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CIRCULAR POLARIZED NONLINEAR ALFVËN 
WAVES—A NEW TYPE OF NONLINEAR 

EVOLUTION EQUATION IN PLASMA PHYSICS 
MIKI WADATI, HEIJI SANUKI*, KIMIAKI KONNO** AND YOSHI-HIKO ICHIKAWA* 

ABSTRACT. A nonlinear evolution equation is derived for Alfvén 
waves propagating along the magnetic field in a cold plasma. The 
equation provides new types of solitary waves. The phase of a soli­
tary wave is coupled nonlinearly with its amplitude, and the propa­
gation velocity is restricted within the range determined by the as­
ymptotic amplitude and the wave number. 

1. Introduction. As early as in 1942, Alfvén [1] recognized that a 
hydromagnetic wave propagates in an incompressible, perfectly con­
ducting fluid in the presence of a strong magnetic field. This Alfvén 
wave is nothing but the low frequency limit of electromagnetic waves 
propagating in a plasma. Generation and propagation of the Alfvén 
waves in a gaseous plasma has been investigated experimentally [2], and 
has attracted renewed interest as one of the useful ways to heat a 
plasma [3]. Alfvén wave propagation in solid state plasmas provides in­
formation on the effective masses of carriers [4], Large amplitude in­
compressible magnetic field perturbation observed in the solar wind has 
been attributed to propagation of the Alfvén wave [5]. 

Now, turning to the studies of nonlinear wave propagation in 
plasmas, we have seen the remarkable success of theoretical and experi­
mental investigations of the ion acoustic solitary waves. Using reductive 
perturbation theory, Washimi and Taniuti [6] have predicted existence 
of the Korteweg-deVries type soliton for the ion acoustic mode. Their 
prediction has been experimentally confirmed by Ikezi et al. [7]. Sys­
tematic ordering of dispersive effects and nonlinear steepening effects 
in the reductive perturbation theory [8] provides a rigorous procedure 
for reducing the hyperbolic system of nonlinear partial differential 
equations to a single nonlinear evolution equation; namely, the Korte­
weg-deVries equation for a weakly dispersive system and the nonlinear 
Schrödinger equation for a strongly dispersive system. 

In the case of Alfvén waves, however, Kakutani and Ono [9] have 
noticed that it is necessary to modify the expansion scheme of the re­
ductive perturbation theory so as to be consistent with steady state soli­
tary wave solution of Kazantsev [10]. Thus, they have been led to the 
conclusion that the Alfvén wave is governed by the modified Korteweg-
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deVries equation. We have undertaken a detailed analysis of the ampli­
tude modulation of the nonlinear Alfvén wave, because the linear dis­
persion relation of the Alfvén wave differs from the form used by 
Kakutani and Ono if we restrict ourselves to the one-dimensional 
Alfvén wave propagating along the magnetic field. Independently from 
our studies, Mio et al. [11] have noticed that the direct application of 
the expansion scheme of the reductive perturbation theory is not valid 
for the Alfvén wave. 

The purpose of the present report is twofold: first, presenting a new 
type of nonlinear evolution equation in the next section, we give an 
exact analytic steady-state solution of this new nonlinear evolution 
equation in the third section. Illustrating a reduction of the nonlinear 
Schrödinger equation from the nonlinear evolution equation in the Ap­
pendix, we present some concluding remarks in the last section. 

2. Derivation of a New Type of Nonlinear Evolution Equation. We 
start from the system of equations for cold plasma studied by Kakutani 
and Ono [9]. Under the assumptions that the effects of displacement 
current and charge separation are neglected, the fundamental equations 
for one-dimensional propagation in dimensionless form are 

(la) t + >") = °> 
(lb) S + ^ s s f V + B/Hft-

(lc) 
dv 
dt 

(Id) - - n 
Yx B* - R° dt V n dx ) ' 

/-. x dBtt dv „ du „ , 3 / dw \ 
(le) -dt-Tx +B> Tx =R- TxKTt)> 

dx + * dx ~ j d x \ d t ) 9 (If) 
dBz dw 
dt 

where d/dt = 3/31 + ud/dx, v = (u9v,w) denotes the velocity of elec­
trons, n the density of electrons, S = (Bx = 1, By, Bz) the magnetic in­
duction vector, and Re and Ki represent the ratios of electron and ion 
cyclotron frequencies to the characteristic frequency, respectively. 

