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PROJECTION METHODS FOR NONLINEAR 
NODAL PROBLEMS 

P. W. BATES AND G. B. GUSTAFSON* 

ABSTRACT. The work produces some degree-theoretic and 
operator-theoretic tools for the study of projection methods 
associated with nonlinear nodal problems. The numerical pro­
cedure is outlined for the case of sublinear and superlinear 
nodal problems. 

1. Introduction. This work investigates equations of the form 

(1.1) y"(t) + f(t,y(t),y'(t)) = 0,0<t<l, 

with the boundary and nodal condition 

(1.2) t/(0) = 2/(1) = 0, y has exactly n distinct zeros in (0,1). 

The objective is to prove existence of solutions to (1.1), (1.2) and 
to approximate such solutions by solving finite dimensional problems. 

To accomplish the above task, the problem (1.1), (1.2) is converted to 
a coupled pair of operator equations (Section 3) to which a projection 
method is applied (Sections 10, 11). Existence of solutions to the 
operator equations is demonstrated by fixed point techniques which 
use topological degree (Section 4). In addition the method enables 
one to deduce the existence of solutions to the "approximate equations" 
resulting from the projection scheme and, further, to show conver­
gence of a sequence of solutions of the "approximate equations" to a 
solution of the original operator equation. 

The projection method employed is tailored to the nodal properties 
of solutions. In addition, the method may be applied to the operator 
equations without modification. 

Equation (1.1) will be investigated for two general cases, (i) the 
superlinear case, (Section 14), for example 

y»(t) + bt sm%llt)(l + \y '(*)!*% WW*) = 0, 

0 < t < 1, where 0 g k g 2 and a, b > 0, 

(ii) the sublinear case, (Section 15), for example 

y"(t) + btsm*(llt)[l - |«/(*)|%(0l*(l«/'(*)l2 + 1) + s i n V W + 1] 

(1.4) y(t) = 0,\y(t)\^l,0<t<l, 
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y"(t) + btsm2(llt)(sin2y'(t) + l)y(t) = 0, \y(t)\ e l , 0 < K l , 

where -Kß<0<b<4. 

During the latter part of the 1950's Nehari [11], [12], studied 
the problem (1.1), (1.2) using variational techniques, minimizing a non­
linear functional over a certain class of admissible functions. The 
conditions which he imposed upon the function / were rather spe­
cialized and many of his results are extended in this work. In the 
decade which followed, very little progress was made, then a new 
method of attack was introduced by P. Rabinowitz [ 1], [ 15], [ 16]. 
His technique was to write (1.1) as an integral equation, and to seek 
solutions of the integral equation in the open set Sn+ C Cl([0,1] ) con­
sisting of functions positive near zero and having exactly n simple 
zeros in (0,1). More recently, R. E. L. Turner [20], [21] has em­
ployed similar methods to extend the work of Rabinowitz. In the 
Rabinowitz and Turner papers, nonlinear Sturm-Liouville problems 
are studied and continua of solutions to (1.1), (1.2) are obtained. How­
ever, the growth conditions imposed on the nonlinear terms are some­
what special. Earlier papers by G. Pimbley [ 13], [ 14] investi­
gated (1.1), (1.2) from the bifurcation standpoint; many of Pimbley's 
results are extended in Turner [21]. 

The formulation of the existence problem used in this work is due to 
G. B. Gustafson [2]. 

2. Preliminaries. This section gives the basic notation and defini­
tions used throughout. 

The Banach spaces to be used are as follows: 
C([a, b] ), the space of continuous real-valued functions x on [a, b] 

with norm ||jc||a b = max{|ac(f)| : a ^ t^ b}. 
Ci([a,b])={xGC([a,b]):x'GC([a,b])} with norm |||x|||a,b = 

Lp([a, b] ), 1 ^ p < oo, the space of measurable functions given by 
Lp([a9 b] ) = {x : ||*||p = (J* |*(t)|" dt)*> < oo }, 

L00( [a, b] ) = {x : ||x|| «, = essential sup{|x(*)| : a ^ t^ b} < oo }, 
and V ( l a > b])= {xŒ AC([a, b] ) : xf G Lp([a, b] )} with norm ||x|| 
= ||*||a,b + ||* ' |U AC([a, b] ) is the linear space of absolutely continu­
ous functions on [a, b]. 

When the interval [a, b] = [0,1] the notation ||x||c = ||*||a,b w iH be 
used, and E will denote either of the spaces C([0,1] ) and Lp

l([0,1] ) 
when no confusion is possible. 

