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APPLICATIONS OF THE INVERSE SCATTERING TRANSFORM 
II: THE THREE-WAVE RESONANT INTERACTION* 

D. J. KAUP 

ABSTRACT. The techniques in the preceding paper are applied to 
the three-wave resonant interaction. With the aid of computer simu
lations and these techniques, we can almost completely describe 
how this system evolves in terms of the nonlinear concepts of 1ST. 
As in the McCall-Hahn area theorem, the final areas are found to be 
functions of only the initial areas. Also, the final radiation densities 
are functions of only the initial radiation densities, and the final soli-
ton spectrum is dependent only on the initial soliton spectrum. We 
discuss all three subcases and give examples of each. 

1. Introduction. As we have already seen in the case of self-induced 
transparency [1], three pieces of direct scattering data determine a rela
tively large amount of information about the system. When the enve
lope of the field is real, a reflection coefficient at f = 0 determines the 
area of the envelope. The energy of the envelope can be obtained from 
a reflection coefficient for real f. The bound state eigenvalues and their 
normalization coefficients determine the final soliton configuration. 

As we turn to the three-wave resonant interaction (3WRI), we shall 
find that a relatively large amount of information can be obtained from 
the same three pieces of data. Furthermore, when this information is 
coupled with computer simulations of 3WRI [2], we obtain a virtually 
complete picture of this interaction. We should emphasize that not 
only will the simulations verify the theoretical predictions, but they 
will also give results that theory cannot obtain, as well as suggest addi
tional theoretical interpretations. 

In a unitless form, the equations for the envelopes in the 3WRI are 
given by 

(la) Qlt + c,Qlx = y&2*Q*, 

(2a) Q2t + c2Q2x = y2Q*Q*, 

(3a) Q3t + c3Q3x = Y3<?I*Ç2*> 

where Q^x, t) are the envelopes, cx are the corresponding group veloci
ties, which are ordered according to 
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(2) c1<c2< c3> 

and 

(3) 7 l ^ s g n ( E i X co,). 

In (3) Ei is the energy of the ith envelope and o)i is the corresponding 
resonant frequency; their relative signs are determined from 

(4) co1 + co2 + co3 = 0. 

The general inverse scattering solution of (I) was first suggested by Zak-
harov and Manakov [3], the complete solution of which has been given 
by them [4] and Kaup [5]. Here, we shall not need the complete solu
tion, and shall immediately proceed to simplify the problem. 

Of course, the first step in the inverse scattering method is to find an 
appropriate linear eigenvalue problem, which will then transform the 
nonlinear equation into an explicitly integrable form. For the 3WRI (1), 
the appropriate linear system is the Zakharov-Manakov (ZM) eigenvalue 
problem [3], [4], [5] 

(5a) -ivlx + V12v2 + V13Ü3 = -c^vv 

(5b) -iv2x + V21v1 + V23v3 = -c2$v2, 

(5c) -iv3x + V31v± + V32v2 = -c3f% 

where in (5), the potentials, Vij9 are related to the envelopes by 

(6a) 

(6b) 

(6c) 
W 3 - cl}{c3 - c2) 

A key step [4], [5] in the analysis of the ZM eigenvalue problem is 
the realization that, when the envelopes Qi do not overlap, the ZM 
structure reduces to three Zakharov-Shabat (ZS) eigenvalues problems, 
each of the form [6] 

(7a) ulx + i\u1 — qu2, 

(7b) u2x - i\u2 = ru2. 

For each envelope Q{, the corresponding values for r, q, and X are re
lated to Qx, y{, c{ and f by 

23 — / 
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(8b) 
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(8c) 

Upon this reduction, each envelope is then described by a set of ZS 
scattering data, consisting of ZS solitons and radiation. Thus, when we 
use the terms "soliton" and "radiation," we shall be using them in this 
context. Namely, each envelope, via (7) and (8), is decomposed into ZS 
solitons and radiation. 

