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EVENTUALLY p-VALENT FUNCTIONS 

DOUGLAS MICHAEL CAMPBELL* 

I. Introduction. In this paper we introduce the concept of eventual 
p-valence and investigate properties of eventually p-valent functions. 
Let <s4(D) denote the set of all functions f(z) which are analytic in 
\z\ < 1. We define a function/(z) in <s4(D) to be eventually p-valent if 
there is a neighborhood H^ of infinity such that for all w ŒcW,f(z) = 
w has at most p roots in \z\ < 1. Since eventual p-valence does not 
depend upon averaging properties, it is a natural concept for geometric 
function theory. Although the idea of eventual p-valence is hinted at 
in the literature, eventually p-valent functions have not been sys
tematically investigated. 

In Table 1 we summarize the necessary relations among functions 
which are eventually p-valent, areally mean p-valent, circumferentially 
p-valent or weakly p-valent. The proofs of some of these necessary 
relations are simplified by considering the set of all normalized locally 
univalent functions in <^{D) with the real normed linear space structure 
introduced and developed in [11], [4]. We show that the concept of 
eventual p-valence is a meaningful linear invariant property while the 
notions of areal mean p-valence and circumferential mean p-valence 
are not meaningful linear invariant properties. 

We define the growth of an analytic function in cA(D) in terms of its 
maximum modulus M(r,f) and show that growth fis a linear invariant 
concept. This allows us to form a new partitioning of the (universal) 
families cUa of Pommerenke [20] and leads to the definition of the 
(universal) families (lü. If f(z) is eventually p-valent, we show that 
M(r,f) = 0((1 - r)-2"). 

We extend the Asymptotic Bieberbach Conjecture of G. Wing [22] 
to functions which are not even locally univalent. We conclude with 
four open questions suggested by the Extended Wing Theorem. 

II. Definitions and Preliminary Notions. We let £ denote the set of 
all Möbius transformations of D = {|;z| < 1} onto D and let JL.S. denote 
the set of all functions of the form f(z) = z + • • • which are analytic 
and locally univalent (f'(z) jt 0) in D. If Ji/l is a family of functions in 
£.£., we say that JH is a linear invariant family [20, p. 112] if and only 
if for every (f)(z) in Ẑ, the function 
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m A r r M 1 /(*(*))-/(<fr(0)) ^ | . . . 

is again in 4̂1. 
The order o/a Zinear invariant family JH is defined as [20, p. 115] 

a = s u p { i r ( 0 ) / 2 | : / E ^ M } . 

The union of all linear invariant families of order at most a is denoted 
fZ/a. The (universal) family çUa is linear invariant and if a is less than 1, 
then rUa is empty [20, p. 117]. The family *\lx is precisely the set of all 
normalized convex univalent functions. The function (2£y) -1([l + 
z)/(l — z)]iy — 1), which has infinite valence, is in çUa for a = (1 + 
r 2 ) l / 2 ? y > 0 . 

If f(z) is in £.£., then it generates a linear invariant family in a 
natural manner. We let 

^ [ / ] = {A^[/] : ^ ) e ; } . 

Since ^ is a group under composition, it is easy to check that JH[f] is 
indeed a linear invariant family. The order of a function f(z) G £.<£. 
(abbreviated order / ) is defined to be the order of the linear invariant 
family which it generates and is given by [20, p. 115] 

(2) o r d e r / = sup{|*(z,/)| : z G D} 

where t(zj) = -z + (1 - \z\2)f"(z)l2f'(z). 
Geometric function theory gives rise to many linear invariant 

families. Each of the following sets of normalized analytic functions in 
D is a linear invariant family: (a) univalent functions (order = 2) (b) 
convex univalent functions (order = 1) (c) Close to convex functions of 
order ß (order = 0 + 1 ) (d) functions whose boundary rotation is 
g M(order = M/2TT) [2]. 

The fundamental property of the families çUa which is of interest 
later in this paper is that for any function f(z) in çUa [20, p. 115] 

(3) w^hiCïHY-1)^-'*1-
It will be useful to refer to the collection of all functions of finite 

order in £.£. and to put a normed vector space structure on this set. We 
let 

X = U n±a 
a i l 

and consider X as a real linear space with the operations 
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[a/] (2 )= r ( / ' ( £ ) ) a # ( / G X , a real) 

(square brackets will indicate the algebraic operations in X). These 
operations in £.£. were introduced by Hornich [11] and applied to X 
by Campbell, Cima and Pfaltzgraff [4]. We define the norm of a func
t i o n / ^ ) G X by 

11/11 = sup{(l - \z\)\f"(z)lf'(z)\ : z G D}. 

The main result of use in this paper is that the real valued function 
/—> order / i s a continuous function on (X, || ||) and in fact [4, Lemma 
3.1] for a n y / g G X 

(4) | o r d e r / - o r d e r g | = Ì | | [ / - g ] | | . 

We now let f(z) be an arbitrary analytic function in D and let 
n(Reid) denote the number of roots counting mulitplicity of the equa
tion/(z) = Reid for z in D. 

