ON THE SOLUTION OF A FUNCTIONAL EQUATION ${ }^{\dagger}$

HELENE AIRAULT
0 . Introduction. The quantum-mechanical problems of n mass points on the line interacting pairwise under the influence of a potential proportional to the inverse square of the distance or to the square of the distance were solved explicitly by F. Calogero [1]. This led him to conjecture that the classical problems would be integrable. This was established in [2] for the three-body problem. Then J. Moser [3] introduced matrices L and B, and writing the equations in P. Lax's form [4], he solved the classical n-particle system on the line with the inverse square potential. He successfully applied the method to the potential $\sin ^{-2} x$ and to the Toda lattice. This method was further extended by M. Adler [5] to potentials of the form $x^{-2}+\alpha x^{2}$. The question arose, to which potentials could this method be applied. In the case of the classical n body problem characterized by the Hamiltonian

$$
H=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j>k=1}^{n} V\left(x_{j}-x_{k}\right),
$$

F. Calogero [6] considered potentials of the form $V(x)=$ $\boldsymbol{\alpha}(x) \boldsymbol{\alpha}(-x)+$ const. Writing P. Lax's condition with

$$
L_{j k}=\delta_{j k} p_{j}+\left(1-\delta_{j k}\right) \alpha\left(x_{j}-x_{k}\right)
$$

and

$$
\begin{aligned}
B_{j k}= & \delta_{j k} \sum_{\substack{\ell=1 \\
\ell \notin j}}^{N} \beta\left(x_{j}-x_{\ell}\right) \\
& -\left(1-\delta_{j k}\right) \alpha^{\prime}\left(x_{j}-x_{k}\right)
\end{aligned}
$$

he was led to solve the equation (related equations appear in [7, 8]).

$$
\begin{equation*}
\alpha^{\prime}(y) \alpha(z)-\alpha(y) \alpha^{\prime}(z)=\alpha(y+z)[\beta(y)-\beta(z)] . \tag{1}
\end{equation*}
$$

Functions such that $\alpha_{1}(x)=b d n(a x) / \operatorname{sn}(a x)$ and $\alpha_{2}(x)=b c n(a x) / \operatorname{sn}(a x)$ are solutions of (1) and they yield the same potential $V(x)=\lambda P(x)+\mu$, where λ and μ are two constants and P is the Weierstrass P-function. In

[^0]particular, when the two periods of P are infinite, one recovers the x^{-2} potential, and when one of the periods is finite and the other infinite, one finds the $\sin ^{-2} x$ or the ${s h^{-2} x}$ potential.

In the following, we prove that if α and β are two meromorphic functions which satisfy (1), then $\alpha(x) \alpha(-x)$ must be equal to $\lambda P(x)+\mu$. [When this proof was shown to F. Calogero at the Mathematical Congress on Solitons (Tucson, January 1976), he said that he had a different proof and he pointed out the work by P. P. Kulish [9] and mentioned that another proof was going to appear in Doklady.] In fact (1) is simply an addition formula for Weierstrassian functions. If one defines α_{λ} by $\alpha_{\lambda}{ }^{2}(z)=P(z)-e_{\lambda}$ where $e_{\lambda}=P\left(\omega_{\lambda}\right)$ and $\left\{\omega_{\lambda}\right\}$ is an irreducible set of zeros of $P^{\prime}(z)(\lambda=1,2,3)$, then α_{λ} is a solution of (1) and β is computed to be equal to $-P(y)+$ const.