The characteristic function XE of the set E will be used in various 
formulas, it is defined by XE(t) = 1 for t G E, = 0 for t (£ £. 

We proceed to record some definitions. The following parallels 
M. A. Krasnosel'skii [8]. 
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{i 

(,2, « * „ « . {(•:»»: 

DEFINITION 2.2. A subset K of a Banach space E is called a cone if 
(i) K is closed in E, 

(ii) x, t/ G K, <*> 0 = 0 implies ax + ßy G K 
(iii) x G K, — x G K implies x = 0. 

DEFINITION 2.3. An operator B : X —> Y, X, Y Banach spaces, is 
called completely continuous if it is both continuous and compact 
(i.e., maps bounded sets into precompact sets). 

It is worth noting that (1.1) is no less general than 

(2.1) (a(t)y '(*)) ' + f(t, y(t), y'(t)) = 0,a<t<b, 

where —°° < a < b < <*> and a is a continuous positive function. To 
convert (2.1) to (1.1) see Hartman [4]. 

ry"(*) = h(t)9 

ly(a) = y(b) = 0. 

Explicitly, 

= f(t-a)(b-s)(b-a)-\f§iS 
.(s- a)(b- t)(b-a)-\s^t. 

One observes that 0 g G(t, s; a, b)^ (b - a)/4, \Gt(t, s; a, b)\ g 1 and 
J5 G(t, s; a, b) ds^ (b — a)2/8. These estimates will be used in sub­
sequent sections. 

One observes that 0 ^ G(t, $; a, b)^(b - a)/4, \Gt(t, s; a, b)\ â 1 and 
lh

a G(t, s; a, b) dsê (b — a)2/8. These estimates will be used in sub­
sequent sections. 

3. Equivalent Operator Equations. The nonlinear nodal problem 
will be converted to a pair of nonlinear operator equations acting in 
a suitable space. The operators will be of the form B: T X K —> K, F : 
TX K --» Rn, where K is the cone of nonnegative functions in a certain 
Banach space of functions, E, and T is the open "tetrahedron" in Rn 

given by T = {a G Rn, a = (au a2, • * -, an) : 0 < ax < a2 < • • • < an 

To convert (1.1)-(1.2) to a cone-valued fixed-point problem in a 
Banach space, the solution y is replaced by x— |t/|, and on each 
interval [aif ai+l] between the zeros {a^ of y, the problem (1.1)-(1.2) is 
inverted via Green's function kernels. The result is an operator equa­
tion x = B(a, x). The transition from x back to y requires the identity 
x '(ai + ) + x 'fa — ) = 0, which generates a finite-dimensional operator 
equation F(a, x) = 0. The explicit assumptions, and formulas for B 
and F, shall be given below. 
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Consider the differential equation (1.1) with nodal conditions (1.2). 
It shall be assumed that / : [0,1] X R2 —» R is continuous, that 
t / / ( * , t / , u ) ^ 0 f o r a l U G [0,1] and j / , M G R, and that / ( -,t/( •)>*/'( • )) 
É Iq([0,1] ) for some q > 1 whenever y G E. Finally, f(t, yy u) = 0 
if and only if y = 0, t — a.e. o n O ^ ^ â l . 

The nodal operator B will be defined on 0 ^ t ^ 1 by 

j» rai+i 

B{a,x){t)= £ ( " I ) ' G(t,s; di,ai+l) 

(3-D " 
•/(«, (-i)'z(s), ( - D V W ) i*[.,,.(+ll(t), 

a0 = 0 and an + 1 = 1, for a = (al5 • • -, an) G T, x G K. The formula 
makes sense whenever x G K and x f(t) exists £ — a.e. on [0,1] . 

The matching operator F will be defined by F = (Fl9 • • -, Fn) where 

(-iy-lFi(a,x)= \a% GtifibSiOi^Oi) 
J ai-i 

•f(s,(-iy-lx(s),(-iy-ix'(s))ds 
(3.2) 

r a t+ i 

- Gt(ah $; aiy a i+1) 

J ai 

•/(*,(-iyx(*),(-l)*r'(*))A, 

i = 1, • • -,n. 
Since all integrands are in Lx([0,1] ) we may take any of the integrals 
above to be zero whenever the interval becomes degenerate. 

