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A METHOD FOR SOLVING THE PERIODIC PROBLEM FOR THE 
KdV EQUATION AND ITS GENERALIZATIONS 

S. P. NOVIKOV 

1. In 1974, the author, together with Dubrovin, Matveev, and Its, 
undertook a study of the ideas of Gardner, Greene, Kruskal, and Miura 
(1967), and investigated an interesting class of "finite-gap" or "multi-
soliton" solutions of the KdV equation. This involved a considerable ex
tension of the then available theory of the one-dimensional Schrödinger 
operator (a reasonably detailed exposition may be found in [2]). Let 
L = —(cP/dx2) + u be the Sturm-Liouville (Schrödinger) operator with 
real periodic potential. The Bloch eigenfunctions t/>±(x, X& E) are those 
solutions of L\p = E\f/ which satisfy: ^ = 1 for x = x0, and 
\p±(x + T, XQ, E) — e±ip{E)Txl>±(x, x0, E) (i.e., they are eigenvectors of the 
translation or monodromy matrix, T\p(x) = xj/(x9 + T)). \p±(x, x0, E) are de
fined for all complex E, and are branches of a single function ^ mero-
morphic on the Riemann surface R which is a two-sheeted covering of 
the E-plane with branch points Ei at the endpoints of the gaps. Each 
forbidden band of the spectrum contains a zero of *//(x, x^ E) on one 
sheet of R9 and a pole on the other. As E -^ oo, one has 
y\j ~ exp[±iE1/2(x — x0)]. The zeroes of \p may be represented in the 
form (YJ-(X), ±), and the poles as (V/XQ), ±), where + and — identify 
the sheets. One may think of y5 as an eigenvalue of a supplementary 
Sturm-Liouville problem. The potential u(x) itself may be represented 
in the form u(x) — — 2 2 ; y^x) -f const. If the number of gaps is finite, 
the Riemann surface R is algebraic and has genus n (= the number of 
gaps). 

These are the analytic properties of i// for real, smooth, periodic po
tentials. It should be noted that the function ^± = —i(d\n^±/dx) is 
also periodic with period T, and (for the case of a finite-gap potential) 
is an algebraic function on R (even at infinity). Its real part has the 
form 

XR = (K(E))1/2 I I (E - Y/x))-1, 

where R(E) =. I I ^ 1 (E — Ei); this is just the Wronskian 
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2. We now introduce a class of complex, meromorphic potentials u(x) 
defined in a strip near the real axis, and almost periodic there. We say 
that u(x) has "good analytic properties," if there exist eigenfunctions 
$±(x, XQ, E) with these properties. 

(i) 14 = E^; 
(ii) \p = 1 for x — XQ; 

(iii) the logarithmic derivative x = —i(d\n\p/dx) has the same period 
group as u(x); 

(iv) \p± is meromorphic on some two-sheeted Riemann surface R over 
the E-plane, \p± —* exp[±i£1/2(x — x0)] as E—•* 00, where \p+ and \p_ go 
into each other by an interchange of sheets. The branch points of the 
Riemann surface will be called "endpoints of gaps," and the Riemann 
surface, the "spectrum." 

If the Riemann surface R is algebraic (has finitely many branch 
points), we call the potential u(x) "finite-gap." In this case, the function 
*//± has n poles of the form Qj(x0), and n zeroes of the form Qj(x), 
where ; = 1, • •, n, and the Q. are points of R which may be repre
sented in the form Q$ = (YJ5 ± ); the potential itself will have the form 

u(x)= - 2 2Yi(x) + 2£ i , 

Ej being the branch points. 
These facts, together with the ideas of Akhiezer's 1961 paper [13], 

suffice for the expression of the potential in terms of 6 functions. The 
most elegant formula is [12] 

u(x) = -2 — \nO{xV1 + V , • • -, xUn + r,n°), Uj = const., 

where 6(i\v • •, TJJ is the Riemann theta function associated with R 
(the standard literature on theta functions leads to a less useful result). 

