.1 and Lemma 4.2 remain valid for G' , S', T , C ' , and E* - E*. 
Further, S' = M; in fact, S0 ' = G T Î C Ç G f ì C ' = G H E * = G n c n E* = s0 n E* = {0}U(sn E*) = {o> u E SO that 
S ' C E , The reverse inclusion is obvious. We also observe that by 
Lemma 4.1, T(E) is a p-divisible K-semigroup dense in the interior 
(relative to E* — E*) of the cone E*. 

LEMMA 4.3. If Ex and E2 are distinct S-cones, then T(EX) H T(E2) 

PROOF. If Ex and E2 are disjoint we are through. On the other hand, 
if Ex meets E2 then Ex H E2 is a proper E2-cone and, hence, by 
Lemma 4.2 is contained in the boundary of E2* relative to E2* — E*2. 
Hence no point of T(E2) may belong to Eu so T ^ ) Pi T(E2) = </>. 

Now we let £ denote the collection of S-cones and for E1? E2 G £, 
EY\I E2 denotes the intersection of all S-cones containing EY U E2. 

LEMMA 4.4. (£,\l) is a semilattice satisfying the finite chain condi­
tion. 

PROOF. That (£, V) is a semilattice is obvious. Suppose El9 E2 G £ 
and Ex C E2. Since Ei is a proper E2-cone, Ex is contained in the 
boundary of E2* relative to E2* — E2*. Thus, the closed cone Ex* is 
a subset of the boundary of E2* relative to E2* — E2*. Hence the 
inductive dimension of Ex * is strictly less than the inductive dimension 
of E2*. Thus, there cannot be any infinite chains in £, since the induc­
tive dimension of E*, E G £, is bounded by n, where again C — C 
= R". 

LEMMA 4.5. I /E l f E2 G £, then T(EX) + T(E2) C Ex , V E2). 

PROOF. Let E3= Ex\/ E2; if E3 = El then E2 C Ex and since 
r(E!) is an ideal in Ex we get T(EX) + T(E2) Ç T(EX) = T ^ V E2). 
The conclusion follows likewise if E3 = E2. Hence we may assume 
Ex and E2 are proper E3-cones. By Lemma 4.2, Ex U E2 is con­
tained in the boundary F of E3* relative to E3* — E3*. Suppose 
Ex + E2Q F; then Ex U E2 (J E\ + E2 is a p-divisible sub-
semigroup of E3 contained in F. By Lemma 4.2 there is an E3-cone 
E containing Ex U E2 U El + E2 and contained in F. It is easily 
verified that E is an S-cone primarily because S\E3 is an ideal in S 
and E^\E is an ideal in E3. However, E cz E3 which contradicts the 
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definition of EX\J E2 = E3. Hence, we may assume there exist 
x G Ex, y G E2

 w ^ x + y (£. F; since ElU E2Q E3 it follows that 
x + y G T(E3). Let zx G T ^ ) and z2 G T(E2), let (7 and V denote 
respectively the interior of Ex* relative to Ex* — Ex* and the interior 
of E2* relative to E2* """ ^2*- Then zx — U and z2 — V are neighbor­
hoods of 0 in EL* — Ej* and E2* — E2* respectively. There is an 
integer % = 1 such that for m ̂  n0, p~mx G zx — U and p~mt/ G z2 

- V. Then ^ - p~mx G (Ex - EJ C) UC G(l Ex* = GC\ C D Ex* 
= S0 H Ex* = {0} U (S PI Ef) = {0} U E I ; hence we may assume 
that for m ̂  n0, Zi — p~mx G Ei and similarly that z2 — p~my G E2. 
Then (zx + z2) — P~m(* + y) G Ex + E2 Ç E3 for m è n0. Hence, 
«j + z2 = p-m(x + t/) + %3 where z3 G E3. Since x + t/ G T(E3) 
then p~m(ac + y) G T(E3) for m ^ n0 and since T(E3) is an ideal in 
E3, Zi + z2 = p~m(x + y) + z3G T(E3) and we are done. 