LEMMA 3.1. The coupled pair of operator equations 

(3.3) B(ö,x) = x,F(a,x) = 0, 

for (a, x) G T X K is equivalent to the nodal problem (1.1), (1.2) in 
the following sense: 

(i) If (a, x) G T X K is a solution to (3.3), tfien 

i = 0 

is a solution to (1.1), (1.2). 
(ii) If y is a solution to (1.1), (1.2) lüttft exactly n + 2 zeros 

af 0 = a0 < ax < • • • < an < an+l = 1, then 

(a, x) G T X K 

is a solution to (3.3), where a = (ai9 • • •, an) and 
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PROOF. It suffices to prove that 

F^a, x) = J""1 Gt(ah s; ah ai+1)(-iyf(s, ( - l)jx(s)) ds 

is continuous. The proof for F{ — F{ is similar. 
Consider (a, x), (b, y) G T X K. Then 

\F,(a, x) - Hb, y)\ ^ \Ua, x) - Ft(b, x)\ 

+ \Fi(b,x)-Fi(b,y)\ 

+ \\V(b,x)- 9 ( M ) | | - , 

where 

Hi(s, a, b) = Gt(di, s; ah ai+1)X(ai,a.+l) (s) 

- Gt(bi, s; biy bi+l)X{bi,b.+l) (s). 

It is easily shown that H^s, a, b) —> 0 s — a.e. on [0,1] as b->a. 
Further, \Hi(s, a, b)\ ^ 1. By Lemma 6.2 and Lebesgue's bounded con­
vergence Theorem, the right side of the preceding inequality tends to 
zero as (b, y) —» (a, x). The boundedness follows from Lemma 6.1. 

7. Complete Continuity of B and F : (£, x, x ' ) Dependence of/. The 
introduction of x ' dependence produces additional complications. The 
first problem is to find a function space E in which derivatives may be 
taken in some sense, the obvious choices being Cl([0,1] ) and 
LipiQO, 1] ). Unfortunately, the operators fail to be compact when 
defined on these spaces. To overcome the difficulty we proceed as 
follows. 

Let E = {x G AC( [0,1] ) : x ' G Lp([0,1] )} where p > 1 and define 
11*11 ==: IMIc ~*~ IIX'IIP-

 r ^ n e s P a c e £ is a Banach space. Let K = {x 
G E : x(t) ^ 0 , O â f â l } . Throughout this section the topology on 
K will be that induced by E and T X K will have the product topol­
ogy-

Concerning assumptions of f, it will be assumed that the function 
((/, z)—>/( -, t/( • ), z( • )) is continuous from EX Lp([0,1] ) into 
^t/([0, 1] ), 1 < q = p. Further, this mapping shall take bounded sets 
to bounded sets. Finally, yf(s, y,z)^0 for all (s, y, z) G [0,1] X R2. 

Define V:TX K-+Lqby 

*(a9x) = ± (-l)</( -,(-l)*( • ),(-l)*'( • ))X ,̂.j+1, . 
i=0 



PROJECTION METHODS 581 

In the following lemmas || • ||c will denote the norm in E and || • ||p 

the norm in Lp, l ë p â » . 

LEMMA 6.5. B : T X K —> Kis continuous. 

PROOF. The definition of B and the sign hypothesis on / make it 
clear that the range of B lies in K. Now suppose that \am — a°\ + 
||*m - *o||c -> 0 as m -* oo where (am, xm) G T X K for m = 0, 1, 2, 
• • \ Then 

\\B(a™,xm)-G(a°,x0)\\c 

g | | £ [ G ( - , * ; a ™ ) - &',s;a0)]*(a0,Xo)(8)dJ\ 

+ l l f 1 ^ ( %*;a- ) [<?(a» \x m ) - *(fl°,*0)](*)«fe|| 
II ^° l ie 

+ i [ || S (a* *m) - S(a" , x0)|| « + || <?(a", x0) - 53(a°, Xo)||i]> 

because | 0t, s; am)\ ^ 1/4. By Lemmas 6.2, 6.3 and 6.4 this term tends 
to zero a s m - » oo . 

LEMMA 6.6. B : T X K —» Kis completely continuous. 

PROOF. It remains to show B is compact. To this end, let A X H 
Q T X K be bounded and let (a, x) G A X H where a = (a1? • • -, an). 

\\B(afx)\\c = | | £ ^ ( ^ a ) ^ , * ) ^ ) ^ | | g ||<?(a,x)|| J4 , 

and Lemma 6.1 shows that B(A, H) is a uniformly bounded family in 
K 

Further, B(a, x)'(*) exists for each t $ {«»}?=!. In fact, B(a, x)'(t) 
= ( - l ) i j ^ i Q(t, 5; a«, a,+1)/(«, (-lYx(s))ds for all * G ( a i ? a m ) , 
O g i g n . ' Hence, 0*8(0,*) exists on (0,1) and l O ^ a , x)(*)| = 
sup{|G,(t, s; ab a i + 1 ) | : 0 g i â n and t Ç {o,}?^}. | | 9 ( f l , x ) | | . ^ 
|| ̂ ( a , x)|| oo. By Lemma 6.1, the family of functions B(A, H) is a uni­
formly Lipschitz, hence equicontinuous, family in K. The Arzela-
Ascoli Theorem (see Royden [17]) applies to complete the proof. 