1. IfforeachR,0< R < » , 

J n(Ret6)d$^27rp, 

where p is a fixed positive real number, then we say that / (z) is cir-
cumferentially mean p-valent [10] abbreviated c.m.p.v. 

2. IfforeachR,0< R< » , 
ffl f27r 

n(reid)r dO dr ^ np R2, 
Jo Jo 

where p is a fixed positive real number, then we say that/(z) is areally 
mean p-valent [10], abbreviated a.m.p.v. 

3. If for each R, 0 < R < » , we have either n(Reiö) = p for each 0, 
0 S 0 ̂  2TT or n(Reiö) < p for some 0, 0 ^ 0 ^ 27r, then we say that 
f(z) is weakly p-valent [ 10], abbreviated w.p.v. In this case p is 
necessarily a fixed positive integer. 

4. If there is an Rf such that for each R, 0 ^ Ry < R < a> we have 

n(Reie)^p90^6^2ir, 

then we say that / (z) is eventually p valent, abbreviated e.p.v. In this 
case p is necessarily a nonnegative integer. 

Clearly, if/(z) is a.m.p.v., c.m.p.v., w.p.v. or e.p.v., then it is a.m.q.v., 
c.m.q.v., w.q.v. or e.q.v., respectively, for any q = p. 
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The fundamental property of functions which are a.m.p.v., c.m.p.v. 
or w.p.v., which is of interest in this paper, is that for any such function 

(5) M(r,f) = 0((1 - r)-*0 

where M(r,f) = max|/(z)| on \z\ = r. (see [10] and [7, p. 159] ). 
The interrelations between c.m.p.v., a.m.p.v. and w.p.v. are known 

(see Table 1). 
We conclude this section with an examination of three well known 

functions in JL.£.\ 

(6> W-ÌKT^J)"-1)-"*1-

<7> *>-i((£fr-iw 
(8) f(z) = J(l - e-*"-*). 

The function (6) maps the disc to an angular sector (which is over
lapping if a > 2) with vertex — l/(2a) and angular aperture air. It is in 
çliOL [20, p. 117] and the geometry of the mapping yields that is cir-
cumferentially mean p-valent and areally mean p-valent for p = 
max(l, a/2). Let q be the smallest integer greater than or equal to 
a/2, then (6) is eventually q -valent and weakly s-valent (s = max(l, q — 

1)). 
The function (7) is bounded, it is in T^ for a = (1 4- y2)1'2 and has 

infinite valence [20, p. 128]. The function (8) is bounded, is not in X 
since \f'(z)lf'(z)\ = 0((1 — |z |) - 2) and it also has infinite valence. 

No function in X can be a.m.p.v. or c.m.p.v. for any 0 < p < 1. This 
is an elementary consequence of the covering properties of functions of 
order a which always provide at least a one-sheeted covering of \w\ < 
l/(2a). Thus for 0 < R < II(2a) any function of order a must auto
matically be at least c.m.l.v. and a.m.l.v. 

III. Relationships between e.p-valence and other concepts of p-
valence. 

In this section we show that e.p.v. neither implies nor is implied by 
a.m.p.v., c.m.p.v., w.p.v. or membership in <lLa; consequently, e.p.v., is 
logically independent of these other concepts. We also examine the 
relations between membership in *Ua and w.p.v., a.m.p.v. or c.m.p.v. 

The function (8) is bounded and covers a neighborhood of the origin 
infinitely often and is not in rUa for any a. Its boundedness assures us 
that it is e.p.v. for any p; its covering of a neighborhood of the origin 
infinitely often prevents it from being w.p.v., c.m.p.v. or a.m.p.v. for 



p-VALENT FUNCTIONS 643 

any p. Consequently e.p.v. does not imply w.p.v., c.m.p.v. or a.m.p.v, 
or membership in <7̂ a. 

*"« 

false 
(8) 

false 
Remark 1 

false 
Remark 1 

false 
Remark 1 

e.p.v. 

false 
Theorem 2 

false 
Theorem 1 

false 
Theorem 1 

false 
Theorem 1 

c.m.p.v. 

false 
(7) 

false 
(8) 

false 
[10, p. 399] 

false 
[10, p. 399] 

a.m.p.v. 

false 
(7) 

false 
(8) 

true 
[10, p. 399] 

false 
[10, p. 399] 

w.p.v. 

false 
(7) 

false 
(8) 

true 
[10, p. 399] 

false 
[10, p. 399] 

TABLE 1 

THEOREM 1. Let 0 < p < oo. There are functions which are c.m.p.v., 
a.m.p.v. or w.p.v. but which are not e.q.v.for any q. 

PROOF. Since a c.m.p.v. function is automatically a.m.p.v. and w.p.v., 
it suffices to construct for each p > 0 a function which is c.m.p.v. but 
which cannot be e.q.v. for any q. A c.m.p.v. function is c.m.q.v. for all 
q=p, hence we may assume that 0 < p < 1/2. Consider the following 
simply connected Riemann Surface of hyperbolic type. For each posi
tive integer n the surface is a smooth (unbranched) n sheeted covering 
of the annulus 

An = {z : 2-1(n + l)sin(irp/(n + l)2) < \z - n - 1| 

< ( n + l)sin(irp/(n + l)2)}. 

