ON A. LAX'S CONDITION OF HYPERBOLICITY

M. MÜNSTER

Abstract

We give an elementary proof of A. Lax's condition of hyperbolicity for polynomials with constant coefficients (see [3]). Our method is independent of Puiseux series. In a second paper, we shall show how this method can be adapted to obtain other criteria of hyperbolicity, including Svensson's criterion (see [4]).

Definition. Let $P_{k}(k=0, \cdots, m)$ be a polynomial in n variables, homogeneous of degree k and with constant coefficients.

The polynomial $P=\sum_{k=0}^{m} P_{m-k}$ is said to be hyperbolic with respect to $N \in R^{n} \backslash\{0\}$ if $P_{m}(N) \neq 0$ and if there exists a constant c such that

$$
\left.\begin{array}{r}
P(i x+\tau N)=0 \\
x \in R^{n}, \tau \in C
\end{array}\right\} \Rightarrow|\mathcal{R} \tau| \leqq c .
$$

Theorem (A. Lax [3]). Let P be hyperbolic with respect to N. If, for x_{0} in R^{n}, τ_{0} is a root of $P_{m}\left(i x_{0}+\tau N\right)$ with multiplicity $\alpha_{0} \in$ $[2, m]$, then, τ_{0} is a root of $P_{m-k}\left(i x_{0}+\tau N\right)$ with multiplicity $\geqq \alpha_{0}$ $-k$, for $k=0, \cdots, a_{0}-1$.

Conversely, if $n=2$, if P satisfies the quoted condition and if P_{m} is hyperbolic with respect to N, then P is also hyperbolic with respect to N.

Proof. (a) Necessity. If P is hyperbolic with respect to N, we have, for any α and $t>0$,

$$
\begin{gathered}
\alpha^{m} P\left[\frac{i t x_{0}+\left(\tau+t \tau_{0}\right) N}{\alpha}\right] \equiv \\
\sum_{k=0}^{m} \alpha^{k} \sum_{j=0}^{m-k} \frac{\tau^{j}}{j!} t^{m-k-j}\left\{D_{\tau}^{j}\left[P_{m-k}\left(i x_{0}+\tau N\right)\right]\right\}_{\tau=\tau_{0}}=0 \Rightarrow|\curvearrowright \mathcal{R}| \leqq c \alpha,
\end{gathered}
$$

since $\mathscr{R} \tau_{0}=0$ (see [2] p. 90).
We shall prove the necessity by induction. For $k=0$, it is true by hypothesis. Let us suppose the condition is true for $k<k_{0}\left(1 \leqq k_{0}\right.$ $\left.\leqq \alpha_{0}-1\right)$ and show that $P_{m-k_{0}}\left(i x_{0}+\tau_{0} N\right)=0$.

By the inductive hypothesis we have

Received by the editors on July 1, 1976.

$$
\begin{aligned}
\left(\sum_{k=0}^{k_{0}-1}\right. & \left.\sum_{j=\alpha_{0}-k}^{m-k}+\sum_{k=k_{0}}^{m} \sum_{j=0}^{m-k}\right) \alpha^{k} \frac{\tau^{j}}{j!} t^{m-k-j} \\
& \left\{D_{\tau}^{j}\left[P_{m-k}\left(i x_{0}+\tau N\right)\right]\right\}_{\tau=\tau_{0}}=0 \Longrightarrow|\Omega \tau| \leqq c \alpha .
\end{aligned}
$$

Choose α so that the coefficient of $P_{m-k_{0}}\left(i x_{0}+\tau_{0} N\right)$ is equal to that of

$$
\frac{\tau^{\alpha_{0}}}{\alpha_{0}!}\left\{D_{\tau}^{\alpha_{0}}\left[P_{m}\left(i x_{0}+\tau N\right)\right]\right\}_{\tau=\tau_{0}},
$$

that is

$$
\alpha=\frac{1}{t^{\left(\alpha_{0}-k_{0}\right) / k_{0}}}
$$

After division of the equation by $t^{m-\alpha_{0}}$, the implication becomes

$$
\begin{aligned}
& \left(\sum_{k=0}^{k_{0}-1} \sum_{j=\alpha_{0}-k}^{m-k}+\sum_{k=k_{0}}^{m} \sum_{j=0}^{m-k}\right) \frac{\tau^{j}}{j!} t^{\alpha_{0}-j-k\left(\alpha_{0} / k_{0}\right)} \\
& \quad\left\{D_{\tau}^{j}\left[P_{m-k}\left(i x_{0}+\tau N\right)\right]\right\}_{\tau=\tau_{0}}=0 \Rightarrow|\mathcal{R} \tau| \leqq c / t^{\left(\alpha_{0}-k_{0}\right) / k_{0}} .
\end{aligned}
$$