LEMMA 6.7. F : T X K —> Rn is continuous and maps bounded sets 
to bounded sets. 
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6. Complete Continuity of B and F: (t,x) — Dependence off. In 
order to apply the degree computations of preceding sections it is 
necessary to verify that the nodal operator B and the matching operator 
F are completely continuous. 

Considered in this section is the special case where / does not 
depend on x '. 

Throughout, F = C([0,1] ), equipped with the topology of uniform 
convergence, K = {x G E : x(t) = 0 } , the cone of nonnegative func­
tions in E with the relative topology. The sets Rn and T will have the 
topology induced by the norm \a\ = max{öj : 1 ^ i ^ n}, where a = 
(ai9 • • •, an) G Rn. The product space T X K will have the product 
topology. If a G r, we will number its components ah 1 ^ i â n, 
a0 = 0anda n + 1 = 1. 

It is assumed that the mapping x —> f( -, x( • )) is continuous from E 
into £, and further, this mapping takes bounded sets to bounded sets. 
Finally, zf(t, z) ^ 0 for almost all t G [0 ,1] , z G R. 

The nodaZ operator B will be written in the form 

B(a, *)(*) = fl G(t, s; a) <?(a, x)(s) ds 
J o 

for all (z,x)GTX K, where 

G(*,s;a) = 2 G(f, s;ai,ai+1)X,(at,aI+1)x(«i,ö,+1) (*, s)> 
i=0 

0, for sor t G {ajLV 

and 

*(«,*)(*) = 2 (-iy/(*,(-lW*))X[.,,.<+i)Wfor«G [0,1). 

LEMMA 6.1. 9 : T X K -* L«( [0,1] ) maps bounded sets to bounded 
sets. 

LEMMA 6.2. ^?(a, • ) : K —> L»([0, 1] ) is continuous, uniformly in 
a G T . 

LEMMA 6.3. *?( -, x) : T -» Lx( [0,1] ) is continuous, uniformly for x 
in bounded subsets ofK. 

LEMMA 6.4. / / \am - a°| - • 0 as m -» » , tfien ||G(£, •; am) -
G(t> •; Û°)||C -* ° uniformly in t G [0,1] . 
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degree d(F( -,x( • )), T, 0) is defined for any continuous mapping 
x : f -H> K for which F(a, x(a)) / 0, a G a T. 

The purpose of this section is to give some geometric results which 
insure that d(F( *, x( • )), T, 0) = 1 for a certain class of functions x. 

DEFINITION 5.1. A function N : dS -*> Rn is called an outer normal 
to the bounded open set S Ç Rn provided for some a* G S 

(5.1) N(fl) • (a - a*) > 0 for a G dS 

(5.2) S Ç { f c £ f l n : N(a) • (b - a) g 0} for each a G dS. 

Define an outer normal to T in the following way. Let {^}"=1 

denote the standard unit vectors in Rn and let en+l = 0. Put 

S0 = {a G dT : 0 = a1 = • • • = a, < aJ+1 for somej, 1 ^ j â n}> 

and define faces S1? • • -, Sn of dT inductively by 

t - i 
S{ = {a G dT : a{_x <a{ = a i + 1 } \ U Sfc, 1 g i g n. 

k=0 

Then dT is the disjoint union of the faces S0, * * *, Sn. Define 

(5.3) N(a) = ek - ek+l for a G Sk, 1 ^ fc ^ n, 

(5.4) N(a) = — e,- for a G S0 satisfying 0 = 0 ! = • • • = a , < aj+l. 

LEMMA 5.2. The function N : dT-+ Rn given by (5.3)-(5.4) is an 
outer normal to the convex open set T. 

LEMMA 5.3. Suppose x : T—» K is continuous and that x(a)(t) = 0 
if and only if t G {ai'.Q=i=n+ 1}, then the outer normal N given 
by (5.3)-(5.4) and the operator F of section 3 satisfy 

(5.5) N(a) • F(fl, x(a)) < 0. 

LEMMA 5.4. Suppose x.T-^Kis continuous and that x(a){t) = 0 
if and only iftG. {a* : 0 ^ i ^ n 4- 1}, £/ien £foe Brouwer degree 

d(F( ;x( •)),T,0)=l. 