The top sheet over An is connected to the bottom sheet over An+1 by 
means of a smooth one sheeted covering of the quadrilateral with 
vertices {n + 1 — i2_1(n + 1) sin(7rp/(n + l)2), n + 1 — i(n + 
l)sin(irp((n + l)2), n + 2 - i2~1(n + 2)sin(7rp/(n + 2)2), n + 2 -
i(n 4- 2)sin(irpl(n + 2)2)}. Since the projection of this simply connected 
Riemann Surface omits more than three points, it is of hyperbolic type. 
Thus there is a locally univalent analytic function f(z) which maps D 
onto the described configuration. The function cannot be e.q.v. for 
any q and by the construction of the surface 

P* n(Reid) d$ g 2rrp 

^a implies 

e.p.v. 
implies 

c.m.p.v. 
implies 

a.m.p.v. 
implies 

w.p.v. 
implies 

for all 0 < R < oo. 
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THEOREM 2. For each a > 3, there exist junctions in 11« which are 
not eventually p-valentfor any p. 

PROOF. It will suffice to show the existence of a function in rUa which 
covers an entire ray infinitely often. 

The function (7) covers the annulus 

iw :— e-«*'2 <\w + (2iy)-l\ < — e^'2 1 
I 2y 2ry J 

infinitely often. The function 

h(z) = ^Ì&>, A = (e-y'2 + l)/2y 

maps the disc D to an annulus which lies entirely inside the unit disc 
and which is internally tangent to D at z = 1 and which covers all 
points of the segment (e-7ry/2,1) infinitely often. Consequently the 
function 

„, N Aihlz) 
G(z)= T^W) =z+---

covers the ray {iy : (2y) - 1 coth (nylA) < y) infinitely often and cannot 
be e.q.v. for any q. 

We use (2) to compute the order of G(z) 

\ t ( z C ) \ - I z I 1 - | Z | 2 G"(Z)\ \t(z,G)\- | - z + ^ — ^ | 

= | _ 5 +
 1 - N 2 / " ( g ) . l - N 2 - 2 i f ' | 

I 2 f'(z) 2 A + if\ 

< Ife fil + ( 1 - | Z | 2 ) I / ' ( Z ) I 
- I W J I + A _ | / ( z ) , • 

However, since \h(z)\ < 1, |fc'(z)| ^ (1 - |/i(z)|2)/(l - |z|2) so (1 -
\z\2)\f'(z)\l(A - |/(z)|) ^ 2. We know that |*(z,/)l g (1 + r

2 ) 1 / 2 be
cause/^) has order (1 + y2)1'2. Consequently 

U ( z , G ) | ^ ( l + y 2 ) 1 ' 2 + 2 

which can be made as close to 3 as desired by choosing y sufficiently 
close to 0. Therefore, for each a > 3, there exist functions in rUa which 
are not eventually p-valent for any p. 

The above paragraphs show that e.p.v. neither implies nor is implied 
by membership in üi^ w.p.v., c.m.p.v. or a.m.p.v. 
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REMARK 1. A function which is c.m.p.v., a.m.p.v. or w.p.v. need not 
be in çUa for any a since the function need not even be locally univalent. 
As example (8) shows, there are locally univalent functions which are 
e.p.v. which are not in *7/a. 

The function (7) is bounded and covers a neighborhood of the origin 
infinitely often and is in cUa. It therefore is an example of a function in 
cUa which is not c.m.p.v., a.m.p.v. or w.p.v. for any p. Therefore, 
membership in ^ does not imply c.m.pv, a.m.p.v. or w.p.v. 

This completes an explanation of the entries of Table 1 which list 
the necessary relationships among the concepts c.m.p.v., a.m.p.v., 
w.p.v., e.p.v. and membership in (7/a. 

IV. Linear Invariant Families of Eventually p-valent Functions. 
The concept of e.p.v. is a linear invariant property; that is, every ele
ment of the linear invariant family generated by an e.p.v. function in 
JL.S. is also e.p.v. There are geometric properties which are not linear 
invariant; for example, if f(z) Ç=. JL.S. is starlike with respect to the 
origin, it is not necessarily true that each function in JH[f] is starlike 
with respect to the origin. 

THEOREM 3. Let p be a fixed nonnegative integer. Iff(z) G £.£. is 
eventually p-valent, then each element ofJH[f] is eventually p-valent. 

PROOF. We choose an arbitrary element A^[f(z)] in JH[f] which is 
given by some <f>(z), an automorphism of D. There is an Rx such that 
for all Hi < R < oo 

(9) n(Re^f(z)) ^ p 

Since <f>(z) is an automorphism of D, it is clear that 

(10) n(Re»,f(z)) = n{Ré»,f{4>(z))). 