We are now prepared to state the major result of this section. The 
result is in the same vein as the result by Brown and La Torre ( [4] , 
Theorem 1) where it is shown that a uniquely divisible commutative 
semigroup is a semilattice of semigroups each of which is the direct 
sum of a rational vector space and a cone of a rational vector space. 

THEOREM 2. Let G be a p-divisible dense subgroup of Rn and C a 
closed cone in Rn with Rn = C - C. Let S0 = GHC and S = 
S0\{0} and denote by (£, V ) the semilattice ofS-cones. Let £0 denote 
the semilattice obtained by adjoining an identity 0 to £. Define 
r(0) = {0} and for EG £ define T(E) as in Definition B. 

(i) So = U{T(E) : E G £0] is a semilattice decomposition of S0 

into subsemigroups ofS0. 
(ii) For E G £, T(E) is a p-divisible K-semigroup. 

(iii) ( £0, V ) is a semilattice satisjying the finite chain condition. 
(iy) (̂ o> V ) is the greatest semilattice homomorphic image of S0. 

PROOF. In view of Lemmas 4.3 and 4.5 it suffices for (i) to show that 
each element of S0 belongs to T(E) for some EG S. Hence, let 
x G So, x ^ 0, and denote by E the intersection of all S-cones con­
taining x; clearly E is an S-cone. If x ^ T(E) then x belongs to the 
boundary of E* relative to E* — E*. Then M = {rx\ r a positive 
p-adic rational} is a p-divisible subsemigroup of E contained in the 
boundary of E* relative to £* — E*. By Lemma 4.2, there is an E-
cone E0 containing M (and therefore x) which is contained in the 
boundary of E* relative to E* — E*. Since E is an S-cone it follows 
that E0 is an S-cone containing x. However E0 ^ E contradicting 
the choice of E, and x G T(E). Part (ii) is simply a restatement of the 
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remark preceding Lemma 4.3. Part (iii) is Lemma 4.4. For (iv), note 
that the greatest semilattice homomorphic image of S0 is S0/p where 
p is the intersection of all congruences a on S0 with SJa a semilattice. 
Clearly, if a denotes the relation on S0 with xay only in case x, y 
G T(E) for some E 6 ^ 0 then a is a congruence and S0/a is isomorphic 
to £0 so that p C o\ Suppose xay where x, y G T(E) for E £ f . Let 
U denote the interior of the cone E* relative to E* — E*; since 
x G 17, x — U is a neighborhood of 0 in E* — E*. There is an integer 
m with p~my Gx- U. Consequently x - p~my G (E - E) Pi C7Ç E 
(see the proof of Lemma 4.5). Hence, x divides a power of y in S0 and 
similarly y divides a power of x in S0. This is exactly the statement 
that xpy ( [6] , Theorem 4.12) and a Ç p; thus a = p and (iv) follows. 

EXAMPLE 7. Let G= R3 and C the cone with lateral cross-section 
given by Figure 1. 

Here S0 = C; the S-cones are C\{0}, the open rays on the boundary 
of C passing through semicircle D, and the two-dimensional cone F 
on the boundary. The semilattice è0 is described by Figure 2. 
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Figure 2 

The Archimedean components of C are {0}, the openj^ays passing 
through D, the interior of the two-dimensional cone F and C°. 

5. Let G denote a fixed p-divisible dense subgroup of Rn, C a 
closed proper cone in Rn, and S0 = G fi C. In this section, we exploit 
the results of the previous sections to obtain a concrete realization of 
the universal compactification of (S0)d. 

Let S = S0\{0} and let (£,V) be the semilattice of S-cones. Setting 
r(0) = {0}, Theorem 2 asserts that S0 is a semilattice £0 of semi­
groups T(E) where, for E G £, T(E) is a p-divisible K-semigroup. 