PROOF. For a* G T the homotopy given by 

H(a9k) = (1 - k)(a - a*) - AF(a,*(a)) 

does not vanish for a G dT, 0 ^ A. ^ 1. To see this consider N(a) 
• H(a, X) and apply Lemmas 5.2 and 5.3. 
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PROOF OF THEOREM 4.1. In views of Lemmas 4.7 and 4.8 we may 
again use the homotopy invariance property of Leray-Schauder degree, 
this time using e as the homotopy parameter, 0 ^ € = €x. This gives 

d(I -A, TX (BR\Br), 0) = d(I - H0( ; ; 0), T X (BR\Br), 0) 

= d(I- Hei( ;;0),TX (BR\Br),0) 

= -d(-F(;k(-)),T,0). 

The proof of Theorem 4.2 follows in a similar manner from the fol­
lowing lemmas, which are stated without proof. 

LEMMA 4.9. Suppose that the nonsingularity condition and the 
compression conditions (b) or (d) holds. 

If '(4.4) holds, then 

d(I- H€( -, - , 0 ) ,TX Br,0) = 0. 

LEMMA 4.10. Suppose that the nonsingularity condition and (4.3) 
hold, then for each € > 0 sufficiently small Lc( -, -, *J) is fixed-point 
free on d(T X BR), O^U^h Therefore, 

d(I- Le( -, - , 0 ) ,TX BR,0)=d(I- L€( -, - , l ) , T X BR,0) 

= rf(Z-He( -, - , 0 ) , r x Br?0), 

for each e > 0 sufficiently small 

LEMMA 4.11. Let the nonsingularity condition, the smallness condi-
dition on k and the compression conditions (b) or (d) be in force. 

If (4.3) and (4.4) are satisfied, then for some e2 > 0 and 0 < e â e2, 

d ( / - H e ( -, • ,0) ,TX'(BH \B r) ,0) = d ( - F ( -,*( -))>T,0). 

LEMMA 4.12. Suppose that the nonsingularity condition holds, to­
gether with (4.3) and (4.4), then A is fixed-point free on d(T X 
(BR\Br)). 

PROOF OF THEOREM 4.2. In view of lemmas 4.11 and 4.12 we may 
use the homotopy invariance of degree with parameter e G [0, e 2 ] . 
This gives 

d(I - A, TX (BR\Br), 0) = d(I - H0( -, ; 0), T X (BR\Br), 0) 

= d(I-H€i(; -,0),TX (BR\Br),0) 

= d(-F(-k(-)),T,0). 

5. Geometric Properties of F. It will be shown in sections 6 and 7 
infra, that F :T X K —» fln is continuous. It follows that the Brouwer 
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V(a, x, t) = (a + F*(a, tk(a) + (1 - t)x), k(a)\ 

W(a, x, s) = (a + F(a, k(a)), sk(a)). 

If V( -, •, *) has a fixed point (a, x) G d(T X Br), then x = k(a) G K 
and a G dT by (iii). Further * = fc(o) gives 0 = F(a, tk(a) + 
(1 — t)x) = F(a, k(a)), which contradicts the nonsingularity condition. 

If W( -, -,s) has a fixed point (a, x) G d(T X Br), then ||x|| = 
s||fc(a)|| < r, by (iii), so o G â l , Now F(a, fc(o)) = 0 again contra­
dicts the nonsingularity condition. 

By homotopy invariance of degree, we obtain the follow|ng: 

d(l - Le( -, -, 0), T X B„ 0) = d(I - V( ; ; 0), T X Br, 0) 

= d(I-V( ; -,1),TX BT,0) 

= d(I-W( ; ;1),TX B„0) 

= d(I-W( ; ;0),TX B„0) 

= d((-F( ;k( -)),I),TXBr,0) 

= d(-F( ;k( -)),T,0) d(l,Br,0) 

= d(-F(;k(-)),T,0). 

The preceding also establishes the following result: 

LEMMA 4.6. Br may be replaced by BR in the preceding lemma. 

LEMMA 4.7. Assume the nonsingularity condition, the smallness con­
dition on k and the compression conditions (a) or (c). If (4.1) and (4.2) 
hold, then for some e l > 0 and 0 < € ^ ely 

d(I - He( -, -,0), T X (BR\Bf),0) = -d(-F( -,fc( • )), T,0). 

PROOF. The result follows immediately from Lemmas 4.3, 4.4 and 
4.5 once one has observed that 

d(I - H€( -, -, 0), T X (BH\Br), 0) = d(I - H€( -, -, 0), T X BR, 0) 

-d(I-H(( -, •,()), TX Br,0), 

by virtue of the excision property. 