Let Hi* = (Rj + |/(<K0))|)/|<E'(0)/'(<K0))| < « • Then for all R^ < 
R < oo, we have that 

\<l>\0)f'(<t>(0))Reie+f(<l>(0))\>Ri 

for all 0 g 6 g 2TT. Therefore, 

n ( K ^ , A 4 / ( z ) ] ) = n(<l>'(0)f'(<l>(0))Rei<> + / ( « ( 0 ) ) , / ( ^ ) ) ) 

= n(<f>f(0)f(<t>(0))Re^+f(4>(0)\f(z)) ^ p 

by (1), (10) and (9). This shows that A0[ / (z)] is e.p.v. for all Rx* < 
R < oo and concludes our proof of the theorem. 

Let £.<S.p denote the set of all functions in £.£. which are eventually 
p-valent. 
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DEFINITION. A linear invariant family JH is c.m.p.v. if and only if each 
function f(z) G J\K is c.m.p.v. We make the same definition for an 
e.p.v., w.p.v. or a.m.p.v. linear invariant family. 

Theorem 3 easily yields that £.£.p is a linear invariant family for 
each p. It will follow as a Corollary to Theorem 5 that £.£.p is not 
normal. We now state a necessary and sufficient condition for a linear 
invariant family to be normal which is due to Pommerenke [20, p. 
117]: 

THEOREM 4. [Pommerenke] Let JH be a linear invariant family of 
order a. JH is normal if and only if a is finite. 

THEOREM 5. For each a i = 1, there is an eventually univalent func
tion of order a. 

PROOF. Consider the function 

Fa(z) = | Z e™l(l - w) dw, a ^ 0. 

Obvious estimates of \t(z, Fa)\ immediately yield that (a-I- l ) / 2 ^ 
order Fa ^ (a + 4)/2 and hence Fa(z) G X. We use the space structure 
of(X, || ||) and write 

F«(*) = [[af] +g](z) 

where f(z) = e z - l Ë % and g(z) = - l o g ( l - z) G % . We note 
(1) the mapping k(a) : a —> order Fa is a continuous mapping of the 
reals into the reals as |order Fa — order Fb\ ^ || [ i7"« — Fb] || = 
\a - h\ 11/11 = I« - b\> (2) fc(0) = order F0(z) = 1 (3) order Ffl-> « 
as a -» oo. The range of fc(a) must be the set of all real numbers 
greater than one since the range of k(a) is connected, contains 1 and 
arbitrarily large real numbers. Thus for each a = 1, there is an Fa(z) 
whose order is precisely a. 

We now prove that Fa(z) is eventually univalent for each a ^ 0. We 
may assume a > 0 since F0(z) = — log(l — z) is convex univalent. Let 
D0 = {z G D : |1 — z| ^ 1 — r0} where r0 is between 0 and 1 and is 
large enough that \a Im z\ < nl2 for all z G D0. We let RF = 
ea/(l - r0). Since |Fa(z)| < eal(l - r0) for all z G D - D0, any root 
of Fa(z) = Reie, RF < R < °°, must lie in D0. Therefore in order to 
show Fa(z) is eventually univalent, we need only show that Fa(z) is 
univalent in D0. 

It is easy to check that (1) Im Fa
 f(z) > 0 in D 0

+ = D0 H {Im z > 0} 
(2) Im Fa'(z) < 0 in D 0 - = D0 PI {Im z < 0} and (3) Im Fa'(z) = 0, 
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Re Fa '(z) > 0 on — 1 < x < 1. Therefore, Fa(z) maps D0
+ to the upper 

half plane, D0~ to the lower half plane and the real axis univalently 
onto a subset of the real axis. Since D 0

+ and D0~ are convex, by a 
result of Noshiro [16], Fa(z) is univalent in each of D 0

+ and D0~. Thus 
it is obvious that Fa(z) is univalent throughout D0. This concludes our 
proof of the theorem. 

COROLLARY 1. For each fixed p = 1, £.£.p is a linear invariant family 
which is never normal. 

PROOF. By Theorem 3, each/(z) G £.<£. which is e.p.v. generates an 
e.p.v. linear invariant family. The union of linear invariant families is 
linear invariant, hence £.£.p is linear invariant for each p. Theorem 5 
implies that the order of £.£.x is infinite. Therefore, by Theorem 4, 
£.<£•!, and automatically £.£.p ( £.£.x C £.<£.p), is not a normal family. 

The family of all p-valent functions in £.£. (denoted <Sp) is a normal 
family [20, p. 119], hence of finite order. The set of eventually univalent 
functions in £.£. has infinite order. Therefore there are linear invariant 
families of eventually univalent functions of arbitrarily large valence. 
It is a surprising fact that this is not the case for linear invariant 
families of c.m.p.v. or a.m.p.v. or w.p.v. functions. 

LEMMA 1. Let 1 ^ p < <», [p] denote the integer part ofp and 
f(z) be £.£. If the family JH[f] is c.m.p.v. or a.m.p.v., then each fune-
Hon inJ\/\[f] can be no more than [p] valent. 