In this equation, each power of t is $\leqq 0$; it is $=0$ only for (k, j) $=\left(0, \alpha_{0}\right)$ and $\left(k_{0}, 0\right)$.
Letting $t \rightarrow \infty$, we get, by Hurwitz' theorem (see, for instance, [5] p. 119),

$$
\begin{gathered}
\frac{\tau^{\alpha_{0}}}{\alpha_{0}!}\left\{D_{\tau}^{\alpha_{0}}\left[P_{m}\left(i x_{0}+\tau N\right)\right]\right\}_{\tau=\tau_{0}}+P_{m-k_{0}}\left(i x_{0}+\tau_{0} N\right)=0 \\
\Rightarrow \mathcal{R}_{\tau}=0 .
\end{gathered}
$$

If α_{0} is >2, this trivially implies $P_{m-k_{0}}\left(i x_{0}+\tau_{0} N\right)=0$. If $\alpha_{0}=2$ (thus $k_{0}=1$), it reads as follows:

$$
\frac{\tau^{2}}{2}\left\{D_{\tau}^{2}\left[P_{m}\left(i x_{0}+\tau N\right)\right]\right\}_{\tau=\tau_{0}}+P_{m-1}\left(i x_{0}+\tau_{0} N\right)=0 \Rightarrow \mathcal{R} \tau=0,
$$

so that

$$
\frac{P_{m-1}\left(i x_{0}+\tau_{0} N\right)}{\left\{D_{\tau}^{2}\left[P_{m}\left(i x_{0}+\tau N\right)\right]\right\}_{\tau=\tau_{0}}} \geqq 0 .
$$

This inequality is valid whenever τ_{0} is a double root of $P_{m}\left(i x_{0}+\tau N\right)$; so it remains true if we replace x_{0} by $-x_{0}$ and τ_{0} by $-\tau_{0}$. But then, the quotient is multiplied by -1 and $P_{m-1}\left(i x_{0}+\tau_{0} N\right)=0$.

To show that each derivative of order $\leqq \alpha_{0}-k_{0}-1$ of $P_{m-k_{0}}\left(i x_{0}\right.$.
$+\tau N)$ is null at $\tau=\tau_{0}$, it remains to use the well-known fact that each derivative of P is hyperbolic with respect to N.
To be complete, let us recall the proof of this last fact: for x fixed in R^{n}, if $\tau_{k}(k=1, \cdots, p)$ denote the different roots of $P(i x+\tau N)$ and α_{k} their multiplicity, we have

$$
\mathcal{R}\left[\frac{D_{\tau} P(i x+N)}{P(i x+N)}\right]=\mathscr{R} \sum_{k=1}^{p} \frac{\alpha_{k}}{\tau-\tau_{k}}=\sum_{k=1}^{p} \alpha_{k} \frac{\mathcal{R}\left(\tau-\tau_{k}\right)}{\left|\tau-\tau_{k}\right|^{2}}
$$

and this expression is $>0(<0)$ for $\mathcal{R} \tau>c(<-c)$ if $\left|\mathcal{R} \tau_{k}\right| \leqq c$.
(b) Sufficiency. Suppose now, for $n=2$, that P satisfies the quoted conditions. We shall prove the existence of a constant K such that

$$
|\mathcal{R} \tau| \geqq 1 \Rightarrow\left|\frac{P_{m-k}(i x+\tau N)}{P_{m}(i x+\tau N)}\right| \leqq K(k=1, \cdots, m) .
$$

