ON p'-AUTOMORPHISMS OF ABELIAN p-GROUPS

MORTON E. HARRIS

All groups in this article are finite. Our notation is standard. In particular, let p denote an arbitrary prime integer, let P denote an arbitrary abelian p-group, let F denote the field $\mathbb{Z}l(p)$ and let A be a p'-subgroup of $\operatorname{Aut}(P)$.

This basic situation is discussed, for example, in $[1, \S 5.2]$ and in [2, I, Aufgaben 68-69]. These references show that if P is A-indecomposable, then P is homocyclic. However, it is possible to extend this result to:

THEOREM. P is A-indecomposable if and only if A acts irreducibly on $\Omega_1(P)$.

Before describing a proof of this result, we present two applications. First suppose that P is A-indecomposable. Thus P is homocyclic. Let $\exp(P) = p^n$. Then, for each integer i with $1 \le i < n$, the endomorphism \overline{i} of P defined by $\overline{i}: x \to x^{p^i}$ lies in the center of the ring $\operatorname{End}(P)$ and \overline{i} induces an A-isomorphism \widetilde{i} of $P/\Phi(P)$ onto $\Omega_{n-i}(P)/\Omega_{n-i-1}(P)$. Hence each of the elementary abelian p-groups $\Omega_j(P)/\Omega_{j-1}(P)$ for $1 \le j \le n$ is A-isomorphic to $\Omega_1(P)$. Thus [1, 3.2.2, 5.1.4 and [5.3.2] yield:

COROLLARY 1. If P is A-indecomposable with $\exp(P) = p^n$, then:

- (a) $\{\Omega_i(P) \mid 0 \le i \le n\}$ is the set of A-invariant subgroups of P;
- (b) every A-invariant subquotient of P is A-indecomposable;
- (c) A acts faithfully and irreducibly on $\Omega_1(P)$ and Z(A) is cyclic; and
- (d) all A-composition factors of P are A-isomorphic to $\Omega_1(P)$.

Next let P be arbitrary and let $\{V_i \mid 1 \le i \le s\}$ be a set of representatives for the distinct isomorphism types of irreducible representations of F[A] where A acts trivially on V_1 and let

$$(*) P = P_1 \times P_2 \times \cdots \times P_r$$

be a direct decomposition of P into A-indecomposable subgroups. For $1 \le i \le s$, let Q_i be the (direct) sum of all P_j such that $\Omega_1(P_j)$ is F[A]-isomorphic to V_i . Clearly $Q_1 \le C_P(A)$, $[Q_j, A] = Q_j$ if j > 1, $[P, A] = \prod_{j=2}^s Q_j$ and $C_P(A) \cap \prod_{j=2}^s Q_j = 1$. Hence:

COROLLARY 2. Under these conditions, the following hold:

- (a) $P = Q_1 \times Q_2 \times \cdots \times Q_s$ is a direct decomposition of P where for each i with $1 \le i \le s$, Q_i is the join of all A-indecomposable A-invariant subgroups R of P such that $\Omega_1(R)$ is F[A]-isomorphic to V_i ;
- (b) Q_i is independent of the direct decomposition choice (*) of P into A-indecomposable subgroups; and
- (c) $C_P(A) = Q_1 \text{ and } [P, A] = \prod_{j=2}^s Q_j$.

Note that we have obtained an alternate proof of [1, 5.2.3.]. Finally, we sketch a

PROOF OF THE THEOREM. Assume that |P| is minimal subject to (i) P is A-indecomposable and (ii) $\Omega_1(P)$ is not F[A]-irreducible. Thus P is homocyclic and $\overline{P} = P/\Phi(P)$ is not F[A]-irreducible. Let $\exp(P) = p^n$ and $|P| = p^{nt}$. Then Maschke's theorem implies that n > 1 and that there are v > 1 proper A-invariant subgroups X_i with $\Phi(P) < X_i$ and $\overline{P} = \overline{X}_1 \times \cdots \times \overline{X}_v$ such that $\overline{X}_i = X_i/\Phi(P)$ is F[A]-irreducible for all $1 \le i \le v$. Then $X_i = Y_i \times Z_i$ with Y_i , Z_i invariant under A, $\exp(Z_i) < \exp(Y_i) = p^n$ and with Y_i homocyclic. Since $Z_i \le \Phi(P)$, we have $P = \prod_{i=1}^v Y_i$. But $Y_i/\Phi(Y_i)$ is F[A]-isomorphic to \overline{X}_i and an easy order calculation shows that $|P| = \prod_{i=1}^v |Y_i|$. Thus $P = Y_1 \times \cdots \times Y_v$, which is impossible and we are done.

The theorem of this note has been independently proved in §6 of [D. R. Taunt, On A-groups, Proc. Camb. Phil. Soc. 45 (1949), 24-42].

REFERENCES

- 1. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- 2. B. Huppert, Endliche Gruppen I, Springer Verlag, Berlin, 1967.

University of Minnesota, Minneapolis, Minnesota 55455.