PROOF. Let JH[f] be a.m.p.v. and suppose that there were a function 
g(z) = A^[f(z)] in JH[f] with valence è [p] + 1. Let {^}, i= 1, 
2, • • -, [p] + 1 be points in D such that g(z^) = w0 for some w0 and 
i = 1,2, • • -, [p] -h 1. Then AJg(z)] is in JH[f] where i)ß(z) = (z + 
Zi)l(l + z%i) because JH[f] is linear invariant. Furthermore, 

AJg(*i*)] = 0 , i = l , 2 , . . . , [ p ] + 1 

for Zi* = $-l(Zi). Consequently, A [g(z)] would have at least [p] + 1 
zeros and therefore would completely cover some neighborhood of 0 
at least [p] + 1 times. This is absurd since A<f>[g(z)] is a.m.p.v. Thus 
each function in M[f] must have valence ^ [p]. The proof is the 
same for c.m.p.v. functions. 

THEOREM 6. Let f(z) G £.£. If the family JH[f] is c.m.p.v. or 
a.m.p.v., then it is c.m.[p].v. or a.m.[p].v. Furthermore, JH[f] is 
a.m. [p] .v. if and only if it is cm. [p] .v. if and only if it is [p] -valent. 

PROOF. If JH[f] is c.m.p.v. or a.m.p.v., then Lemma 1 proves that 
each function is [p] -valent hence necessarily c.m.[p] .v. or a.m.[p] .v. 
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If JH[f] is [p] valent then JH[f] is necessarily cm.[p].v. which 
necessarily implies JW[f] is a.m. [p].v. which in turn implies that 
*M[f] is [p] -valent. This completes the proof of Theorem 6. 

Exactly as in Theorem 6, we can prove: 

COROLLARY 2. Let pbea positive integer andf(z) G £.£. The linear 
invariant family M\f\ is weakly p-valent if and only if *M[f] is p-
valent. 

We always consider a p-valent function ^-valent for q= p. 
Theorem 6 and Corollary 2 indicate that a.m.p.v., c.m.p.v. and w.p.v. 

are not meaningful or significant linear invariant properties. Theorem 
5 and Corollary 1 indicate that e.p.v. is a meaningful linear invariant 
property. 

V. Linear Invariant Properties of Growth. We wish to define a real 
valued function that will measure the asymptotic growth of the maxi
mum modulus of an arbitrary nonconstant analytic function in the unit 
disc. Iff(z) is a nonconstant analytic function in D, we let 

growth/ = y = sup{c real : lim sup M(r,/)(1 — r)c = oo }. 
r—1 

LEMMA 2. Iff(z) G LS. and g rowth /= y, then for every <f>(z) G ^ , 
growth A <*>[/] = y-

PROOF. Any <f>(z) G £ has the form ei6(z + £)/(l + £%) for some 
|£| < 1 and 6 G [0, 2rr]. We fix a <f>(z) G ^ and note that 

1 - t y 1 + M 

1 - * - 1 - Iti 
By the maximum principle, we have that M(r,f(<f>(z))) ^ M(s,f(z)). 
Thus for any c > y = 0, we have the inequalities 

0 ^ lim sup Af(r, A [/] )(1 - r)c 

r - l 

:I*W'(*(°))I 
i - — - . lim sup M(r,/(*(*)))(! - r)c 

r—1 

s
 ( T ^ I )' iiw«5j)i "T;- M(S^))(1 -s)* - °-
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Therefore, for any <f>(z) G Q and any/(z) G £.£. we always have that 

(11) growth A 4 / ] ^ r -

But Q. is a group and/(z) = A<^~1[A4>[/(z)]]. Therefore by applying 
(11) to <l>~l(z) G £ and A^ [f(z)] G £.£., we obtain the inequalities 

y = growth/= growth A ^ [ A ^ / ] ] ^ growth A^[/] ^ y. 

This concludes our proof of the theorem. 

Lemma 2 shows that all of the translates A</> [f] of a function/(z) G 
£.£. have the same growth as/(A); that is, the growth of a function in 
£.£. is a linear invariant property and allows us to partition the families 
lAa into linear invariant families in a manner which is extremely useful 
for general function theory. We begin by recalling a définition due to 
Campbell, Cima and Pfaltzgraff [4]. The family <7̂ A is the set of all 
f(z) in *7̂ A which have order precisely A. It is obvious that <7̂ A is 
itself linear invariant and 7/a, for any a ^ 1, is the union of all C&A with 
1 - A ~ a' 

We define the family llfafi) to be the set of all f(z) in çUa such that 

growth/ = 0 . 

THEOREM 7. The families Ufaß) are nonempty if and only if a = 1 
and Q = ß = a. The families ^(a,/*) are linear invariant. The union 
of all ^(a , ß)for 0 ^ ] 3 ^ a is precisely the family *tta. 

PROOF. We begin by showing that if ^(a , ß) is nonempty, then a ^ 1 
and 0 ^ ß â a. If/(z) is in Hlfaß) then it has order a and growth ß. 
However, the order of a function is never less than 1 and the growth is 
always nonnegative, so it only remains to show that a^ß. For any 
function of order a we have from (3) 

i^*i((1r^;)-0-w-'<1-
and consequently, growth/= ß â a. 

To prove the converse, it suffices to show, for each ß è 0 and each 
a ^ max(ß, 1), that ^(o^ß) is nonempty. Since / (z) = (eaz — l)/a, 
a = a + (a2 — 1)1/2, has growth 0 and order a [3] , we can assume 
that/3 is positive. 