3. That this class of potentials is a natural one to study can be seen 
as follows. Consider the Wronskian XR = (l/2i) (^+'^_ — ^_'i//+). We 
have - i X ' + X2 + M - E = 0, x = XR + (i/2)(m X Ä) ' . As E— co, 

Y ~ Ei/2 + y x > , "', •••) 
X »*i (2E1/2r ' 

where the xn
 a r e polynomials, and X2m *s a Perfect derivative. The 

quantities 

» ~~ T J * 2 n + 3 <** 
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(or the mean values In = X2n+3 m t n e aP* c a s e ) gi y e r i s e to the "higher 
KdV equations" 

3 / ÔL ÔL , 8In \ 
h — I 2L 4_ c n~1 -4- • • • 4- r ° I 

3x V Ôu(x) ^ * ôu(x) n Sulx) I * 

which are mutually commuting and admit a "Lax representation" 
(1968), 

L = [L, An + cxAn_x + - • • + cnA0]. 

The following important fact was discovered: stationary periodic solu
tions of these equations (i.e., ù = 0) are finite-gap potentials. The Borg 
uniqueness theorem implies that all smooth, periodic, finite-gap poten
tials are obtained in this fashion. (This was shown by several authors.) 
However, not all solutions of these equations are periodic. The station
ary equation turns out to be a completely integrable Hamiltonian sys
tem in x with n degrees of freedom; all the constants c5 and the com
muting integrals can be expressed in terms of the endpoints of the gaps. 
Therefore, the general solution of the stationary equation (expressed via 
Riemann theta functions) turns out to be a finite-gap, meromorphic 
conditionally periodic complex potential, for which the direct and in
verse problems are automatically solved (for arbitrary complex "gap 
boundaries" or branch points). 

Of physical interest are the real, bounded (in x), and conditionally 
periodic (in x and t) solutions of the KdV equation ü — 6uu' — u"'. 
The stationary equation 

8u(x) x Su(x) n 8u(x) 

has n commuting integrals Jt, • • •, Jn; if one knows these, one knows 
also the spectrum, i.e., the Riemann surface R. On the general level 
surfaces ]1 = const, • • •, Jn = const, the natural variables are the zeroes 
of the function ^±{x, XQ, E), Q = (y/x), ±), and the equation in x takes 
on the form 

, ._ 2i(R(Yj)^ 
la 

H (Ya-Y/,) 
ß*a 

The time-evolution of the potential in the KdV is 
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All these equations can be linearized by the standard Abel transforma
tion 

vk = 2 Xu» u"' * = 1- •'•'" 
(the integral extending over a path from the poles to the zeroes on R), 
where 

n 

<0 f c= , 2 C ^ - 1
 ( K ( E ) ) l / 2 

is some basis for the differentials of the first kind (i.e., without poles) 
on R. The variables r]k, defined on a complex Jacobi variety, are "an
gles," with Tjfc = const by virtue of the higher KdVs (one can also com
pute the conjugate "action" variables, as Flaschka and McLaughlin 
showed in a recent preprint). 

All finite-gap potentials are conditionally periodic, meromorphic, 
functions of complex x (in the whole x-plane) with 2n periods (Tl9 • • -, 
Tn, iy , • • -, Tn') defined entirely by the gap boundaries (alternatively, 
by the surface R). 

4. It is interesting to observe that the imaginary periods (Ul9 • • -,Un) 
of the potential can be defined through integrals (over cycles of R) of 
the differential dp(E). Here p(£) is the quasi-momentum, 
\p±(x + J) = e±ip{E)T\p±(x), and dp(E) has a second-order pole at the 
branch point at infinity. In the conditionally periodic case this does in
deed define the differential of the quasi-momentum, dp(E). The varia
tional derivative Sp/8u(x) has the form (see [11]): 

&p 1 1 f*o+r 
„ , , = , where p(E) — - ) Xr?dx 
8u(x) 2XR

 H TJX° 

(in the periodic case; p(E) is the mean value XR m *he a.p. case). Since 
the Wronskian has the form 

(fl(£))1/2 

XR U(E-y^))' 
i 

these identities show that any complex meromorphic finite-gap poten
tial satisfies one of the stationary higher KdV equations obtained by ex
panding XÄ_ 1 m powers of 1/£1/2, £ —* oo. The form of the Wronskian 
XR, and of its expansion for £ —» co, also lead to expressions for all sym
metric polynomials in yt, • • •, yn through (u,u' • • ) and the gap 
boundaries (that is, through the phase-space variables of the higher sta
tionary KdV equations, through which the potential u(x) is defined). 
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All the "frequencies" i\k can, by virtue of the higher KdVs9 be com
puted in terms of the periods of differentials on R which have a pole at 
infinity, normed by the choice of some basis for the differentials of the 
first kind on H (see [2], [4]). 