We shall need a representation for the universal compactification of 
(̂ o)dJ let (fl, V) denote an arbitrary (upper) semilattice satisfying the 
finite chain condition. Denote by <P the collection of prime ideals of 
fl (i.e., F G <P only in case F is a semilattice ideal and fl\F is a sub-
semilattice of fi or F = fi). For e G fi let 4 = { / G fi : e V / = e] 
and we note that f l \ 4 G <P. For e G fi and F1? F2, • • -,PnŒ<P with 
e G 07=1 F, let V(e, Pl9 • • -, Fn) = 4 D ( H ^ F , ) and denote by 
<A the collection of all possible subsets of fl of the form V(e, Ply • • -, Fn). 
It is easy to see that ^f is a basis for an HausdorfF topology O on fl. 

PROPOSITION 5.1. The universal compactification of (fld, V) is 
((fl, V, ^)> *) where i : fld-> fl is the inclusion. Further, (fl, Ö) is 
0-dimensional. 
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PROOF. Let 2 denote the upper semilattice ({0,1},V) and X = 
Hom(ftd, 2) the collection of semilattice homomorphisms of ftd into 2. 
If A Q ft, we denote by 1A the characteristic function of A. We have 
that X G Hom(ftd, 2) only in case X = lP for some P Œ&. The evalua­
tion map 6 : ft—» 2X is an isomorphism of ft into 2X. Hence, 0(ft) is a 
subsemilattice of 2X satisfying the finite chain condition. By a theorem 
due to J. W. Stepp ([17], Lemma 8), 0(ft) is a closed and, hence, 
compact subset of 2X in the product topology. It follows that (ft,V) 
is a compact 0-dimensional topological semilattice with respect to 
the weak topology U ' generated by the functions in X = Hom(ftd, 2). 
The identity function j : (ft, U ')—> (ft, U) is easily seen to be con­
tinuous and is thus a homeomorphism and an isomorphism. Hence, 
(ft, V, U) is a compact 0-dimensional semilattice. If (£/(ftd), u) is the 
universal compactification of (ftd> V) then since u is an isomorphism 
(in this case) and ft satisfies the finite chain condition we get u : ftd 

—» C7(ftd) is an isomorphism onto. The identity function i : ftd—» 
(ft, V, *J ) induces i* : C7(ftd) —» (ft, V, U ) and by our previous observa­
tions, i* is an iseomorphism onto. It now follows that ((ft, V, U), i) is 
the universal compactification of iid. 

For each £ G f , T(E) is a p-divisible K-semigroup. Let GE = 
T(E) - T(E), the subgroup of Rn generated by T(E). Obviously 
GE C E — E; choose arbitrarily £ G T'(E), then since T(E) is an ideal 
in E, E - E = (E + t) - (E + t) Ç T(E) - T(E) = G£ so that GE 

= E — E. Denote by (BE, bE) the Bohr compactification of (GE)d and 
by (AE, flE) the universal compactification of the closed proper cone 
CE = E* with the relative Euclidean topology. Let iE : T(E)-* GE 

and jE : T(E)—* CE denote the inclusions and ßE = (bE ° iE) X 
(aE ° JE) ; by Theorem l(i), ( S E , j8£) is the universal compactification 
of T(E)d where iSE is the closure of ßE(T(E)) in BE X AE. In £ X 
( U { B E X A E : E G £}) let DE denote the subset consisting of those 
pairs (E, z) where z G BE X AE and let D = Ü { D E : E G £}. We 
shall use a technique developed by A. H. Clifford [5] to introduce 
an associative operation on D. We will then use a construction 
principle to introduce a topology on D which was first formulated by 
Hofmann and Mostert in their work on hormoi (cf. [ 12], p. 140, 5.3). 
The combination of the two techniques was used previously by T. T. 
Bowman ([1] , Theorem 1.3) to determine the structure of compact 
semigroups S in which Green's J/-relation is a congruence and S/J/ is 
a Lawson semilattice, which is the topological version of Clifford's 
work previously cited. 

If E, F G £ and E V F = F then GE Ç GF and CE Ç CF. Denote by 
[ E, F] : BE X AE —• BF X AF the continuous homomorphism induced 
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by the inclusion GE X C£ —» GF X CF (recall that BE X AE is the 
universal compactification of GE X CE). In particular, for x G GE> y 
G CF> [E, F](bE(x\ aE(y)) = (bP(x)9 aF(y)). If E1? E2, E3 G £ with 
Ej C £ 2 C E3 then [E2, E3] ° [E1? E2] = [El9 E 3 ] . For x = (E, x) 
G DE and y = (F, y) G DF define: 

(*) x + y= (EV F,[E,EV F] (x) + [F,E\/ F] (t/)). 