The function 

(12) M'àiiï^îY-1 )>ß>0 
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has order ß ifß è 1. Since/(z) is convex if 0 < ß ê 1, we observe that 
f(z) has order 1 if 0 < ß ̂  1 [20, p. 134]. Therefore, order f(z) = 
max(l,/3). 

Let us define the function 

G0(z)= f* e™(l + wy-ll(l-wy + ldw,a^O,ß>0. 
J o 

We use the space structure of (X, || || ) and write 

Ga(z)= [ / + [ag]](z) 

where g(z) = ez — 1 G rUl andf(z) is (12). Exactly as in Theorem 5, 
the mapping k : a —> order Ga has the properties (1) fc(0) = max(l,/3), 
(2) k(a) —> a> as a —» + » , (3) k is a continuous mapping of the reals 
to the reals. Therefore, for each a ^ max(l, ß), there is a function Ga(z) 
of order a. For any a, it is clear that growth Ga(z) = ß. This shows the 
existence of a function in ^(o^ß) for every ß > 0 and every a = 
max(l,0). 

To show that ^ ( a , ß) is linear invariant, it suffices to show for each 
f(z) G ̂ ( 0 , 0 ) and each <J>(z) G ^ that A^[ / ] is also in <?4 and has 
growth ß. This follows immediately from Lemma 2 and the fact that 
*tla is itself linear invariant. 

Each f(z) G ^ has growth / between 0 and a by (3). Therefore çÛLa 

is contained in the union of all ^ ( a , ß) for 0 ̂  ß ̂  a. The converse is 
trivial. Thus clia is the union of all the *!>(.(&, ß) for 0 = ß = e* 
which concludes our proof of the theorem. 

One can verify explicitly that ^ ( a , ß) is nonempty for 0 < ß ̂  a 
and 2 1 / 2 ^ a by considering the function faß(z) = Jg(l — z)a_1/(l + 
zy+idz. 

Pommerenke defined the family çUa to be the set of all f(z) G £.£. 
such that order f^ a. These families appear to be the natural setting 
for many questions involving the distortion theorems for functions in 
JL.S. [2], but they do not seem to provide the natural setting for ques
tions involving the growth of the modulus of f(z). We therefore define 
the family Uy to be the set of all f(z) G £.£. such that g r o w t h / ^ y. 

THEOREM 8. The families *W are nonempty if and only if y ^ 0. The 
families Hu? are linear invariant. 

PROOF. If y ^ 0, then the family ^ ( y + l ,y) is contained in ^W and 
is nonempty by Theorem 7. Since growth f^ 0, it follows that *W is 
nonempty only if y ̂  0. Lemma 2 implies that the family *W is a 
linear invariant family. 
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The families *W differ in a critical manner from the rẐ a. The families 
(Ua are both normal and compact; the families *U? are not normal and 
in fact even *W Pi X is not normal for any y = 0. Theorem 7 assures 
us that T/(a,y) C <W fi X for all a ^ max(l,y). Therefore the order 
o f ^ n x must be infinite, which by Theorem 4, implies that U? H X, 
hence also cUy, cannot be normal. 

As previously remarked, an arbitrary a.m.p.v. or c.m.p.v. function 
obeys the growth law 

(13) M(r,f(z)) = 0((1 - !•)-*>), \z\ = r. 

The proof of (13) is heavily dependent on the fact that such functions 
can have no more than p zeros. On the other hand, e.p.v. functions 
also satisfy (13) despite the fact that they can have an infinite number 
of zeros. 

THEOREM 9. Iff(z) is eventually p-valent, then 

(14) M(r9f(z)) = 0((1 - r)-2»), \z\ = r. 

Iff(z) G £.£. is e.p.v., thenf(z) G <U%>. 

PROOF. We may assume that/(z) is unbounded, since otherwise (14) 
is obvious. Because fiz) is e.p.v., there is an Rf such that n(Reie) â p 
for all Rf< R < » . Therefore, we can pick a point wx such that 
\wi\ > Rf and/(z) = u?1 has at least one and at most p roots in D. The 
function g(z) = f(z) — wl has at most p zeros in D and, as is easily 
checked, g(z) is e.p.v. However, M(r,g(z)) = 0((1 — r)~2p) implies 
M(r,f(z)) = 0((1 — r)~2p) and consequently it suffices to prove the 
theorem for unbounded e.p.v. functions with at most p zeros in D. 

We let 

p(R)=±j^n(Rei°)de, 

/(*) = S akZk> 
k=0 

Rx = max( Rf, (p + 2)2^"! -max|afc| ) , 

R2 = M(r,f(z)), \z\ = r. 

