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APPLICATIONS OF THE INVERSE SCATTERING TRANSFORM 
I: SELF-INDUCED TRANSPARENCY* 

D. J. KAUP 

ABSTRACT. By using some of the more important, but simple con­
sequences of the inverse scattering transform, we show how a rela­
tively large amount of information concerning the solution can be 
obtained. Using self-induced transparency as an example, we show 
how the McCall-Hahn area theorem, nonlinear moments, and non­
linear transmission are related to the scattering data, and how the 
final soliton configuration is related to the initial pulse profile. 

One of the major difficulties with the inverse scattering method has 
been the apparently complicated nature of the inverse scattering trans­
form. Concerning this, we wish to make two points. First, the deriva­
tion of the Marchenko equations used in the inversion procedure may 
well be complicated, but we remind the reader that the same is also 
true for a rigorous proof of the Fourier inversion procedure. Second, 
without even using the inversion procedure, or the Marchenko equa­
tions, there is still a considerable amount of information which can be 
gleaned by using only the direct scattering problem. In other words, we 
can do inverse scattering without using inverse scattering! We will il­
lustrate this with two examples: self-induced transparency (SIT) and the 
three-wave resonant interaction (3WRI). In this paper, we shall treat 
SIT, and in the following paper, 3WRI. In our presentation, one should 
note that nowhere shall we use those "complicated" inverse scattering 
equations. Instead, we shall use only their more important con­
sequences. 

The phenomenon known as self-induced transparency (SIT) was first 
described by McCall and Hahn [1], [2], who found that they could ex­
plain the observed phenomena in terms of the following simple model. 
Consider an electromagnetic pulse incident onto a two-level atom, 
where the central frequency of the pulse matches the resonant frequen­
cy of the two-level atom. Let us say that the pulse is sufficiently strong 
so that it will excite all of the atoms in the first layer of the material 
from the ground state into the upper level, as illustrated in Figure la, 
b. 

Then the second half of the pulse will move forward and impress a 
strong electric field onto these atoms (Figure lc). This will stimulate 
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Figure 1. Schematic manner by which lossless propagation occurs. In (a), the electro­
magnetic pulse is approaching three atoms in their ground state. In (b), the first half of 
the pulse is absorbed by the atoms, sending them into their excited states. In (c), the last 
half of the pulse is impressed on the excited atoms, stimulating them to decay back into 
the ground state as shown in (d), with the emitted energy being added coherently onto 

the tail of the second half of the original pulse. 

them into returning to the ground state; in the process, they will emit 
coherently the first half of the pulse, which was absorbed. Now this half 
is added to the rear of the second half of the pulse, as illustrated in 
Figure Id. The net result of this has been to move the pulse through 
the first layer of atoms, without any energy loss, although with a re­
duced velocity. This process repeats itself as the pulse propagates 
through the medium, in such a manner that the material appears to be 
transparent to this pulse. 

If the pulse is not of the right shape, this will not happen. For ex­
ample, if it is too small, most of the pulse will be expended in exciting 
the atoms, and not enough will be left over to completely stimulate all 
of the atoms into returning to the ground state. Thus energy will be 
lost by the pulse, and it will eventually be completely absorbed. On the 
other hand, if the pulse is a little larger, it will still cycle as indicated 
in Figure 1, but now the last half of the pulse will be too strong, which 
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will send some of the atoms back up into the excited state. Again 
energy is lost, but on the next cycle it will have become closer to the 
required shape for lossless propagation. 

For larger pulses, one can have sufficient pulse energy to create even 
two or more cycles. After the pulse has been given sufficient strength 
to create at least one cycle, one finds that the majority of the pulse 
energy is propagated losslessly, and the transmission coefficient becomes 
relatively large (close to unity). This phenomenon, which we shall dis­
cuss more fully later, is known as "nonlinear transmission" [2], [3]. 

One of the best known results of McCall and Hahn is their "area the­
orem" [2], 

n\ M(z) l • at \ 
(1) _ _ i . = _ _ a m ^ 

where 

(2) 0(z)= f_°°e(z,t)dt, 
*s 00 

c is the (real) electric field envelope, z is the propagation direction of 
the plane pulse, and a is the inverse Beer length. It is this area, Q(z\ 
which determines how many times the atoms cycle between the ground 
state and the excited state. When the area is between zero and 77, (1) 
shows that it must monotonically approach zero, when between 77 and 
3TT, it approaches 277, which corresponds to one cycle, etc. Due to this 
changing area as the pulse propagates, a pulse reshaping occurs as well 
as a pulse breakup, where the original pulse breaks up into individual 
pulses, each of area 2T7, and each with a different propagation velocity. 
These effects have been observed experimentally, the most accurate 
study being that of Slusher and Gibbs [3]. In particular, they have com­
pared computer simulations with their experimental results, and they 
have found excellent agreement. 