Of course, from these three sets of ZS scattering data, we can con
struct [4], [5] the scattering data of the original ZM problem. But, the 
manner of construction will depend on the ordering of the envelopes. 
In Figure la, we indicate the ordering of the initial state, where Q3 is 
to the left of Q2, which is to the left of Qr In Fig. lb, we indicate the 
final state (assuming that the envelopes will separate), and we see that 
the ordering is now reversed. 

Let us start with a configuration as in Figure la. From (7) and (8) at 
t = 0, we can decompose each envelope into a set of ZS scattering 
data, from which we can then construct the ZM scattering data. Know
ing how the ZM scattering data evolves in time [4], [5], we can pass 
through the region of time during which the envelopes are interacting, 
into the final state at some time tf. (During the interaction, the enve
lopes are overlapping, in which case the ZM problem cannot be re
duced to 3 ZS problems. Thus in this interaction region, strictly speak
ing, we cannot consider the envelopes to be composed of ZS solitons 
and radiation.) At tp we have the configuration as indicated in Figure 
lb, assuming that the envelopes separate. Now, we can reverse the 
above procedure. Given the ZM scattering data, we can systematically 
decompose it [4], [5] into the 3 sets of ZS scattering data. 

Schematically, if we let S be the scattering data of (5), S(i) be the 
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Figure 1. The spacial ordering of the (a) initial and (b) final envelopes. 

three sets of Zakharov-Shabat scattering data, one for each envelope, 
we have that the method of solution is 

Qv Q2, Q3(t = 0 ) - S™, S<2>, S<3>(f = 0) 

->• S(t = 0) — S(tf) 
(9) " 

— S«1», S<2>, S<3>(^) 

- Q»Q» Q3(tf)> 

where tf is any time after separation occurs. 
Now, if we define the ZS a(\), b(\), a(X), and b(\) in the usual man

ner [7], step 2 to step 5 in (9) reduces [5] to 

h <3> a Mh (3> -I- a <3>fr <2)fr ( 1 ) ™ 
[ } a/3> ~ a0<

2>a0<
3> 

(10b) a <2) ~ a0«2)a0
(3> L ° ° ° ° ° J 

X e-2i\Vc2tff 

bfa) 

a/1» 

a/2> 

a <% (2> "0 a o 
[ä/3>a0

(2V 
(10c) 

where the arguments of the as and fr's are understood to be the corre
sponding X(w) 5, all of which are related to J via (8). 

From (10), since we can determine the scattering data of the final 
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envelopes, we could clearly reconstruct the final envelopes from the ZS 
inverse scattering equations [6], [7], but as in the previous paper [1], 
this we shall not need to do. Rather, directly from, and only with (10), 
we shall be able to obtain a wealth of information. For example, con
sider the phenomenon of soliton exchange [5]. For simplicity, we take 
the initial envelopes to be on compact support, so that the initial ZS 
scattering data will be entire functions of f. Since the solitons are de
termined by the bound state eigenvalues, which are the zeros of a for f 
in the upper half plane, from (10a) it follows that wherever a0

(2) and 
fl0

(3) have zeros in the upper half plane, af
i3) will also. Then (10b) shows 

that a/2) can have no zeros in the upper half plane, and (10c) shows 
that wherever a0

(1) and a0
(2) has a zero, af

{1) will have a zero. Thus, we 
can immediately conclude that if Qv Q2, and Q3 have Nl9 N2, and N3 

solitons respectively initially, then in the final envelopes Qv Q2, and Q3 

will have Nx + N2, 0, and N2 + N3 solitons respectively. This is picto-
rially represented in Figure 2. Furthermore, from the relations between 
the A(n),s in (10), we know the eigenvalues for the final solitons, and by 
evaluating the residues of bf/af at these eigenvalues, we can also deter
mine the normalization constants which fix the positions of the solitons. 
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Figure 2. A graphic explanation of how the solitons in the initial envelopes are ex
changed to form the final envelopes. 
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Thus, we can completely determine the soliton configuration in the fi
nal envelopes. 