5. Separate interest attaches to the only recently analyzed question 
of the connection between the various procedures for constructing in
tegrals of the stationary higher KdV equations, 

SIn + 2 C . Sln-i _c 0. 
8u(x) + % ôu(x) - 1 

Since L = [L, An -f 2*= 1 CjA^J, the operator A = An + 2 qAn_ i acts 
on the eigenspace HE of solutions of L<J> = E<|>. The determinant of 
A\H = A(E) is denoted by — R(E). The characteristic polynomial has 
the form det(X — A(E)) = X2 — R(E). As was shown in [1], the zeroes 
of R(E) = 0 determine the boundaries of the gaps for the potential u(x), 
and the Riemann surface R is determined by the polynomial 
det (X — A(E)) = X2 — R(E). The coefficients of the polynomial 

R(E) = E2«*1 + aß2» + • - • + an+1E» + • • • + a2n+1 

are easily expressed through u, u', • -, u(2n_1), and are commuting in
tegrals of the higher stationary KdV equations (qua Hamiltonian system 
in x). In fact, the coefficients at, • -, an+1 are expressible in terms of 
c_i> * • ', cn9 and the integrals are an+2 = Jv an+3 = /2, • • -, a2n+1 = /n. 
The stationary equations have the form 

-£- = [*.« 
where A and Ç) are second-order matrices depending polynomially on 
E. The translation (or monodromy) matrix T (for which 
T<t>(x) = <£(* + T)) acts on the eigenspace HE(L^> = Ê >). It depends on 
E, f, and x, and satisfies the equations 

df =[A,n - i L = [g,fl 

(the x-dependence arises from the choice of a basis in HE). The in-
tegrability condition 

9 A <>Q r* m 
-HX—ÖT = [A>Q] 

leads to equations for A and Q that hold in all cases (including the con
ditionally periodic). In the stationary problem, where 

3A = dQ = dt _ -. 
3* ~ at - 3f ~ ' 
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we have the equations 

dx 
= [A, Q] and [t, A] = 0. 

Since t^ = e±wT\l/, the Bloch eigenfunction \p is also an eigenvector of 
A(£) and is defined on the Riemann surface R of det (A — A(£)) = 0. 

Lax [5] and Cel'fand and Dikii [6] gave a different construction for 
the integrals of the stationary problem. Since the Poisson-Gardner 
bracket on functions of u(x) has the form 

r . Ç 81 d 8J 
t 7 ^ = J -JET ^ 177 dx ' Ôw dx ôw 

and since the integrals ln, lm commute (Zaharov, Faddeev; Gardner 
(1971)), one has 

8Ik d ÔJ = dQk ^ 
8u(x) dx 8u(x) dx 

where / = In + 2 c iIn_ i + c_1I_1, I_r= — S u^x- This> however, im
plies that Qk is an integral of the stationary problem 

d ÔJ 
dx 8u(x) 

= 0. 

The author and O. I. Bogojavlenskii [7] established the following simple 
and general proposition: a function Q is a finite-dimensional Ham-
iltonian for a flow 

d ÔI 
dx Su(x) 

restricted to the set of fixed points of a second flow, 

d 8J 
dx 8u(x) 

= 0, 

in the finite-dimensional phase-space of this system as an equation in x, 
if 

[Z,/]=0and#=-ÌL^L JL, 
dx 8u dx 8u 

(Of course, this fact trivially implies the commutativity of the higher 
KdV integrals.) Bogojavlenskii [8] obtained formulas for the polynomial 
R(£) in terms of integrals Qk, and vice versa. In particular, (Jv •*,/„) 
depend linearly on Q& • • -, Qn_x according to the formula 
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; 22,„-i)+ 3 / 2 1
 4 V Ç ^ c ^ ) 

where 1 i i i n, For the Hamiltonians of the higher KdVs on the set 
of solutions of the stationary problem one has the formula, in terms of 
the gap boundaries, 