The development of the inverse scattering theory for self-induced 
transparency was pioneered by Lamb [4, 5, 6], the Manchester group 
found N-soliton solutions [7, 8, 9], Lamb deduced the correct eigen­
value problem and described the soliton spectrum [5, 6], and finally, 
Ablowitz, Kaup, and Newell [10] solved the complete problem, includ­
ing the continuous spectrum. It was only with the latter result that one 
could finally see how these previous results were related to the initial 
data and the scattering data. 

Let's start with the McCall-Hahn area theorem. Recall that the area 
is just the linear Fourier transform evaluated at zero wavevector. Since 
the reflection coefficient, 6(f), is like a nonlinear Fourier transform, it 
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should not then be surprising that 6(0) is also related to the area. To 
show this, we start with the Zakharov-Shabat equation as suggested by 
Lamb [5], 

(3a) *ir + tf*i=i-«*2> 

(3b) * 2 T - t f * 2 = - 7 « * * i , 

where T = t — z/c and x — z a r e o u r n e w coordinates. Although Pro­
fessor Newell's paper has discussed this equation and its scattering data 
more thoroughly, we shall simply review the essential features. The so­
lution <j> of (3) is determined by the boundary condition <J> —*> (J) e~^T as 
T —» — oo. Then as r —> + oo, 

* -
/ ae-KT \ 

\ be*** I 

where a(f) is the "transmission coefficient" and 6(f) is the "reflection 
coefficient.,, The zeros of a(f) in the upper half f-plane give us the 
bound state spectrum. The other reflection coefficient 6, connected 
with plane waves incident from + o o , is given in this case by 

m = b*(n 
Returning to the problem at hand, we want the soluton $ of (3) for 

f = 0, and since the McCall-Hahn area theorem is only valid for c real, 
we also require the same. The solution with the appropriate boundary 
condition [11] on <f> is then 

1 / 
COS —SY ( COS —SY \ 

• ' J - s m —SY I 
(4) 

\ —sin 
2 

where 

(5) s/~ X* €dr-

Thus, it follows [11] that 

(6a) a(f = O) = cos | -0, 

(6b) 5(? = 0 ) = - s i n | - 0 , 

where 6 is given by (2). Now, from the complete solution [10], it also 
follows that 

(7) 8 x ln( 1 tt = 0) ) = --1-«, 
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where a is the inverse Beer length and x is the distance in the direc­
tion of propagation. Thus, from (6) and (7), 

(8) 3 x l n t a n | - 0 = - | a , 

which is identical to (1). Of course, one need not stop here. In the same 
way that the linear first moment is related to the derivative of the Fou­
rier transform at zero argument, we also find a "nonlinear" first mo­
ment [12]. When the envelope has a total area of zero (6 — 0), it is 
given by 

(9) ixt = J_" dr re cos J / , 

and also evolves according to 

(10) ^ l n / x ^ - [ a . 

Thus, like tan \Q for 0 ¥= 0, this nonlinear first moment, /x1, for 0 - 0 
must also approach zero as the pulse evolves. 

Let's return to the nonlinear transmission of the pulse energy. We 
have a nonlinear Parseval relation, which follows from the infinity of 
conserved quantities [11], [13], and is given by 

5-JC «•«* = 2 2 i I i 

(11) 

+ è £ > t i + r<£ x)] * 2TT 

where ['fy]/-! are the imaginary parts of the bound state eigenvalues, 
and r(£, x) is defined by 

(12) T(i x) - \b/a(i x)|2. 

Note that for very small fields, since b/a is just the linear Fourier trans­
form of c, [11], we have T < 1, and (11) becomes the ordinary Parseval 
relation (since J = 0). In the fully nonlinear case, from the complete so­
lution [10], we have 

(13) r ( t x) = r(fc 0)e-™wx 

where g(2£) is the inhomogeneous broadening factor. Thus, for suffi­
ciently large x> T vanishes, leaving only the soliton part in (11) which is 
transmitted losslessly. Thus the radiation is absorbed and it is the soli-
tons which propagate losslessly. 

To see how these components compare in their energy content, let 
the initial profile be a box, such as 
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(14) « T >={o t f th 0 < - T < T P ' 
V. 0 otherwise 

for which the initial area is 

(15) e0 = £TP . 