Next, consider the area theorem. As we have already seen [1], when 
the envelope q is real, we have for r = — q 

(11a) fo(f = 0) = - s in A, 

(lib) a(f = 0) = + cosA, 

where now 

(12) A - fZqdx. 

Similarly, if r = + q*> we have 

(13a) b(f = 0) = + sinhA, 

(13b) fl(£ = 0 ) = + cosh A, 

with A still defined as in (12). From (10) and (11-13), we then can ob
tain the areas of the final envelopes in terms of the areas of the initial 
envelopes. Note that this gives the final areas as functions only of the 
initial areas, independent of the structure of the initial envelopes. 

Finally, we can also discuss how the radiation is exchanged between 
the envelopes. To plasma physicists, this quantity is known as "action", 
and we define it as 

(14) N= f_lq*qdx. 

As in SIT, this can also be given in terms of the scattering data, and is 
given by [8] 

(15) N=Nr + Ns, 

where 

(16) Ns = 2t 2 ( V - \-)> 
j = i 

(17) tfr = - J ~ d \ i n [ i + r(X)], 

(in the nonlinear Schrödinger equation, Nr is the total number of radi
ation "particles" [9]) and we shall call T the "radiation density". Again, 
we note that from (10), we can determine T(X) for each of the final en
velopes, upon knowing the initial Fs. Thus by doing the integral in 
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(17), we can determine the total radiation in each of the final envelopes 
where when r = — q*, 

(18a) r(X) - A(x) 
a 

and when r = -\-q*> 

(18b) r(A) - \b(\)\*. 

With r defined in this manner, we have that whenever 

(19) XoT M i 

that [8] 

(20) 0 ^ T(\) < oo. 

In (17), we shall call Nr the "total" radiation. 

2. The Explosive Case. Let's now look at some examples from com
puter simulations. First, for the explosive instability, we typically have 
the middle envelope, Q2, as being a negative energy wave in a plasma, 
which also has the highest frequency, so that |w2| = {co^ + |co3|. Thus 
our y/s in (1) can all be taken to be equal to — 1, which by (8) gives 

(21a) t<1>= +^1 ) + , 

(21b) ^ = -</2>*, 

(21c) r<3>= +<p*. 

Now, if (19) is satisfied, it follows [7] that when r — +q*, the eigen
value problem (7) is self-adjoint, and thus no solitons will exist. (If 
r = — q* and (19) is satisfied, no restrictions are placed on solitons.) 
Consider what happens when qi2) does have one soliton initially. By the 
soliton exchange in Figure 2, both qa) and qi3) must then have one soli-
ton in their final envelopes. But by the above, since r = +q* for these 
envelopes, they are forbidden from having solitons, if (19) is to remain 
true. Thus, we have a contradiction, and to see what happens in this 
case, we look at computer simulations. In Figure 3a, we have the initial 
profiles, for A2 = 2.4131 > 77/2 and where Qx is a perturbation for 
starting the interaction. (This area, A, is one-half of the area, 0, in SIT. 
Thus here, the critical area for producting N solitons is (N — 1/2)TT.) In 
Figure 3b and 3c, we see the solution at later times. Note the change 
in the vertical scales. Clearly, the solution is becoming singular, and 
this occurs in a finite time, whence the name "explosive instability." 
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Figure 3. The explosive instability when the area of the middle envelope, A2, is 
2.4131 > IT/2. In Figure 3a we have the initial configuration with a small amount of Q± 

(solid line) to start the interaction. In Figure 3b, runaway growth has started, and in Fig
ure 3c, a spike is forming. Note the change in vertical scales. 
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Figure 4. Explosive case when A2 = 1.1974 < ir/2. Here the interaction is stable. 
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Thus when the middle envelope contains one (or more) soliton 
(Ag > tf/2), the explosive instability occurs. 