Now the special form of L and B considered above seems related to the motion of three particles. In the case of three mass points interacting by means of potentials related by the addition formula

$$
\left(\begin{array}{llc}
1 & V_{1}(y) & V_{1}^{\prime}(y) \\
1 & V_{3}(u) & V_{3}^{\prime}(u) \\
1 & V_{2}(u+y) & -V_{2}^{\prime}(u+y)
\end{array}\right)=0
$$

the equations of motion

$$
\begin{aligned}
& \ddot{z}_{1}=-V_{3}^{\prime}\left(z_{1}-z_{2}\right)-V_{2}^{\prime}\left(z_{1}-z_{3}\right) \\
& \ddot{z}_{2}=V_{3}^{\prime}\left(z_{1}-z_{2}\right)-V_{1}^{\prime}\left(z_{2}-z_{3}\right) \\
& \ddot{z}_{3}=V_{2}^{\prime}\left(z_{1}-z_{3}\right)+V_{1}^{\prime}\left(z_{2}-z_{3}\right)
\end{aligned}
$$

may be written $d L / d t=[L, B]$. (The L and B defined in this case are slightly different from the ones defined in [6]). This permits us to include the case of the exponential potential with nearest neighbor interaction (Toda lattice).

1. The solutions of (1). Assume that α and β are two meromorphic functions which satisfy the equation (1). Consider two points x and y and write

$$
\beta(y)-\beta(-x-y)+\beta(-x-y)-\beta(x)=\beta(y)-\beta(x) .
$$

Multiplying by $\alpha(-x) \alpha(-y) \alpha(x+y)$, one obtains

$$
\begin{aligned}
& {\left[\alpha^{\prime}(y) \alpha(-x-y)-\alpha(y) \alpha^{\prime}(-x-y)\right] \alpha(-y) \alpha(x+y)} \\
& \quad+\left[\alpha^{\prime}(-x-y) \alpha(x)-\alpha(-x-y) \alpha^{\prime}(x)\right] \alpha(-x) \alpha(x+y) \\
& =\left[\alpha^{\prime}(y) \alpha(x)-\alpha(y) \alpha^{\prime}(x)\right] \alpha(-x) \alpha(-y)
\end{aligned}
$$

Using the fact that $V(x)=\alpha(x) \alpha(-x)$, gives

$$
\begin{aligned}
& V(x+y)\left[\alpha^{\prime}(y) \alpha(-y)-\alpha^{\prime}(x) \alpha(-x)\right] \\
& \quad-V(y)\left[\alpha^{\prime}(-x-y) \alpha(x+y)-\alpha^{\prime}(x) \alpha(-x)\right] \\
& \quad+V(x)\left[\alpha^{\prime}(-x-y) \alpha(x+y)-\alpha^{\prime}(y) \alpha(-y)\right]=0 .
\end{aligned}
$$

Rewriting the same relation with $-y$ instead of y and $-x$ instead of x, and subtracting the second relation from the first, one obtains

$$
\left(\begin{array}{lll}
1 & V(x) & V^{\prime}(x) \tag{2}\\
1 & V(y) & V^{\prime}(y) \\
1 & V(x+y) & -V^{\prime}(x+y)
\end{array}\right)=0
$$

The functions $V(x)=\lambda P(x)+\mu$, where P is the Weierstrass function and λ and μ are two constants, are solutions of (2)(see [11]) and they are the only meromorphic ones. A proof of this last fact follows.

If V has no pole at 0 , and verifies (2), one may suppose $V(0)=0$ and write

$$
\left(\begin{array}{ccc}
1 & V(x) & V^{\prime}(x) \\
1 & 0 & V^{\prime}(0) \\
1 & V(x) & -V^{\prime}(x)
\end{array}\right)=0
$$

which implies $2 V(x) V^{\prime}(x)=0$ which means V is identically zero. So, if V is not a constant, it must have a pole at zero. Writing $V(z)=a z^{-n}+V_{2}(z)$ one sees that the pole has to be of order 2 and V has to be even. One may suppose $V_{2}(0)=0$ and $a=1$. Then, write $V(\epsilon)=\epsilon^{-2}+V_{2}(\epsilon)$ and make ϵ tend to zero in the following equation

$$
\left(\begin{array}{ccc}
1 & V(u) & V^{\prime}(u) \\
1 & 1 / \epsilon^{2}+V_{2}(\epsilon) & -2 / \epsilon^{3}+V_{2}^{\prime}(\epsilon) \\
1 & V(u+\epsilon) & -V^{\prime}(u+\epsilon)
\end{array}\right)=0
$$