Define 

(16) 2Kx)- \ Si"*, 
which is proportional to the energy of the pulse. Then at x = 0, 

(i7) n<s) = w, 
and as x - ^ +oo, from (11), 

(18) T(oo) = 2 2 (Wv)' 
5 - 1 

In Figure 2, we have plotted the various parts as a function of 00. 
Looking at this figure, the first thing one notices is that after being 
consistent with the area theorem, as much of the initial energy as prac­
tical goes into the solitons, leaving the continuous spectrum, or radi­
ation, with only the small cross-hatched part. Of course, for small 
energies where 60 is less than TT, all of the incident energy is radiation 
energy, which is absorbed by the medium. But as 00 increases, crosses 77 
(and every odd integer multiple of IT) an additional soliton is allowed, 
and is formed. The solitons then take up a larger and larger fraction of 
the incident energy as the initial area increases. Of course, if instead we 
have plotted the ratio of the transmitted energy (solitons) to the in­
cident energy, we would have obtained a plot similar to Figure 13 in 
[3]. But, as plotted in our Figure 2, one can see more clearly how the 
incident energy is distributed between the various solitons and the radi­
ation. 

Let us now turn our attention to how one determines the con­
figuration of the final state (x —» 00). In this limit, the radiation part 
vanishes when one is away from the light cone [10], and the only sig­
nificant remaining part is the soliton part. To determine this part of the 
solution, we only need to know the bound state eigenvalues [^]/=1 and 
the normalization constants [D^\J

j_1 [5], [10]. There are four basic meth­
ods that one could use to determine these quantities: 

A. Numerically integrate the Maxwell-Bloch partial differential equa­
tions directly. 
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Figure 2. The relative distribution of the initial energy among the various solitons and 

the radiation, as a function of initial area, 0O, for the box profile described in the text. 

B. Use the infinity of conserved quantities. 
C. Numerically solve for the eigenvalues of the Zakharov-Shabat 

equations. 
D. Use the WKB approximation to find approximate eigenvalues for 

the Zakharov-Shabat equation. 
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Method A was the first used [1], [2], [3], is accurate, but at the same 
time is very time consuming, without giving one a general feeling for 
how the eigenvalue spectrum is related to the initial profile. Method B 
as developed [13], [14], [15] involves an approximation wherein one ef­
fectively ignores the radiation part of the initial profile. After glancing 
at Figure 2, one can see why this approximation works so well when 00 

is not close to an odd integer multiple of IT, because the radiation 
amount is then relatively small when 00 > IT. But due to neglecting the 
radiation, this method cannot give the correct threshold values of 
60 = (2n + 1)TT. 

Like method A, method C is exact, but is much faster, in that one is 
only solving for the eigenvalues of an ordinary differential equation. Ex­
amples of results for this method are shown as solid lines in Figures 3-5 
for the three initial profiles given by 

(19a) <(0,T)=(yV f 0 < 

v ' v ' 1 0 otherwise, 

(19b) c(0, T) = 

T < T p 

160fLre-4T/Tp if 0 < T 

V2 

if 0 > T, 

ft 21 / 2 

(19c) €(0, T) = -2fi= r 2 ^ ^ 

Method D uses the WKB approximation, which is valid for real, slowly 
varying profiles with only a single extremum. When these conditions 
are satisfied, we have 

(20) £ yj\t\-i)? dr = 77(2/ - 1), 

as giving approximate values [16] of the imaginary part of the eigen­
values, [T^]/=1, where a and b are the classical turning points. This 
method has the advantage over method B in that it does give the exact 
threshold values of 60 = (2n + 1)TT. The WKB solutions for the three 
initial profiles given by (19) are shown also in Figures 3-5, but as 
dashed lines. One should note that this approximation is the worst for 
the box, which is not slowly varying at the edges, is better for the re~T 

profile, which has only a discontinuity in the slope at r = 0, and is 
very good for the Gaussian, which is indeed slowly varying. 

In summary, we want to emphasize that none of these results in­
volved solving tthe inverse scattering (Marchenko) equations. All of 
these results were obtained by simpler means. From a knowledge of the 
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Figure 3. Exact bound state eigenvalues and the corresponding WKB values as a func­

tion of 0o for the box profile discussed in the text. 

scattering data in the neighborhood of f = 0, we can obtain the areas 
and all higher nonlinear moments of the pulse. From a knowledge of 
r(f) for real f, we can determine the energy of a pulse, as well as all of 
the higher infinity of conserved quantities. From knowing the initial 
profile, we can determine all of the eigenvalues (as well as all of the 
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Figure 4. Exact bound state eigenvalues and the corresponding WKB values as a func­

tion of 60 for the re~T profile discussed in the text. 

normalization coefficients), from which one can construct the final soli-
ton state. And with only this, one already has a very good feel for what 
the solution of the inverse scattering equations should be. 

The author is indebted to Professor A. C. Newell for pointing out the 
relation between b/a and the area developed above. 
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Figure 5. Exact bound state eigenvalues and the corresponding WKB values as a function 

of 00 for the Gaussian profile discussed in the text. 
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