What happens if A2 < 77/2? In Figure 4, we see the results when 
A2 = 1.1974 < 77/2. In this case, a well defined final state occurs where 
the envelopes do separate, and the solution is stable. 

In addition to no solitons in the middle envelope, there is one more 
condition necessary for unique solutions to exist to the inverse scatter
ing equations [5]. When r = + </*, we have \a\2 = 1 + \b\2 [7], and thus 
we must have \b/a\ < 1 for the Çx and Q3 envelopes in (12). For 
square colliding initial profiles, as in Figure 5, one can show [8] that 
this will be satisfied only if 

(24) tanA2sinhA3 < 1. 

If A2 = 1.133, then (24) requires A3 < .452. In Figure 5, we have 
A2 = 1.133 and A3 = .5445, so that (24) is not satisfied. In Figure 5b; 
A2 has increased to 1.637 > IT/2, and in Figure 5c, an explosive spike is 
clearly developing. In Figure 6, we repeat the above, but with 
A3 = .389 so that (24) is satisfied. As seen in Figure 6b, complete sepa
ration is occurring. As a test of the area theorem for the final enve
lopes, from (12), (13), and (15), one obtains 

(25a) tanh A3f = tanh A30/cos A20, 

(25b) tan A2f — tan A20cosh A3p 

which gives A2f = 1.348. This is to be compared to the value of 1.347 
obtained from the computer simulation. 

Thus, we can say that if the explosive instability is to be avoided, not 
only must the middle envelope contain no solitons (A2 < TT/2), but also 
the initial state must be such that \b/a\ < 1 for the final envelopes of 

Qi a n d <?3-

3. Soliton Decay Case. In this case, typically the middle envelope 
has the highest frequency and all waves are positive-energy waves. 
Thus we may take (yl9 y2, y3) = ( —, + , — ) which from (10) gives 
r — —q* for all three envelopes. Now, all envelopes may contain soli
tons and the general dynamics is as indicated in Figure 2. But, there 
are two situations of special interest. 

First, take a large middle envelope and slightly perturb it, as in Fig
ure 7a. Here A2 = 6.40, so that Q2 contains two solitons, and we have 
a small blip of Qx to perturb it. From Figure 2, we then expect the fi
nal states of Qi and Q3 to contain 2 solitons each. Furthermore, by 
(12), since Q3 is zero and Ç1 is very small initially, (b/a) for real À of 
these two final envelopes must also be small, giving that these two final 
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Figure 5. Explosive case for Q2 and Q3 colliding, with both envelopes large. Since 
A3 = .5445 > .452 (see text), a singular spike again develops. 
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Figure 6. Explosive case for Q2 and Q3 colliding, where now A3 = .389 < .452, and no 
singular spike develops. 
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envelopes must contain almost no radiation. Thus they will be almost 
pure 2-soliton solutions. In Figure 7b-e, we see the time development 
of this situation, and indeed, in Figure 7e, both Qx and Ç>3 do have two 
peaks. In fact, from the initial conditions given in 7a, we can predict 
exactly what the parameters for these two-soliton should be, and we 
find excellent agreement between theory and simulations. Also, in Fig
ure 8 we have the same situation where A2 = 3.25 (one-soliton), and in 
Figure 9, we see what happens when A2 ~ 16 (five-solitons). 

Of course, one should note the resulting simplicity when one de
scribes what happens in terms of the nonlinear concepts. In Figures 
7-9, the middle envelopes have decayed by emitting only solitons, and 
have retained their original radiation densities. In this "soliton decay 
case," the middle envelope is therefore (linearly) unstable whenever it 
initially contains one or more solitons. 