This is essentially Clifford's technique in [5] , and (x, y)—>x + y is 
easily seen to be an associative commutative binary operation on D. 

In order to introduce a topology in D (via the technique of Hofmann-
and Mostert) we let F G £ and V = V(F, Pl9 • • -, Pn) G ^ as defined 
preceding Proposition 5.1. Choose an open set U in the product 
topology of BF X AF and define: 

(**) W(U, V) = {(£, x) G D : E G Vand [E, F] (x) G U}. 

The collection of all subsets of D of the form (**) constitutes a basis 
for a topology on D, which we refer to as the W(U, V)-topology. The 
net (É, x) in D converges to (E, x) in D with respect to the W(U, V)-
topology only in case lim Ë = E in the Ö topology of Proposition 5.1, 
and lim [ Ê, È] (x) == x in the product topology on BE X AE. 

PROPOSITION 5.2. The set D together with the binary operation 
(*) and the W(U, V)-topology defined by (**) is a compact commuta­
tive topological semigroup. The function x—• (E, x) : BE X AE—> DE 

is an iseomorphism of BE X AE onto the compact subsemigroup DE 

ofD. 

PROOF. The proof is almost identical with that given by Bowman in 
proving Theorem 1.3 [1] , and, in any case is straightforward, so we 
omit it. 

Let D0 denote the compact semigroup obtained by adjoining an 
identity 0 to D as an isolated point. Define ß : S0-» D0 by the rule: 
0(0) = 0 and ß(x) = (E, ßE(x)) for x G T(E). For E G £, let ÉE = 
{(£, z) : z G S £ } and let !B = (Ù{!BE :EG £}) Ù {0}; hence 
j 8 ( S 0 ) Ç S . 

THEOREM 3. Let G be a dense p-divisible subsemigroup of Rn and 
C a closed proper cone in Rn with Rn = C — C. The universal com­
pactification of(S0)d = (G H C)d is the pair (iB, ß), where $B has the 
operation defined by (*), the relative W(U, V)-topology defined by 
(**), and !B\{0} is the disjoint union of universal compactifications of 
p-divisible K-semigroups. 
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PROOF. Let x, y G S with x G T(E) and y G T(F); since x + y 
G T(E V F), ß(x + y) = (E V F, /3EVF(* + y)) = (E V F, (bEVF(x 
+ t/), Ö£VF(* + t/))) = (E V F, (bEyF(x), aEyF(x)) + (bEyF(y), 
aEyF(y))) = (E V F, [E, E V F](fcE(s), «E(*))) + [F, E V F](bF(y), 
aF(y))) = (E, (fcE(x), aE(x))) + (F, (bF(t/), öF(t/))) = ß(x) + / % ) . Thus 
ß is a homomorphism (in fact, an isomorphism into). SinceßE(T(E)) is 
dense in «3E, it follows that ëE Ç /3(S0)* and thus !B C j3(S0)*. Now 
let XG.DE and suppose x G j3(S0)*; there is a net 2 in S0 such that 
lim0(2) = x in the W([7, V) topology. Since £0 satisfies the finite 
chain condition, there is an E0 G £0 such that E0V E = E, E0j£ E 
and if F G £ with E0 V F = F, F V E = E and E0 ^ F then F = E. 
There is a net f in £ such that z £ T(F) and since lim 0(2) = x it 
follows that lim F = E in the Ö topology. Eventually, FGV(Ef £\E0l) 
so that E0 V F ^ £ o and, E0 V (E0 V F) = Eo V F, and (E0 V ?) 
V E = E0 V (F V E)=_E0V E = E. Hence by the choice of E0 