Then, by Theorem 2.4 of Hayman [9] , 

<15> J»! m <***& + «» 
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where A(p) is a constant that depends only on p. For any R > R, we 
have that p(R)^ p and hence, for \z\ sufficiently close to 1, 

}R,Rp(R)~p 8 Ri 

Consequently, 

i l o g M ^ < 2 1 o g - ^ - + A(p) 

p 5 Rx
 5 1 - r v^7 

or 

M(rJ) < A(p, H)/(l - r)2», 

where A(p, Rx) is a constant depending only on p and Ri. Therefore, 
M(r,f) = 0(1 - r)-*v). 

lff(z) G .Ü.J>. is e.p.v., then the above result, the definition of çU2v 

and Lemma 2 imply that f(z) €E (lL2p. This concludes the proof of 
Theorem 9. 

Theorem 9 indicates that the growth law (13) does not require global 
averaging properties such as c.m.p.v. or a.m.p.v., if one places a strong 
enough local control on f(z) in a neighborhood of infinity. Theorem 9 
can also be obtained from some very deep theorems of Hayman [ 7, p. 
159]. The proof given above is of interest because of its brevity in 
contrast to [7]. 

VI. Wing's Theorem and the Asymptotic Bieberbach Conjecture. 
Let S = {/G.X.JÌ. :f is univalent}. Bieberbach conjectured that if 
f(z) = z + 2 n=2an*n i s i n <^> t h e n \an\ = n- If the conjecture is true, 
then it is sharp as f(z) = z/(l — z)2 = ^ Z=inzn indicates. The con
jecture is known to be true for n = 2 [ 1], n = 3 [ 14], n = 4 [6], n — 5 
[23] and n = 6 [17], [18]. Littlewood [13] showed that in general 
|an| < en. There is a long history on the improvement of the co
efficient of n and the best, until recently, was due to Milin [15], |an| < 
1.243n. However, Fitzgerald [24] and his student Horowitz [25] 
have improved this to \an\ < 1.0691n. Up to 1950 it appears that no 
one had investigated whether or not the Bieberbach conjecture was 
true in some average sense. 

For f(z) = z + ^feL2
 akzk £ S, Wing [22] considered the following 

averages of the coefficients off(z). Let 

"- 1
 /j

 + k ~ 1 \ 
(17) S„(fc)= S ( k_1 )«»-i * ^ 1 
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and 

(18) an(/c)=|S„(*)|/( Hi ) fc^l. 

In particular, 

a « ( 1 ) = ^TT)â^ 
If the Bieberbach conjecture is true, then it is easy to verify that this 

would imply an(k) == 1 for all n == 1 and all k ^ 1. Thus Wing formu
lated and proved the Asymptotic Bieberbach Conjecture: 

Iff(z) G <£, then ïïm Îïm an(k) ^ 1. 

In 1955 Hayman [8] proved that for each normalized/(z) which is 
c.m.l.v., there is an n(f) such that for all n = n(f) 

(i9) | ^ | a i 

In 1967 Eke [5] extended (19) to the class of normalized a.m.l.v. 
functions. It is easy to see that if 

(20) ï î m ~ k / n | ^ B ^ l 

then limfĉ oe lim,,.*« <rn(k) S B S l . Thus the Asymptotic Bieberbach 
conjecture is true for any class which satisfies (20). 

The techniques of Hayman and Eke are dependent on an area 
principle which is not available for functions in (Ua or <ljy. It therefore 
seems worthwhile to point out the full strength of Wing's original 
method. The results suggest some open questions which will be posed 
at the end of this section. 

We first prove a technical lemma. We shall let T(x) denote the 
Gamma Function (see [21], p. 55-8). 

LEMMA 3. If k i= 2 and r = 1 — (k + l)/n, then 

m) r nì~k r de - r(fc "1} 
K ' n™ 2TT JO | l - t s " | * r2(«2)(* + l ) * - ^ * - 1 ' 

Ifk = 1 and r = 1 — 2/n, then 
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PROOF. We begin with the case k ^ 2. The integral can be evaluated 
by first noting that 

|1 - reid\ = (1 - 2rcos0 + r2)1'2 

so that [19] 

_1_ rar dO = 1 1 rar ( 1 - r2)ki2d$ 
2TT Jo |1 - re'»|fc 2TT ' (1 - r2)fc>2 Jo (1 - 2rcos0 + r2)*'2 

= d-r2)-/2Ffc/2_1{l±^} 

where P0(x) is the Legendre function of the first kind of order a. Since 
limbec Pa(x)lxa = 2"« • T(2a + 1)/T2(a + 1) for a > - 1 / 2 [19], if 
we let r = 1 — (k + l)/n we obtain 

limü^[-^L = E(fc î) . 
n^» 2TT JO | l - ^ Ì f c r2(fc/2)(fc + l )*-^*" 1 

We now assume k = 1. 

p^ _ _ d i 9 _ _ _ = l r» 
Jo 11 - reiö| r1/2 Jo 

de 

^ i r f̂ 3 

+ f 

[ ( 1 - r)2/4r + sin2 0/2] "2 

[2(1 - rflr + 02] i« 

de i 
*/3 [ ( 1 - r ) 2 / 4 r + s i n 2 ^ ] 1 ' 2 

= 0(|log(l - r)\. 

Thus, letting r = 1 — 2/n, we obtain 

de 
JoTr3^r=0(1°gn)-|1 - reie\ 

We now let «¥(D) denote the set of functions analytic in D of the 
form/(z) = z + 2 ï-aafcS*. 