This implies, by the properties of homogeneity of P_{m-k} and P_{m},

$$
\left|\frac{P_{m-k}(i x+\tau N)}{P_{m}(i x+\tau N)}\right| \leqq \frac{K}{|\mathcal{R} \tau|^{k}} \text { for } \mathscr{R} \tau \neq 0
$$

so that

$$
|P(i x+\tau N)| \geqq \frac{1}{2}\left|P_{m}(i x+\tau N)\right| \neq 0
$$

for $\left|\mathcal{R}_{\tau}\right|$ large enough.
Fix arbitrarily a point $x_{0} \in R^{2}$ linearly independent of N. If

$$
x=\lambda x_{0}+\mu N(\lambda, \mu \in R),
$$

we have, for $\lambda \neq 0$,

$$
\frac{P_{m-k}(i x+\tau N)}{P_{m}(i x+\tau N)}=\frac{1}{\lambda^{k}} \frac{P_{m-k}\left(i x_{0}+\left(\tau^{\prime} / \lambda\right) N\right)}{P_{m}\left(i x_{0}+\left(\tau^{\prime} / \lambda\right) N\right)},
$$

with $\mathcal{R}_{\boldsymbol{\tau}}{ }^{\prime}=\mathcal{R}_{\boldsymbol{\tau}}$.
If

$$
P_{m}\left(i x_{0}+\tau N\right) \equiv P_{m}(N) \prod_{j=1}^{p}\left(\tau-\tau_{j}\right)^{\alpha_{j}},
$$

then,

$$
P_{m-k}\left(i x_{0}+\tau N\right)=\prod_{j=1}^{p}\left(\tau-\tau_{j}\right)^{\left(\alpha_{j}-k\right)}+Q_{k}(\tau),
$$

where Q_{k} is a polynomial of degree $\leqq m-k-\sum_{j=1}^{p}\left(\alpha_{j}-k\right)_{+}$. There-
fore,

$$
\frac{P_{m-k}(i x+\tau N)}{P_{m}(i x+\tau N)}=\frac{1}{\lambda^{k}} \frac{Q_{k}\left(\frac{\tau^{\prime}}{\lambda}\right)}{P_{m}(N) \prod_{j=1}^{p}\left(\frac{\tau^{\prime}}{\lambda}-\tau_{j}\right)^{\inf ((\alpha j, k)} .}
$$

Let us first examine the case $|\lambda| \geqq 1$. There exist constants $C_{j, \beta}^{(k)}$ such that

$$
\begin{gathered}
\frac{Q_{k}(z)}{P_{m}(N) \prod_{j=1}^{p}\left(z-\tau_{j}\right)^{\inf \left(\alpha_{j}, k\right)}} \\
=\sum_{j, \beta} \frac{C_{j, \beta}^{(k)}}{\left(z-\tau_{j}\right)^{\beta}}, 1 \leqq \beta \leqq \inf \left(\alpha_{j}, k\right) .
\end{gathered}
$$

Therefore, there exists a constant K_{1} such that

$$
\left|\frac{P_{m-k}(i x+\tau N)}{P_{m}(i x+\tau N)}\right|=\left|\frac{1}{\lambda^{k}} \sum_{j, \beta} \frac{C_{j \beta}^{(k)}}{\left(\frac{\tau^{\prime}}{\lambda}-\tau_{j}\right)^{\beta}}\right| \leqq K_{1}
$$

for $\left|\mathcal{R} \tau^{\prime}\right|=|\mathcal{R} \tau| \geqq 1$, because $\mathcal{R} \tau_{j}=0$ and $\beta \leqq k$.
The case $0<|\lambda| \leqq 1$ may be treated in the same way, starting from the decomposition

$$
\frac{z^{k} Q_{k}(z)}{P_{m}(N) \prod_{j=1}^{n}\left(z-\tau_{j}\right)^{\inf \left(\alpha_{j}, k\right)}}=C^{*}+\sum_{j, \beta} \frac{C_{j \beta}^{(k)}}{\left(z-\tau_{j}\right)^{\beta}} .
$$

The inequality is then proved for $\lambda \neq 0$. For $\lambda=0$, it is obvious and the proof is complete.

References

1. L. Gårding, Linear hyperbolic partial differential equations with constant coefficients, Acta. Math. 85 (1950), 1-62.
2. L. Hörmander, Linear partial differential operators, Springer, Berlin, 1963.
3. A. Lax, On Cauchy's problems for partial differential equations with multiple characteristics, Comm. Pure Appl. Math. 9 (1956), 135-169.
4. S. L. Svensson, Necessary and sufficient conditions for the hyperbolicity of polynomials with hyperbolic principal part, Arkiv för Mat. 8 (1969), 145-162.
5. E. C. Titchmarsh, The theory of functions, Oxford University Press, 1939.

Université de Liège, Liège, Belgium

