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ON THE SOLUTION OF A FUNCTIONAL EQUATION* 
HELENE AIRAULT 

0. Introduction. The quantum-mechanical problems of n mass points 
on the line interacting pairwise under the influence of a potential pro
portional to the inverse square of the distance or to the square of the 
distance were solved explicitly by F. Calogero [1]. This led him to con
jecture that the classical problems would be integrable. This was estab
lished in [2] for the three-body problem. Then J. Moser [3] introduced 
matrices L and B, and writing the equations in P. Lax's form [4], he 
solved the classical n-particle system on the line with the inverse square 
potential. He successfully applied the method to the potential sin-2* 
and to the Toda lattice. This method was further extended by M. Adler 
[5] to potentials of the form x~2 + ax2. The question arose, to which 
potentials could this method be applied. In the case of the classical n-
body problem characterized by the Hamiltonian 

F. Calogero [6] considered potentials of the form V(x) = 
a(x)a( — x) -f const. Writing P. Lax's condition with 

hk = 8ikPj + (1 - ôjk) «(** - **) 

and 

N 

Bjk = Sjh J J ß(x, - xt) 
m 

- (1 - 8jk) «'(*; - xk) 

he was led to solve the equation (related equations appear in [7, 8]). 

(1) a'(y)a(z) - a(y)a'(z) = a(y + z)[ß(y) - ß(z)]. 

Functions such that ax(x) = bdn(ax)/sn(ax) and a2(x) = bcn(ax)/sn(ax) 
are solutions of (1) and they yield the same potential V(x) — XP(x) + JU, 
where X and JU are two constants and P is the Weierstrass P-function. In 
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particular, when the two periods of P are infinite, one recovers the x~2 

potential, and when one of the periods is finite and the other infinite, 
one finds the sin-2* or the sh~2x potential. 

In the following, we prove that if a and ß are two meromorphic 
functions which satisfy (Ì), then a(x)a( — x) must be equal to XP(x) + /i. 
[When this proof was shown to F. Calogero at the Mathematical Con
gress on Solitons (Tucson, January 1976), he said that he had a different 
proof and he pointed out the work by P. P. Kulish [9] and mentioned 
that another proof was going to appear in Doklady.] In fact (1) is sim
ply an addition formula for Weierstrassian functions. If one defines ax 

by ax
2(z) = P(z) — ex where ex — P(<ox) and {cox} is an irreducible set 

of zeros of F(z) (X = 1, 2, 3), then ax is a solution of (1) and ß is com
puted to be equal to — P(y) + const. 

Now the special form of L and B considered above seems related to 
the motion of three particles. In the case of three mass points inter
acting by means of potentials related by the addition formula 

1 V^y) V^y) 

(2') ( 1 V3(u) V3'(u) j = 0 
V 1 V2(u + y) -V2'(u+y) 

the equations of motion 

Zl = - V3'(*l - Z2Ì - VAZ1 - Zs) 

Z2 = Vs(Zl - Z2Ì - V l ' (*2 - ZS) 

Z3 = V2ÌZ1 ~ Zs) + V l ' (*2 - ZS) 

may be written dL/dt — [L, B]. (The L and B defined in this case are 
slightly different from the ones defined in [6]). This permits us to in
clude the case of the exponential potential with nearest neighbor inter
action (Toda lattice). 

1. The solutions of (1). Assume that a and ß are two meromorphic 
functions which satisfy the equation (1). Consider two points x and y 
and write 

m -ß(-x-y) + ß(-x -y)- ß(x) = ß(y) - ß(x). 

Multiplying by a( — x)a( — y)a(x + y), one obtains 

[a'(y)a(-x - y) - a(y)a'(-x - y)]a(-y)a(x + y) 

+ [« ' ( -* - y)<*(x) - OL(-X- y)a'(x)]a(-x)a(x + y) 

= [<*'(y)*(x) - <*(yW(x)M-*M-y)-
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Using the fact that V(x) = a(x)a(— x), gives 

V(x + y)[a'(y)a(-y) - a'(x)a(-x)] 

- V(y)[a'(-x - y)a(x + y) - a'(x)a(-x)] 

+ V(x)[a'(-x - y)a(x + y) - a'(y)a(-y)] = 0. 

Rewriting the same relation with — y instead of y and — x instead of x, 
and subtracting the second relation from the first, one obtains 

1 V(x) V'(x) 

(2) [ 
1 V(x + y) -V'(x+y) 

1 V(x) V'(x) 

( 1 V(y) V(y) ) = 0. 

The functions V(x) — XP(x) + /A, where P is the Weierstrass function and 
À and jit are two constants, are solutions of (2)(see [11]) and they are the 
only meromorphic ones. A proof of this last fact follows. 

If V has no pole at 0, and verifies (2), one may suppose V(0) = 0 and 
write 

V'(x) 

I 1 0 V'(0) ) = 0 
^ 1 \7/~\ \7f/~\ ' V(x) 

which implies 2V(x)V'(x) — 0 which means V is identically zero. So, if 
V is not a constant, it must have a pole at zero. Writing 
V(z) = az~n + V2(z) one sees that the pole has to be of order 2 and V 
has to be even. One may suppose V2W

 = 0 and a = 1. Then, write 
V(c) = c"~2 -f V2(c) and make c tend to zero in the following equation 

1 V(«) V(u) 

( 1 l/£2 + V2(£) - 2/ê + V2'(£) Ì = 0 

or 

+ 

1 

1 

1 

1 

0 

1 

1 

1 

1 

V(u) 

1/e2 + V2(£) 

V(u + e) 

V(u) 

I/*2 

V(u + e) 

V(u) 

V2(€) 

V(u + «) 

V(u) 

- 2/ê + V2'i 

-V( t t+ .€ ) 

V'(u) 

- 2 A 3 

- V'(u + €) 

V(«) 
V2'(e) 

- V ( « + e) 

( 0 1/e8 - 2 A 3 Ì 

^ 1 V(M + e) - V{u + t) ' 

1 V(u) V(u) ' . 

( 1 V2(c) V2'(e) ) = 0 . 