THEOREM 10. Le* y = 0, / (z) G «'/(D) and suppose that M(r,f) â 
A(l - r)-yforall \z\ ^ r0,0 < r0 < 1. 

J/& = 1, ffeen 
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(23) <rn(l) = 0(n?-2 logn) 

Ifk è 2, then 

/ /,w , x ^ AT(fc + 2)r(fc - 1) 
(24) lu^sup K(*)/„>-2) g ( f c + . 1 ) Y U_ 1 2 f c _ l r 2 ( f e / 2 ) e f c r + 1 • 

PROOF. By a simple application of the residue theorem, 

Thus, iS / f c i i<MrJl. ± P d» 
|2>»WI = r« 2TTJO | l - s e " | * " 

We assume k ~ 2, r = 1 — (fc + l)/n and use (18) and (21) for large 
n to write 

_Any 1 n ^ - T ^ - 1) /n + kyl 

However, (£+?) = nk+lIT(k + 2) for large n, therefore 

itoy-«T(fc + 2)r(fc - 1) 
n W "" (fc + l)*+*-12*-lr2(W2)efc,'+1 

from which (24) follows. 
The proof for k = 1 is identical to the above except for the use of (22) 

instead of (21). 
Thus for functions which are c.m.p.v., c.m.p.v., w.p.v., e.p.v. or in 

rUa9 or in Uy, Theorem 10 automatically gives asymptotic estimates for 
<rn(k). In particular: 

COROLLARY 3. Iff(z) G 7^, then 

/ / I M >x <r 2a" l r ( * + 2)r(fc - i) 
(25) hm^sup (<rn(k)ln«->) S ^ + 1 ^ 4 ^ + 1 . 

PROOF. From (3) it follows for any/(z) G 7 4 that M(r,/) ^ 2"-1(l -
r) ~aa~ ! so A = 2a~ Va in Theorem 10. 

COROLLARY 4. If f(z) G 7^, * ^ n ^ Asymptotic Bieberbach Con
jecture limfc_>«Hindoo <rn(k) = 1 is true. 

PROOF. An application of Stirling's estimate to the right hand side of 
(25) (with a = 2) yields the conclusion. Corollary 4 yields Wing's 
original theorem as a special case since <£ is contained in (lc2-
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COROLLARY 5. lff(z) G J/(D) and M(r,f) ^ (1 - r)~2 for all \z\ ^ 
r0 (0 < r0 < 1), then the Asymptotic Bieberbach Conjecture is true. 

PROOF. This follows from a direct application of Stirling's estimate 
to (24). 

Thus it is the eventual behavior of M(r,f) rather than univalence or 
even local univalence that appears to be the crucial element in the 
proof of the Asymptotic Bieberbach Conjecture. 

The second part of Theorem 10 is best possible in the following 
sense: there are functions with M(r,f) ^ A(l — r)"a, a > 2 for which 
limn_« an(k) = oo. For example, (6) is in (Ua and in ^ a , and Kirwan 
[ 12] has shown that its coefficients an are positive and satisfy an — 
na~ ll2aT(a). Therefore, if M is an arbitrarily large positive number, we 
can choose Nx such that N1

a_2/8aT(a) > M and N2 such that n ^ N 2 

implies that an > na~ll4aT(a). If we let N = max[Ni, N2] and choose 
n > N such that (*+?)/(*+?)< 1/2, then 

s"<'».tr+;_To^ - x /4oT(a) 

4 a T ( a ) ^ 
N°-2 " / k + n- 1 - / \ . 

Hence for any k ^ 1 and all n> N, orn(k) > m, which implies that 
lim <7n(fc) = oo as claimed. 

The average 

is a very natural coefficient average. For this particular average, the 
first conclusion of Theorem 10 asserts that for functions in Jf(D) with 
M ( r , / ) ^ A(l - r ) - 2 , we have a n ( l ) = 0(log n). In light of the 
previous paragraph it is reasonable to ask if this is best possible in the 
following sense: Are there functions in Jf{D) with M(r,f) ^ A(l — r)~2 

for which lim^oo an(l) = °°? The results of Hayman [8] and Eke 
[5] show that the answer is negative for c.m.l.v. or a.m.l.v. functions. 
The answer is negative for any class of functions with an = O(n) since 
thenlimL^ao crn(l) < °o. However, for functions which are in 1^2 or 
lÂ2 or are e.l.v. or w.l.v., the only known coefficient estimates are the 
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trivial estimates an = 0(n2). Thus we pose the following four ques
tions. 

(1) Do there exist functions in J/(D) such that M(r,f) = 0((1 -
r)~2) and l i m ^ « an(l) = <» ? 

(2) Do there exist functions in <=H{D) which are eventually one valent 
or weakly one valent such that lim^«, crn(l) = oo ? 

(3) Do there exist functions in J/(D) H T^ such that limn_>oo oVi(l) = 
00? 

(4) Do there exist functions in J/(D) H Ix2 such that limn_>oo crn(l) = 
00? 
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