The linear dispersion relation for the above system is 

(2) w/fc = 1 ± fdfc, 
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where 

(3) M = i ( R r » - H . - i ) . 

The double sign ± designates the right ( + ) and left ( —) polarized 
Alfvén waves, whose amplitudes are given as 

(4a) *B = BV>-iB,M, 

(4b) * L = B,W + iB,tt>, 

respectively (the meaning of superscript (1) will become clear later). As 
mentioned in the introduction, Kakutani and Ono worked out their 
analysis on the basis of a linear dispersion relation of a form of 
co/fc = 1 - 1 - ßk2. Hence, differing from their choice of stretching varia­
bles, we introduce the stretched space-time variables 

(5a) £ = €(x - t\ 

(5b) T = et, 

but we expand the variables in accord with Kakutani and Ono as 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

(6f) 

n = 1 + en(1) + e2n(2) + • • -, 

U = «*<» + C2U<2> + • • • , 

v = e1/2(v™ + eu<2> + •••) . 

w = c1/2(u>(1> + «u<2> + •••), 

Bv = e"2(Bym + <Bv™ + •••), 

Bz = £1/2(B2<» + eB,» + •••). 

Using equations (6a)-(6f) and (5a)-(5b), we obtain the following rela­
tionships among the first order quantities, 

(7) tf» = -ByM, w™ = -BJX) 

to order €3/2, and 

(8) nW = tiP> = 1- (B^*2 + BZW) 

to order e2. Up to terms of order €5/2, we get 

(9a) — „<2> + i ß ( 2 ) = i (̂1) _ R - i ^ ß (i) 
1 ; 3f + 3? w 3r * 3f2 * 

A UJ(2) , i j ( 2 ) = A (̂D . fl -1 Ü! 
3£ 3? * 3r e 3f2 
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(9c) | « . » + | •>'» = l •>,"-> + ± („««B,™) 

/Qfix _ÏL £ (2) . _1_ w(2) _ I g d ) , _1_ (ua)ß (Ih 

82 

- K " 1 — va) 

1 af2 

Eliminating the second order quantities from (9a)-(9d), we obtain the 
following nonlinear evolution equation for the right polarized Alfvén 
wave: 

(10a) t ** + \ h {I</A} "¥ af2 **= °' 
and 

(10b) - *L + 7 £ {|4>J24>t} + fc £r2 ^ = 0, 

for the left polarized Alfvén wave. This new type of nonlinear evolu­
tion equation has been investigated numerically by Mio et al. 

3. A Steady State Solution. Now we seek an analytic solution of 
(10a), restricting our attention to the right polarized Alfvén wave. A 
substitution of the form 

(11) *M,T)= V§*(?,T)exp{<x&T)} 

with real functions i// and x m to (10a) yields a pair of coupled equa­
tions for xf/ and x-

(12a) xpr + ft/fyr + 2/i^xr + mrf = °> 

(12b) Xr^ + 2X^3 - /Wta + PX*2* = 0. 

We assume a solution in the following form: 

(13a) x(f, r) = r ' m - «r) + % ) , 

(13b) #£, T) = My), 

(13c) </ = r1« - AT), 
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where the wave-number K, frequency ß and propagation velocity X are 
constants to be determined from the solution of (12a) and (12b). By 
(13a)-(13c) we can write (12a) and (12b) as the coupled ordinary differ­
ential equations 

— + 6i//2 —- + 2 —- — + \p 
dy dy dy dy dy2 

(14a) (2K - X) ^ + 6 ^ 2 ^ + 2 ^ £ + + ^ = 0, 

dfy 
du 

(14b) 

2 = - (Q - K2)^/ + 22ty3 

+ <w-x + *n* ç + ̂ f ; * 
Integrating (14a) once, we obtain 

(15) ^ = Ai//"2 + (A - 2K)/2 - (3/2)^2 

where A is an integration constant. Eliminating dO/dy in (14b) by using 
(15), we arrive at 

(16) ( ^ ) 2 = - O 4 + 2X$3 - 4{ß + A 

+ (X - 2K)2/4 - K2}®2 + 4£<ï> - 4A2 

where 

(17) <%) = ^(«/) 

and 2? is another integration constant. Equation (16) giyes rise to vari­
ous types of solutions. We restrict our interest to solitary wave solutions 
which satisfy the boundary conditions 

(18) • & > - • • = * . ' 
dO(y) 

dy 
• 0, as \y\ —* oo. 