The second situation corresponds to the "time-reversal" of Figure 2, 
whereby we have a collision between Ç1 and Ç3, producing Q2. In Fig
ure 10, we see the typical result when both Ç1 and Ç>3 initially contains 
no solitons (A1 = 1.456, A3 = 1.455 < IT/2). In Figure 10b, Q2 is sim
ply a nonlinear convolution of Qt and Q3, with the simulation giving a 
final area of A2 = 1.4084, and a final total radiation of Nr

{2) = 2.5146. 
The theory gives a final area of A2 = 1.4077 and a final total radiation 

of Nr
{2) — 2.5146, both of which are in excellent agreement with the 

simulations. In Figure 11, we see what happens when Q1 and Q3 both 
contain one soliton each initially (A1 — 2.844, A3 = 2.841 > 7r/2). In 
Figure l ib , Q2 has developed a very strong peak, and its area has gone 
to A2 = 3.011 > 7T/2, showing that it now has one soliton. However, as 
we have already seen, this configuration is unstable, and later, Q2 will 
decay and they will add one-soliton tails onto Q1 and Q3. 

This process of Q2 absorbing solitons from Q1 and Q3 is very sensi
tive to the pairing of the eigenvalues between Q± and Ç3. In the nor
mal process whereby a soliton originally in Q2 is given to both Ç1 and 
Ç3, the new solitons in Qt and Ç3 have equal eigenvalues (when 
c3 = — cv c2 = 0) of one half of the eigenvalue of the original soliton 
of Q2. Conversely, to obtain the time-reversal of this, the eigenvalues of 
Çx and Q3 must be equal. When a soliton in Q± has the same eigen
value as a soliton in Q3, we call these solitons "resonantly paired soli
tons," and the state achieved in Figure l i b only occurs for resonantly 
paired solitons. From this figure, we see that most of the original radi
ation density in Qt and Q3 has been transmitted without any time 
delay. Of course, some of it was absorbed by Q2, since Nr

(2) is nonzero 
in Figure l ib , but this absorption of radiation density only occurs dur-
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Figure 7. Soliton decay case for A2 = 6.40, for which Q2 initially contains two solitons. 
In Figure 7e, we see the final configuration where both Qx and Q3 are two-soliton states 

and Q2 has no solitons. 
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Figure 8. Soliton decay case for A2 = 3.25, for which Q2 only has one soliton initially. 
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Figure 9 continued next page. 
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Figure 9. Soliton decay case for A2 ~ 16, for which Q2 has five solitons initially. 
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Figure 10. Soliton decay case for Ç>j and Ç3 colliding, where neither has any solitons 
initially. 



INVERSE SCATTERING TRANSFORM II 301 

1 5-1 

ì o H 

e 5 H 

• e-

- e .5H 

- i . e H 

- t s - T 
2 

4 T 
6 

"1 r 

8 i e 

a e - i 

ì . H 

ì e n 

e «H 

e e 

-e.sH 

- ì .e 

Figure 10. Soliton decay case for Qt and Ç3 colliding, where neither has any solitons 
initially. 
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Figure 12. Soliton decay case for Q± and Q3 colliding when Qx has two solitons, one of 
which is resonantly paired to the single soliton in Q3. In Figure 12b, we see the inter
mediate state where Q2 has spiked, and the unpaired soliton in Q3 has been transmitted 
without any time delay. In Figure 12c, the middle envelope has decayed and added one-

soliton tails onto Qt and Q3. 
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ing the initial collision, since when Q2 decays later, virtually no radi
ation is released. 

Thus, during this collision, we know what happens to the radiation 
and the resonantly paired solitons. What happens to any unpaired soli-
tons? To answer this, we look at the next simulation in Figure 12, 
where Qt has two solitons, the smallest eigenvalue of which is equal to 
the eigenvalue of the single soliton in Q3. In Figure 12b, we see the in
termediate state where Q2 has absorbed the resonantly paired solitons 
(as well as some radiation density), with the remaining radiation density 
and the unpaired soliton (the central peak in Qx) being transmitted 
without any time delay. Finally, in Figure 12c, we see the final state 
where Q2 has decayed, releasing the two resonantly paired solitons, 
which form one-soliton tails onto Q1 and Q3. 