LEMMA 4.8. Suppose that the nonsingularity condition holds^to-
gether with (4.1) and (4.2), then A is fixed-point free on d(T X (BR\Br)). 

PROOF. Suppose A(a, x) = (a, x), then x = B*(a, x) G K and we have 
||x|| ^ r > 0, x = B(a7 x), F(a, x) = 0, and so a G T by (ii). But 
fl£T implies ||*|| / r by (4.2) with X = 1 and ||*|| ^ B by (4.1) 
with À = 0. 
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which contradicts the compression condition (a). If the norm is not 
monotone on K, then ||x — B(a, x)|| = (1 + €)||/i(a)|| > ||A(a)||, contra­
dicting the compression condition (c). 

For each e > 0, define the completely continuous map L€ : f X E 
X [0,1] ->R" X Kby 

Lt(a, x, T) = (a + F*(a, x), rB*(a, x) + (1 - r)fc(a) + rehfa)). 

LEMMA 4.4. Suppose that the nonsingularity condition holds to­
gether with (4.2), then for each e > 0 sufficiently small the operator 
Le( -, - ,T) is fixed-point free on d(T X Br), for 0 â r = l . Hence, 

d(I - Le( -, -, 0), T X Br, 0) = d(I - Le( -, -, 1), T X Br, 0) 

= d(I-H€( -, - , 0 ) ,TX Br,0). 

PROOF. If L((a, x, *J) — (a, x) for some a G dT, then since B*(a, x) 
G K we have x ^ (1 - ^)fc(a) + öeh(a) and F(a, x) = 0. This con­
tradicts (ii). 

Now suppose there exist sequences { ^ n } Ç [0, 1], {an} C T, 
{xn} Ç dBr and {€n} C fl+, € n - ^ 0 as n-> oo ? satisfying Len (an, xn, Un) 
= (an, xn), n = 1, 2, • • •. Again, xn G K, xn = 9nB(an , xn) + 
(1 - (7n)fc(On) + "J^nK^n) and F(flm xn) = 0, n = 1, 2, • • •. By com­
pactness of T, [0 ,1] , and the operator B, subsequences can be selected 
(let us use the same numbering), {xn}, {an} and {^„}, so that On 

-* *J G [0 ,1] , an -» a G T and B(an, xn) -» 1/ G K as n —> <» . Hence, 
x n -^ *7y -f (1 — (J)k(a) = x G K as n—»<», by continuity of A: and h. 
Furthermore, by continuity of B and F, 

x = UB(a, x) + (1 - C7)fc(fl), F(fl, x) = 0. 

Since {xn} G dBf, ||x|| = r. Now if a G dT both *7 < 1 and U = 1 
lead to contradictions of the nonsingularity condition, whereas if 
flET, (4.2) is violated. The invariance of degree under homotopy 
and the fact that L€( -, -, 1) = H€( -, -, 0) now gives, for each e > 0 
sufficiently small, 

d(I - Le( -, -,0), T X Br,0) = d(I - Lc( -, -, 1), T X Br,0) 

= d(I- H€( -, - , 0 ) ,TX B„0). 

LEMMA 4.5. Suppose that the nonsingularity condition and the 
smallness condition on k holds, then 

d(I - L€( -, -, 0) T X Br>0) = d(- F( ; k( • )), T, 0). 

PROOF. Define the completely continuous maps V, W : T X Br X 
[0,1] -».fl»X Kby 
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Then the following Leray-Schrauder degree identity holds: 

d(I -A, TX (BR\Br),0) = -d(-F( •,*( • )), r ,0 ) . 

THEOREM 4.2. Suppose that the complete continuity condition, the 
nonsingularity condition and the smallness condition on k are satisfied. 
Suppose that the compression conditions (b) or (d) are satisfied. 

Assume: 

If (a, y)GTXM, y = kB(a, y) + (1 - k)k(a\F(a, y) 
^°f = Ofor some X G [0,1] , then \\y\\ f R. 

If (a,y)ŒTXM,y = B(a, y) + kh(a), F(a, y) = 0 for 
y ; some X ^ 0 then \\y\\ jt r. 

Then the following Leray -Schauder degree identity holds: 

d(I- A,TX (BR\Br), 0) = d(- F( -, fc( • )), T, 0). 

The proofs of these theorems will follow from a sequence of 
lemmas. For each e > 0 define H€ : f X E X [0, 1] - • Rn X K by 

H€(a, x, X) = (a + F*(a, x), B*(a, x) + (X + e)h(a)). 