2n+l 

R(E) = J ! (E - £4), 
1 = 1 

V l V ' fci+*H-"Äfi=n+i+2 ^ & i ^*2"+ 1 X 2 W + 1 

where 

0 m(m — 1) • • • (TO'— n + 1) 1 
ßn = —i * -* ^ , m = -

n! 2 
This concludes our survey of the periodic theory of the KdV and 

Schrödinger equations. A complete overview of this theory, and of the 
relevant literature, may be found in [4]. We remark that in his paper 
[3] in 1974, P. Lax showed (at the same time as the authors) that 
smooth real periodic solutions of the stationary higher KdVs are finite-
gap potentials. His proof was non-constructive, and did not lead to a 
construction of the integrals, nor to formulae for the gap boundaries 
(the number of gaps was not determined either). Later, in [5], Lax de
veloped his method and gave the construction of integrals outlined 
above; this was also done by Gel'fand and Dikii [6]. Furthermore, the 
work of McKean-van Moerbeke [9] appeared in 1975; this contains 
some of the present author's results (see [2]), in particular, the complex 
Jacobi varieties associated with the Riemann surface were obtained. 
One must also call attention to the little-known work of Ahiezer [13], 
where finite-gap potentials were first constructed by the use of ideas 
from Riemann-surface theory. 

6. Let us now turn to generalizations. Firstly, the translation of these 
methods to the so-called Toda lattice, the nonlinear Schrödinger equa
tion, and others where two-sheeted Riemann surfaces occur, presents no 
difficulty (as noted in the survey [4], in preprints of Tanaka and Date, 
Kac and van Moerbeke, Flaschka and McLaughlin, in the work of Its, 
etc.). We shall not discuss these further. Considerably more complicated 
are problems in which many-sheeted Riemann surfaces occur. Such 
arise in the matrix equations of Zaharov and 5abat [10]; these are of 
the form L = [A, L], where 
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= 0, i = 1, • -, n, 

Q ^ being n X n matrices. 

A special case of physical interest is the n-wave system of Zaharov 
and Manakov. For n = 3, these equations have also been studied by 
Kaup; they are: 

9 ^ + ü « 4 r ^ = i t V ' s a, Y, « = 1,2, 3, a¥=y*8, 
dt a dx 

or 

dt 

iqu2u3> a = 1 

2 

= 3. 

Dubrovin carried out a study of the periodic problem for these equa
tions, introducing an analog of the "higher KdVs" and of "finite-gap 
operators." Here one has a more complicated version of all the above-
mentioned constructions and formulae. There is a natural definition of 
the translation matrix T, of the "Bloch functions" $a(x, x0, E) 
(a = 1, • • •, n) which are meromorphic on an n-sheeted Riemann sur
face R, and one finds a class of "finite-gap" operators L, for which the 

surface R is algebraic. However, the analytic properties of \p are com
plicated. We refer to the survey [4], where a portion of this theory is 
developed. Further results will appear in Funk. Anal. Priloz. 

Now we turn in some detail to a new paper of I. M. Krieever, "Al-
gebro-geometric construction of the Zaharov-Sabat equations, and their 
periodic solutions," which will appear in the Doklady Akad Nauk 
SSSR, and is not described in [4]. Amongst these equations, in particu
lar, there is the "two-dimensional KdV equation," first derived by B. B. 
Kadomtsev et al. (referenced in [10]) in connection with the problem of 
the stability of the KdV solutions under transverse perturbations: 

n d2u 9 / - du d3u 
+ - T - 6 M — - + -dy2 dx \ dx dx3 

. 3 M . du \ -

Following Zaharov and Sabat [10], these equations can be written in 
the form 
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9 ^ , 9 A TA n 

- — + ^ - = [ A>L ]-

The methods of [10] allow one to find solutions decaying for \x\ —* oo. 
The new idea of Kricever is this. Consider an arbitrary Riemann surface 
R. Fix points Pp Qt, • • •, Qn on R, n being the genus of R. Let z be a 
local coordinate near P0 (which corresponds t o z = 0), and let k — l/z. 
Following Ahiezer [13], one may always construct a function ^(x, y, t, P) 
depending on parameters x> yy t and on P E R, such that: 

1. The poles of \p are simple, independent of x, y, t, and are located 
at the Qj; 

2. xf/ ~ exp{kx + altyy -f ßm(k)t] as fc—• oo; 
3. if/ is meromorphic on R away from P0. 