or

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & V(u) & V^{\prime}(u) \\
0 & 1 / \epsilon^{2} & -2 / \epsilon^{3} \\
1 & V(u+\epsilon) & -V^{\prime}(u+\epsilon)
\end{array}\right) \\
+\left(\begin{array}{ccc}
1 & V(u) & V^{\prime}(u) \\
1 & V_{2}(\epsilon) & V_{2}^{\prime}(\epsilon) \\
1 & V(u+\epsilon) & -V^{\prime}(u+\epsilon)
\end{array}\right)=0 .
\end{gathered}
$$

One obtains

$$
\begin{aligned}
2 V(u) V^{\prime}(u) & =-\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{2}}\left(\begin{array}{ccc}
1 & V(u) & V^{\prime}(u) \\
0 & 1 & -2 / \epsilon \\
1 & V(u+\epsilon) & -V^{\prime}(u+\epsilon)
\end{array}\right) \\
& =\frac{1}{6} V^{\prime \prime \prime}(u) .
\end{aligned}
$$

This is the differential equation for the Weierstrass P function.
Consider the case where $V(z)=P(z)-e_{\lambda}(\lambda=1,2,3)$ where P is the Weierstrass function, and as usual, $e_{\lambda}=P\left(\omega_{\lambda}\right)$ where $\omega_{\lambda}(\lambda=1,2,3)$ is an irreducible set of zeros of $P^{\prime}(z)$. One can compute β in (1) using the additional theorems for the Weierstrass sigma-functions [10; 11].

Let $P(z)-e_{\lambda}=\alpha_{\lambda}{ }^{2}(z)$ where $\alpha_{\lambda}(z)=\sigma_{\lambda}(z) / \sigma(z)(\lambda=1,2,3)$. Recall that $\sigma_{\lambda}(z)=\sigma\left(z+\omega_{\lambda}\right) / \sigma\left(\omega_{\lambda}\right) \exp \left(-s \eta_{\lambda}\right)$ where

$$
\eta_{\lambda}=\zeta\left(\omega_{\lambda}\right)
$$

Rewrite (1),

$$
\frac{\alpha^{\prime}(y)}{\alpha(y)}-\frac{\alpha^{\prime}(z)}{\alpha(z)}=[\beta(y)-\beta(z)] \frac{\alpha(y+z)}{\alpha(y) \alpha(z)}
$$

Using [10, p. 29],

$$
\begin{aligned}
\frac{\alpha_{\lambda}{ }^{\prime}(y)}{\alpha_{\lambda}(y)} & =\frac{d}{d y} \log \frac{\sigma_{\lambda}(y)}{\sigma(y)} \\
& =\frac{1}{2} \frac{P^{\prime}(y)}{P(y)-e_{\lambda}}=-\frac{\sigma_{\mu}(y) \sigma_{\nu}(y)}{\sigma_{\lambda}(y) \sigma(y)}
\end{aligned}
$$

where $\{\mu, \nu, \lambda\}=\{1,2,3\}$. Then

$$
\frac{\alpha_{\lambda}{ }^{\prime}(y)}{\alpha_{\lambda}(y)}-\frac{\alpha_{\lambda}{ }^{\prime}(z)}{\alpha_{\lambda}(z)}=-\frac{\sigma_{\mu}(y) \sigma_{\nu}(y)}{\sigma_{\lambda}(y) \sigma(y)}+\frac{\sigma_{\mu}(z) \sigma_{\nu}(z)}{\sigma_{\lambda}(z) \sigma(z)} .
$$

Now reduce to the same denominator and use [10, D-7, p. 51]

$$
-\sigma_{\mu}(y) \sigma_{\nu}(y) \sigma_{\lambda}(z) \sigma(z)+\sigma_{\mu}(z) \sigma_{\nu}(z) \sigma_{\lambda}(y)=\sigma_{\lambda}(y+z) \sigma(y-z) .
$$