Under the complete continuity condition, H€ is completely continuous. 
We shall assume that this condition holds throughout the remainder 
of this section. 

LEMMA 4.3. Suppose that the nonsingularity condition and the com­
pression conditions (a) or (c) are satisfied. If (4.1) holds, then the 
operator H€( -, *,X) is fixed point free on d(T X BR) for each X G 
[0, 1]. Therefore, d(I - H€( -, -, 0), T X BR, 0) = d(I - H€( -, -, 1), 
T X BR, 0) = 0. 

PROOF. Suppose He(a, x,k)= (a, x), then x = B*(a, x) + (X + e)h(a) 
GK. If a G dT, then x ^ (X + e)h(a), and F*(a, x) = F(a, x) = 0 
contradicts (ii). If a G T and ||x|| = R, then x = B(a, x) + (X + e)h(a) 
and F(a, x) = 0. This implies that X H- e > 1 by (4.1). Thus if the 
norm is monotone, then ||x|| ^ (X + e)||/i(a)|| > \\h(a)\\ = R, by the 
compression condition (a), a contradiction. If the norm is not mono­
tone, then ||oc - B(a, x)\\ = (X + €)||ft(a)|| > \\h(a)\\ contradicting the 
compression condition (c). This shows that H€( -, -,X) is fixed-point free 
on d(T X BR). Invariance of degree under homotopy gives d(I — 
HX -, -, 0), T X BR, 0) = d(I - H€( -, -, 1), T X BR, 0). Suppose, now 
that d(I - He( -, -, 1), T X BR, 0) jt 0, then for some {a, x) G T X BR, 
x = B*(a, x) + (l + €)h(a) G K and F*(a, x) = F(a, x) = 0. If the 
norm is monotone on K then R > ||*|| ^ (1 + €)||/i(a)|| > \\h(a)\\, 



574 P . W . BATES AND G. B. GUSTAFSON 

Let E be a real Banach space, K a cone in E, P : E —» K any con­
tinuous extension of the identity on K, which maps E onto K. Let 
M = {x G K : r g ||x|| g R} where 0 < r < R, and let T be a bounded 
open set in Rn. 

Suppose the following maps are given: 

B:TX K^KF.TX K^>Rn,k:T ->K,h:T ^>K. 

Define: 

B* : f X E -> K by B*(a, x) = B(a, Px), 

F* : ? X E -* fln by F*(a, x) = F(a, Px), 

A : T X E - ^ R n X K by A(a, x) = (a + F*(a, x), B*(a, x)). 

B6 will denote the open ball of radius 8 in E about 0. 
Further, assume that the following conditions are satisfied: 

(i) The complete continuity condition: B and F are completely 
continuous, h and k are continuous. 

(ii) The nonsingularity condition: If x = B(a, x) ^ 0, or x ^ fc(a), 
or x ^ TÄ(a) for some T > 0, (a, x) G dT X K, then F(z9 x) 

(iii) The smallness condition on k: Fora G T, 0 < ||fc(a)|| < r. 
(iv) TTie compression conditions: If || • || is monotone on K, then 

either 
(a) ||/i(a)||= R , a G T , o r 
(b) | | M a ) | | ^ r , a G T . . 
If || • || is not monotone on K, then either 
(c) sup{||x - B(a, x)|| : * G £ ||x|| ^ R, F(a, x) = 0} < ||h(a)|| 

for a E T 
or 
(d) sup{||x - B(a, x)|| : x G K, ||x|| g r, F(a, x) = 0} < ||fc(a)|| 

for a er. 
The following theorems are true: 

THEOREM 4.1. Suppose that the complete continuity condition, the 
nonsingularity condition and the smallness condition on k are satisfied. 
Suppose that the compression conditions (a) or (c) are satisfied. 

Assume: 

UU If(o,y)GTXM,y= B(a, y) + kh(a), F(a, y) = 0for 
K ' some X G [0 ,1] , then \\y\\ ̂  R; 

, . 7/ (a,y)ETXM,y = \B(a, y) + (1 - \)k(a), F(a, y) 
y^l = Ofor some X G [0 ,1] , then \\y\\ ̂  r. 
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x(t) = sign(«/'(0)) £ ( - W i w + 1 ] { « ) . 
t = 0 