One obtains 
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1 V(u) V(u) 

2V(u)V'(u) = - lim 4" ( 0 1 - 2 / c ) 

^ 1 V(M + €) - V(u 4- e) ' 

— V"'(u). 

This is the differential equation for the Weierstrass P function. 

Consider the case where V(z) = P(z) — ex (X = 1, 2, 3) where P is the 
Weierstrass function, and as usual, ex — P(cox) where cox (X = 1, 2, 3) is 
an irreducible set of zeros of F(z). One can compute ß in (1) using the 
additional theorems for the Weierstrass sigma-functions [10; 11]. 

Let P(z) - ex - ax
2(z) where ax(z) = ax(z)/o(z) (A = 1, 2, 3). Recall 

that ox(z) = o(z + <ox)/a((ox) exp ( — STJ x) where 

Vx = ?(wx). 

Rewrite (1), 

a(y) a(z) 

Using [10, p. 29], 

<(y) _ J_ l og
 ax(y) 

«x(t/) dt/ a(y) 

i J*(y) 
2 % ) - * x 

where {/A, *>, X} = {1, 2, 3}. Then 

<*\(y) <(z) _ °M°v(y) , 

a(y)a(z) 

«^(yWy) 
°\(y)°(y) 

°ß(zK(z) 
ax(y) «*(*) °\(y)°(y) «^M«) 

Now reduce to the same denominator and use [10, D-7, p. 51] 

-<>u(y)°Ày)°\(z)°(z) + °u(z)°Àz)°\(y) = °\(y + z)°(y - 4 

So, one has to prove 

°(y + My - z ) _ 
o2(y)o2(z) ,,,^ = I«») - » 

Use [10, D-I, p. 51], 

«(* + </M«/ - z ) = °2(«/K2(z) - °x2(</)°2(z)-
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Dividing by a2(y)a2(z), one gets 

°\2(y) qx2(*) _ _ ß(u) . ß(z) 

then 

ß(y) = - « x % ) (X = l, 2, 3). 

As ß is determined up to an additive constant, one may take 

ß(y) = - % ) • 

2. The case of three mass points. Consider now the motion of three 
particles, under the action of three potentials. Denote by zv z2> z3 the 
positions and by pv p2> p3 the momenta. Between zk and zp the poten
tial Vj acts, where i ¥= \ ¥* k and {i, ;, k) = {1, 2, 3). Let Vk'(z), 
k = 1, 2, 3, denote the derivative of Vk. The equations of motion are 

Zl = -Vs(Zl - Z2Ì - V2'(Z± - Z3) 

h = vz\zi -%)- vi'(*2 - %) 

h = v2r(*i - %) + ^i ' fe - *3)-

The potential function is 

U(zv z2, z3) = V3(z1 - z2) + V ^ - z3) 

+ V2(Ä! - *3). 

One defines al9 a2, a3 by Vfc(z) = afe
2(s) + A where À is a constant, 

k = 1, 2, 3. Let 

and 

£ 

( 

/ *•! »«3 ^1 - ^ »«2 (zl - Z3> \ 

= ( *«3'(
Z1 - Z

2)
 K2 »«l'fe - *s) ) 

Pi 

- W * i - ^ ) 

-*«2(*1 - H) 

« 1 

ta3
,(z1 - Z2) 

fo2'(*l - «3) 

W * ! - Z2> 

V2 

-iax{z2 - z3) 

ia3\zt - z2) 

K2 

ia^z2 - z3) 

ia2(z1 - z3) 

ia±(z2 - z3) 

Ps 

ia2'(zt - z3) 

ia{(z2 - z3) 

^ 

THEOREM. The condition dL/dt — [L, B] is equivalent to the equations 
of motion if and only if the three potentials Vv V2, V3 satisfy the fol
lowing identity: 
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/ 1 Viti) V/(y) v 
(3) i 1 V3(«) V3'(u) ) = 0 

1 V2(u + y) -V2'(u + y) 

for ail u and y. 

PARTICULAR CASES: (1) V = V1 = V2 = V3 which gives V(y) = 
aP(y) + b. (2) V = V± = V3 and V2 = 0 which implies V(x) = Xerx: 
This case corresponds to a small Toda lattice. (3) V1(t/) = aP(y) + b and 
V2 = V3 = a % + d) + a 

PROOF. Call a3 = a^^ — z2); a2 = a2(
zi ~ %) an(* a i — ai(*2 ~~ 3̂)-

The condition dL/dt — [L, B] is equivalent to 

r Ì(K2 - K l ) a 3 - « 2 « / - «1«2' = 0 

(4) ^ *(*3 - « l K + «I«/ - «3«/ = 0 
i(K3 - X2)a1 + a2a3' + a2'a3 = 0. 

Multiply each line of (4) respectively by ata2f —a^, and a2a3 and 
add. Then 

( - « 1 « / + a3«3')«22 - («2«2r + «3<*3>12 

+ « o ^ + a2
,a2)a3

2 = 0 

and this is (3). 
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