we may assume E0 V P = E. Now if E0 = {0} then F = E and it 
follows that x G ß E . Hence, we assume E0 G £; choose arbitrarily 
* G T(Eo). Then 2 G T(F) implies z + t G T(F V E0) = T(E) and 
0(2) + ß(t) = 0(2 4- t) = (E, 0E(2 + t)) GÉE; by continuity of addi­
tion in D and the fact that ÉE is closed in D we get x + 0(f) G iBE 

for all t G T(E0). Since ß(T(E0)) is dense in ÉEo we get x + y G *BE 

for all j/ G ßE o . In particular, by the remark following Theorem 1, 
(Eo, (bE.(0), aEo(0))) G ëEo and thus x + (E0, (bEo(0), aEo(0)))G 5§E. 
Let x = (E, (g, fc)) where g G BE and k G AE; then x + (E0, (bEo(0), 
aEo(0)) = (E, (g, fc) + [E0, E](bEo(0),^aEo(0))) = (E, (g, fc) + (foE(0), 
ÖE(0))) = (E, (g, fc)j = x. Hence x G !BE and we have established that 
!B = 0(SO)*; this also establishes the fact that iS is a compact sub-
semigroup of D0, since ß is a homomorphism. 

Now suppose / : (S0)d —» W is a homomorphism of S0 into a dense 
subsemigroup of the compact semigroup W. Clearly, W has an 
identity 1 and /(0) = 1. For E G £, let /E : T(E)^> W denote the 
restriction of / to T(E). There is a continuous homomorphism 
fE* : !BE -> W for which /E* ° 0E = /E. We now define / * : S - • W 
by the rule: /*(0) = 1 and /*(E, x) = fE*(x) where (E, x ) G % 
This clearly defines a function on ß to W. Further for x G T(E), 
(/»•/8)(x) = /*(E, &(*)) = /E*(/3E(x)) = /E(x) and consequently 
/ * » /3 = / . Suppose j8(f ) is a net in /3(S0) converging to (E, x) G B E 

where f G T(£). Then lim Ë = E and lim[É, E] (ßE(t )) = x; note 
that [Ê, E]03E(f))= [Ë, E](bE(t), aE(t))=(bE(t), aE(t)). Now 
f*(E, x) = fE*(x) = fE* (lim(fcE(f), aE(f))) = lim/E*(b£(f), eE(f)) 
- lim/E*(/?E(F)) = lim/E(f) = limf{t) = UmfÈ(t) = limfE*(ßE(t)) 
= limf*(Ë, ßt(t)) = iimf*(ß(t)). We have shown that f* is a 
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function on JS to W and there is a dense set (namely ß(S0)) such 
that if 0(f) is a net in ß(S0) converging to (E, x) E ÉE then f*(ß(t)) 
converges to /* (£ , x). By ([15], Lemma 1), / * is continuous. Since 
/ * ° ß = / it follows that / * is a homomorphism on 0(SO) and thus, 
by continuity, on ß(S0)* = i8. We may now conclude that ( S , ß) is 
the universal compactification of (S0)d. Finally, the function x—> (E, x) 
: !BE -» JBE is clearly an iseomorphism onto. 

COROLLARY. Let C be a closed proper cone in Rn with Rn = C — C, 
and Zef ( iB, 0) foe f/ie universal compactification of Cd as described 
above. The connected components of !B are the subsemigroups 
êE> E CE S, and {0}. Each ëE is iseomorphic to Xa

m x AE where 
m = 2C and Ag fe f/ie universal compactification of the closed proper 
cone E*. 

PROOF. Each !BE is iseomorphic to !BE; recall that E is a (C\{Op-
cone and is therefore closed in C\{0}. Hence E*'= £ U {0} is a 
closed proper cone; since T(E) is the part of C\{0} in the interior of 
E* relative to E* — E*, it follows that T(E) is equal to the interior of 
the cone E*. By example 6, the universal compactification of T(E) is 
Xam x AE where m = 2C; hence ëE is iseomorphic to Xa

m x AE and 
is connected. The function (E, x) —> E : iS —» £0 is continuous; since 
£0 is 0-dimensional by Proposition 5.1, it follows that ÊE is a maximal 
connected set and we are done. 
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