In summary then, when Q1 and Qs collide, Q2 will initially absorb 
the required amount of radiation density from Q1 and Q3 as well as all 
resonantly paired solitons, with the remaining radiation density and un
paired solitons being transmitted without any time delay. Then later, 
Q2 will decay, releasing the resonantly paired solitons, which then form 
N-soliton tails onto Qx and Q3. 

4. The SBS Case. The last case is called the SBS (stimulated back-
scattering) case, since typically, the highest frequency envelope is a la
ser pulse (Q3), Ç1 is a backscattered laser envelope, and Q2 is a positive 
energy plasma or acoustic wave of low velocity. Then we have 
(YI> Y2> YS) = ( - > - > + ) which gives 

(25a) fW = -<7(1)* (BS wave), 

(25b) r<2) = +<7(2)* (Acoustic Wave), 

(25c) i<3> = +9(3)* (Incident Wave). 

Now, since only the BS wave (which is usually zero initially) can have 
solitons, no soliton exchange effects will occur, and we shall only be in
terested in how the total radiation is exchanged. 

Of prime importance in this case is the "reflection coefficient," R, 
which is the ratio of the backscattered total radiation (action) to the in
cident total radiation. 

(26) 

where from (17) 

(27) 

R = ^ 

Nf» = i . 

S-^\q,w\2dx 
S-°L\qoi3)\2dx' 

n > l n [ l + l7>(A)]; 
77 
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Figure 13. A typical example of the SBS case for a colliding laser and acoustic pulse. 
The backscattered pulse is the solid curve in Figure 13b. 
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and from (10) and (18) 

(28) 
r (2)r (3) 

r (i) — 1o L o 
l + r0<» 

In Figure 13, we show the computer simulations for a typical non
linear example. In Figure 13a, we see the initial profile, and in Figure 
13b, we see essentially the final state. Note the characteristic large in
itial BS peak (Ç)x) and the "ringing" which follows. In general (since 
only radiation is involved), this case is characterized by strong os
cillations. 

Directly from the simulations, we find that R = .5874 for this ex
ample. If we calculate R from the theory, Eqs. (26)-(28), we find that 

100 

Figure 14. The SBS reflection coefficient, R, as a function of laser area (A() and ampli
tude (Qt), for a fixed acoustic pulse. 
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Figure 15. The SBS reflection coefficient, R, as a function of laser area (Ae) and acoustic 
area (Aa). Note the sharp threshold for Aa small. 

R = .5445. The discrepancy is entirely due to the strong BS oscillations 
still in the interaction region, which are very slowly decaying away. 

In the final two figures, we show how R is affected by the intial la
ser and acoustic pulses. If the initial envelopes are square, as in Figure 
13, one has closed form solutions for ro

(3) and T0
(2), with which the in

tegral in (27) may be numerically evaluated. In Figure 14 we show R 
vs. the area of the laser pulse, A£, for various laser amplitudes, Qp 

when the acoustical pulse has an amplitude of 0.1 and a length of 2.0. 
Note that although R —* 1 for sufficiently large Ap if we compress the 
laser pulse (A/ fixed and increase Q£), R decreases. In Figure 15, we 
again plot R vs. Afi but now for various values of the area of the acous
tic pulse, Aa, with the amplitudes of the laser (acoustic) pulse fixed at 
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1.0 (0.1). One notes that as Aa decreases, we are seeing a "threshold" 
appear. Returning to (26-28), one can show [8] that this threshold area 
of the laser pulse is given by 

(29) A^ s inh-^l/AJ. 

When the area of the laser pulse is less than the above value, R ~ 0, 
and when At rises above the above value, R rapidly rises up to an or
der of unity. 
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