These boundary conditions specify die integration constants and the 
shifted carrier frequency as 

(19a) A = (3/2)<V - (1/2)(X - 2K)$0, 

(19b) B = 4%3 + (1/2X12K - 5\)%2 + 2(K - V2)2$0 , 

(19c) ß = K2 + 2K%. 
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Here it would be worthwhile to notice that the shifted carrier frequen­
cy (19c) takes the form 

(20) Oco = M2+l-|*Äßfc 

expressed in terms of the original variables. Equation (20) is nothing but 
the nonlinear frequency obtained from (10a). Straightforward but 
lengthy calculation gives 

(21) <%) = xp2(y) = $ 0 + - J " lKm + cosh{2y(t/ - y0)]~\ 

(22) 

% ) = %o) - 3K arctan [ ^ i ^ t a i m { y ( i / _ yo)] } 

- y ô arctan \ /- — tanh{y(t/ - y0) \ , 

where 

(23a) K = ± 1 

(23b) l = a/ß + 8y2/jß#0
 a n d m = a/ß> 

(23c) a = 2(2$0 - A) 

(23d) ß = 4 {(O0 + K)(X - X - 2 * o ) } ^ 

(23e) Y = H ( A - AiXA2 - * )} 1 / 2 

(23f) Ô = sign of (3$0 - X + 2K). 

The propagation velocity À is allowed to take a value in the region of 

(24a) X1<\< \2 , 

where 

(24b) \ = 2(K + 2<D0) - 2 V*o(*o + * ) , 

(24c) X2 = 2(K + 2$0) + 2 V* 0 (*o + *) -

for which an obvious condition O0 + K > 0 is invoked. 
A similar analysis is possible for the left polarized waves. In this case, 

solitary waves are obtained just by replacing 

(25) ß - * - ß a n d X - ^ -K 

in the above expressions. Then we have an extra restriction on the 
wave number, 
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(26) K > %. 

4. Discussion. We summarize the properties of solitary wave solu­
tions, equations (21) and (22) with equations (23) and (24). 

(1) The sign of K classified bright (K= +1) and dark (K — —1) modu­
lation of the amplitude. 

(2) The sign of 8 is related to fast (8 = +1) and slow (8 = — 1) mod­
ulation of the phase of solitary waves. 

(3) The propagation velocity X of the solitary wave is bounded by 
the asymptotic amplitude and the wave number as indicated in (24). 

These properties are novel and could be detected by experiment. 
Besides the solitary waves discussed above, (16) admits a variety of 

nonlinear waves, such as cnoidal waves and algebraic solitary waves. 
Also it is interesting to notice that further application of reductive per­
turbation to (10a) yields the conventional nonlinear Schrödinger equa­
tion derived by Hasegawa [12]. This will be illustrated in the Appendix. 
Comparing the well-known envelope soliton solution of (A. 11) with the 
present solitary wave solution, we observe that the solitary wave solu­
tion obtained in the preceding section indeed has peculiar properties 
not known for any other types of nonlinear evolution equations. 

Appendix. Reduction of the nonlinear Schrödinger equation from 
(10a). 

Using a small parameter c , we introduce the slow variables 

(Al) y = c(£ - AT) 

(A2) a = c2T 

where X will be determined later. 
Now we seek an oscillatory solution of (7) by expanding <$>R as follows 

(A3) <j>R = 2 2 CV>(TJ , ofcWt-™, 

where the quantity 8 is a frequency shift to be determined later. 
Corresponding to the introduction of the stretched variables (Al) and 

(A2), we have the following transformation 

l b.A\ ^ ^ \ ^ 2 ^ 
3T 9T 3T] da 

/ A K\ 3 9 3 
(A5) a? - aF + £ a^ -
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From the first order /-component we have 

(A6) - it(S - pJk2)ypM = 0 

For / = ± 1, (A6) determines the frequency shift 8 as 

(A7) S = iik2 

and for |/| ¥= 1, in view of (A6) and (A7), we have 

(A8) $tM = 0. 

The second order term with / = 1 takes the following form 

(A9) (X - 2(xk) A + n = 0. 
07] 

In order that this equation have a nontrivial solution, the quantity À 
must satisfy the relation 

(AIO) A = 2/zfc - M . 
ok 

Finally the i — \ component of the third order perturbation yields 
the following nonlinear Schrödinger equation 

(All) I ya ^ + M ^ ^i (1) - \ fcl^IVi™ = 0 

which is exactly the one derived by Hasegawa. 
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