So, one has to prove

$$
\frac{\sigma(y+z) \sigma(y-z)}{\sigma^{2}(y) \sigma^{2}(z)}=[\beta(y)-\beta(z)]
$$

Use [10, D-I, p. 51],

$$
\sigma(z+y) \sigma(y-z)=\sigma^{2}(y) \sigma_{\lambda}^{2}(z)-\sigma_{\lambda}^{2}(y) \sigma^{2}(z)
$$

Dividing by $\sigma^{2}(y) \sigma^{2}(z)$, one gets

$$
\frac{\sigma_{\lambda}^{2}(y)}{\sigma^{2}(y)}-\frac{\sigma_{\lambda}^{2}(z)}{\sigma^{2}(z)}=-\beta(y)+\beta(z)
$$

then

$$
\beta(y)=-\alpha_{\lambda}^{2}(y) \quad(\lambda=1,2,3)
$$

As β is determined up to an additive constant, one may take $\beta(y)=-P(y)$.
2. The case of three mass points. Consider now the motion of three particles, under the action of three potentials. Denote by z_{1}, z_{2}, z_{3} the positions and by p_{1}, p_{2}, p_{3} the momenta. Between z_{k} and z_{i}, the potential V_{j} acts, where $i \neq j \neq k$ and $\{i, j, k\}=\{1,2,3\}$. Let $V_{k}{ }^{\prime}(z)$, $k=1,2,3$, denote the derivative of V_{k}. The equations of motion are

$$
\begin{aligned}
& \ddot{z}_{1}=-V_{3}^{\prime}\left(z_{1}-z_{2}\right)-V_{2}^{\prime}\left(z_{1}-z_{3}\right) \\
& \ddot{z}_{2}=V_{3}^{\prime}\left(z_{1}-z_{2}\right)-V_{1}^{\prime}\left(z_{2}-z_{3}\right) \\
& \ddot{z}_{3}=V_{2}^{\prime}\left(z_{1}-z_{3}\right)+V_{1}^{\prime}\left(z_{2}-z_{3}\right) .
\end{aligned}
$$

The potential function is

$$
\begin{aligned}
U\left(z_{1}, z_{2}, z_{3}\right)= & V_{3}\left(z_{1}-z_{2}\right)+V_{1}\left(z_{2}-z_{3}\right) \\
& +V_{2}\left(z_{1}-z_{3}\right) .
\end{aligned}
$$

One defines $\alpha_{1}, \alpha_{2}, \alpha_{3}$ by $V_{k}(z)=\alpha_{k}{ }^{2}(z)+\lambda$ where λ is a constant, $k=1,2,3$. Let

$$
L=\left(\begin{array}{ccc}
p_{1} & i \alpha_{3}\left(z_{1}-z_{2}\right) & i \alpha_{2}\left(z_{1}-z_{3}\right) \\
-i \alpha_{3}\left(z_{1}-z_{2}\right) & p_{2} & i \alpha_{1}\left(z_{2}-z_{3}\right) \\
-i \alpha_{2}\left(z_{1}-z_{3}\right) & -i \alpha_{1}\left(z_{2}-z_{3}\right) & p_{3}
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccc}
K_{1} & i \alpha_{3}{ }^{\prime}\left(z_{1}-z_{2}\right) & i \alpha_{2}{ }^{\prime}\left(z_{1}-z_{3}\right) \\
i \alpha_{3}{ }^{\prime}\left(z_{1}-z_{2}\right) & K_{2} & i \alpha_{1}{ }^{\prime}\left(z_{2}-z_{3}\right) \\
i \alpha_{2}{ }^{\prime}\left(z_{1}-z_{3}\right) & i \alpha_{1}{ }^{\prime}\left(z_{2}-z_{3}\right) & K_{3}
\end{array}\right)
$$