Such a function t// can be given explicitly, thanks to an idea of Its (see 
[4], Appendix 3). Above, aj[k) and ßm(k) are constant-coefficient poly
nomials of degree i and m, respectively. The zeroes Q^x, y, t) of 
ip(j = 1, • • •, n) turn out to be convenient variables in our subsequent 
considerations. 

PROPOSITION 1. There are uniquely determined differential operators of 
order i and m and coeffdents depending on (x, y, t), such that 

TI ty T I 8 * 
dy, 9 mY dt ' 

where 

1 di m S 

ai = a = const, bm = ß = const. 

PROPOSITION 2. 77ie integrability conditions 

ay _ ay 9LW M,, _ 
3yd* ~ 3 % 3y 3* ~ l * J 

are satisfied. 

PROPOSITION 3. This construction yields the Zaharov-Sabat equations 
[10] for the coefficients of the operators Lp Lm. In particular, if 
at — fe2 + c, ßm = fe3 4- (3/2) ck, one obtains the Kadomtsev-Petriasvili 
equation in which 

(P , , A r dP Z d x 

L2= ^+u(x),A=L3= & + î " - £ + * 
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PROPOSITION 4. Let \p be written in the form 

* = ^0(x, t, P) exp (Hy), 

where H(P) is meromorphic on R, independent of (x, y, t), and has prin
cipal part H ~ a$) near P0. Then 

For example, if a/fc) = k2, then Lf is the Schrödinger operator, \f/0 is the 
Bloch function, P0 may be taken to be a ramification point and fi is a 
two-sheeted (hyperelliptic) Riemann surface. Another example: inter
change the roles of t and y. Let \p — \p0(x, y, p) exp (Ht), with the princi
pal part of H near P0 being of the form k3. We obtain "finite-gap" so
lutions of the equations of the nonlinear string (Translator's note: 
Boussinesq equation), 

dL3/dy = [L2, L3]. 

The Riemann surface may be three-sheeted. 
These solutions of the Zaharov-Sabat equations are conditionally peri

odic in x, y, t. They are polynomials in dr/dxr£s(x9 y, t), r ^ 0, arising as 
coefficients in the expansion about P0 of the function 

00 

Kx, y, t) exp(-fcx - aß)y - ßjk)t) = 1 + 2 £,(*; y, t)z\ 
Ì — 1 

Explicit formulas may be obtained from the following result. 

PROPOSITION 5. The coefficients xs(
x> U> t) °f tne series 

#- Mi + i «4(x, y, t)*1) = 2 xs(*> y. t)zs 

dx i=i s-x 

are given by the formula 

dx \ k=i (hxk)\ 3«; • • • 9«; 

+ % + ^ + 2 + 2iü<%)|nt=0 ) • 

Here Ü, v, W, X}k) are vectors of the (l/2m)b—periods of differentials 
with singularity at P0: d(l/z), d(«/l/z)), dlßjl/z)), k\(dz/zk+1); the 
vector 2, corresponds to the divisor Qv • • •, Qn under the Abel trans
form. The summation is extended over all av • • -, as satisfying 
2 k i kak = *• 
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Since Ü = — Ü*1*, we have 9 / 3 ^ = — d/dx, and find for the solu
tion of the Kadomtsev-Petriasvili equation: 

Ci 

u(x, y, t) = c - 2 — ^(x, y, t) 

= c + 2 ^ Influx + ^y + tfa + f ). 
3xz 

These solutons have physical relevance provided that V is small com
pared to Xi. On a two-sheeted surface, this means that P0 is close to the 
ramification point, since V = 0 when the two coincide. 

This framework may well lead to the solution of an interesting 
mathematical problem: to classify all commutative algebras of differen
tial operators in the variable x (see Kricever's Doklady article). [Added 
in proof. Remarkable results in this problem were obtained firstly by J. 
L. Burchnall, T. W. Chaundy, and H. E. Baker (see appendix in the 
survey of Kricever, UMN XXXII N6 (1977), 183-208—Soviet Mathe
matical Surveys).] 
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