Theorem. The condition $d L / d t=[L, B]$ is equivalent to the equations of motion if and only if the three potentials V_{1}, V_{2}, V_{3} satisfy the following identity:

$$
\left(\begin{array}{llc}
1 & V_{1}(y) & V_{1}^{\prime}(y) \tag{3}\\
1 & V_{3}(u) & V_{3}^{\prime}(u) \\
1 & V_{2}(u+y) & -V_{2}^{\prime}(u+y)
\end{array}\right)=0
$$

for all u and y.
Particular Cases: (1) $V=V_{1}=V_{2}=V_{3}$ which gives $V(y)=$ $a P(y)+b$. (2) $V=V_{1}=V_{3}$ and $V_{2}=0$ which implies $V(x)=\lambda e^{r x}$: This case corresponds to a small Toda lattice. (3) $V_{1}(y)=a P(y)+b$ and $V_{2}=V_{3}=a P(y+d)+c$.

Proof. Call $\alpha_{3}=\alpha_{3}\left(z_{1}-z_{2}\right) ; \alpha_{2}=\alpha_{2}\left(z_{1}-z_{3}\right)$ and $\alpha_{1}=\alpha_{1}\left(z_{2}-z_{3}\right)$. The condition $d L / d t=[L, B]$ is equivalent to

$$
\left\{\begin{array}{l}
i\left(K_{2}-K_{1}\right) \alpha_{3}-\alpha_{2} \alpha_{1}^{\prime}-\alpha_{1} \alpha_{2}^{\prime}=0 \tag{4}\\
i\left(K_{3}-K_{1}\right) \alpha_{2}+\alpha_{1} \alpha_{3}^{\prime}-\alpha_{3} \alpha_{1}^{\prime}=0 \\
i\left(K_{3}-K_{2}\right) \alpha_{1}+\alpha_{2} \alpha_{3}{ }^{\prime}+\alpha_{2}{ }^{\prime} \alpha_{3}=0 .
\end{array}\right.
$$

Multiply each line of (4) respectively by $\alpha_{1} \alpha_{2},-\alpha_{1} \alpha_{3}$, and $\alpha_{2} \alpha_{3}$ and add. Then

$$
\begin{aligned}
\left(-\alpha_{1} \alpha_{1}^{\prime}+\alpha_{3} \alpha_{3}{ }^{\prime}\right) \alpha_{2}^{2} & -\left(\alpha_{2} \alpha_{2}^{\prime}+\alpha_{3} \alpha_{3}{ }^{\prime}\right) \alpha_{1}^{2} \\
& +\left(\alpha_{1}^{\prime} \alpha_{1}+\alpha_{2}^{\prime} \alpha_{2}\right) \alpha_{3}^{2}=0
\end{aligned}
$$

and this is (3).

References

1. F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419-436.
2. F. Calogero and C. Marchioro, Exact solution of a one-dimensional three-body scattering problem with two-body and/or three-body inverse-square potentials, J. Math. Phys. 15 (1974), 1425-1430.
3. J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Advances in Math. 16 (1975), 197-220.
4. P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490.
5. M. Adler, A new integrable system and a conjecture by Calogero, preprint (1975).
6. F. Calogero, Exactly solvable one-dimensional many-body problems, Lett. Nuovo Cimento 13 (1975), 411-416.
7. \longrightarrow One-dimensional many-body problems with pair interactions whose exact ground-state wave function is of product type, Lett. Nuovo Cimento 13 (1975), 507-511.
8. B. Sutherland, Exact ground-state wave function for a one-dimensional plasma, Phys. Rev. Lett. 34 (1975), 1083-1085.
9. P. P. Kulish, Factorization of the classical and quantum S-matrix and conservation laws, Serpukhov (IHEP. 75-123) (Refs. 10), 13 (1975).
10. K. Weierstrass, Formeln und Lehrsätze sum Gebrauche der elliptischen Functionen, Berlin, Springer, 1893.
11. H. Bateman, Higher Transcendental Functions, Vol. 2, New York, McGraw-Hill, 1953.

Institut Henri Poincare, 11 ure Pierre et Marie Curie, 75.005-Paris, France

[^0]: ${ }^{\dagger}$ Supported in part by a grant from the National Science Foundation under the United States/French Exchange Program.