PROOF. Suppose (a, x) G T X K is a solution to (3.3), then B(a, oc) 
= x, and for £ G [ah a i + 1 ] , 

x ( ( ) = (_i)i r (a,+i-^-a,) ( - 1 (-iyx>{s)) ds 

0 ̂  i ̂  n. Since the integrand of each integral belongs to Lq C Lx, 
x(t) is differentiable almost everywhere on a{ < t < ai+l, and its deriva­
tive agrees almost everywhere with a continuous function u(t). Re­
placing x'(t) by u(t) in the preceding equations shows x is twice con­
tinuously differentiable on a{ < t < ai+i and 

x'(t) = (-iyf(t,(-iyx(t),(-iyx'(t)),ai<t<ai+1. 
This shows that y satisfies (1.1) on each subinterval (ai} a i + 1 ) , 0 § i e n . 
Since x(a{) — x(ai+i) = 0 and x(t) > 0 on (aiy ai+l), it follows that y 
satisfies the nodal conditions (1.2). It might first appear that we have 
demonstrated that y solves (1.1), (1.2). This is not the case, however. 
It is conceivable that the right and left-hand derivatives of y do not 
"match up" at the nodal points. The matching operator comes to the 
rescue at this stage. The following is true: 

r y{a{ + h) - yfa) yfa) - y{a{ - h) r y{a{ t n ) - y(ai) y^) - y{a{ - h) -i 
L h h J 

lim 
h->0 

= (-1Y lim - r x(ai + fo) - *(<h) + x(<*i) - sfa ~ h) -i 
h—o L h h J 

= ( - l ) i " 1 F i (a ,x) = 0, l ^ i ^ n . 

This completes the proof of (i). The proof of (ii) is similar. 

4. Degree Computation. This section deals with abstract operator 
equations in Banach spaces. The main results show that the Leray-
Schauder degrees of certain mappings relative to zero and appropriate 
open sets are computable in terms of Brouwer degree. The computa­
tion enters as an essential step in the convergence proof for a projec­
tion method of Galerkin type; see section 9 infra. 
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The function ^(a, x) is defined s — a.e. on [0,1] . 

LEMMA 7.1. The mapping *D is continuous and maps bounded sets 
to bounded sets. 

Define B : f X K -» Kby B(a, x){t) = J0
l ^{t, s; a) <?(a, x)(s) ds for 

each a = (ax, • • -, an) G T and x G K , where 
n 

^ ( f , s ; a ) = ^ ^(f,5;ai,ai+1)X[ai,ai+1)2 (t,s). 
i=0 

Both <̂ ( -, •; a) and <^( -, •; a) lie in L»( [0,1] 2), their norms being 1/4 
and 1, respectively. One can easily see that B maps T X K into K 

LEMMA 7.2. 7/ |am - a| + \\xm - x\\c + \\xm' - x ' | | p ^ ° as m 
-» oo, then || B(am, xj - B(a, x) ||c - • 0 os m -> oo, u>ftere (aw, xm), (a, x) 
E T X Kform= 1,2, • • •. 

LEMMA 7.3. ß : T X K-* Kis continuous. 

PROOF. In view of the previous lemma it suffices to show that 
||B(tf»,*m)' - B( f l0 ,*) ' | | p -0 , given |tf» - a<>| + ||*m - *||c + \\xm' -
x ' ||p —» 0 as m —» oo . By Minkowski's inequality, 

\\B{a™,xm)' -B(a°,x)'||„ 

^ | | £ ^ ( •,s;a'») - ^ ( s s ia 0 ) ] 9(a°,x)(s)ds 

+ | | £ ^ ( • ,*;fl»)[<?(fl»' ,xj - <?(a°,x)] ds | | 

^||<?(a°,x)||,|| [ £ |<£(- ,*;aj 

- ^(• )S;a0)|"'dS]1/<''|| 

+ ||<?(o«,xm)- 9(a°,*)||,. 

Again, the second term approaches zero as m -» oo. Now if £ (£ 
{a*m}?:°;,m-o» Jm(t)=Sol\&(t,3;am)- &(t, s; a°)\^f ds exists, and 
furthermore, Jm(t)—>0 as ra—> oo by Lebesgue's dominated conver­
gence theorem. Clearly, Jm(t) â 1 a.e. and so again by Lebesgue's 
dominated convergence theorem || /m | |p —> 0 as m —> oo . 

The lemmas which follow will establish the compactness of B. 

LEMMA 7.4. B : T X K -* C([0,1] ) is completely continuous. 
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PROOF. Continuity has been established, so it remains to prove com­
pactness. Let A X H C T X K be bounded and let (a, x)GAXH, 
then 

||B(a,x)||c = II f1 G(-iS;a)V(a,x)(s)ds 
II Jo 

5-J-|9te,*)||,. 

The right side of this inequality is uniformly bounded by some number 
M > 0, by virtue of Lemma 7.1. 

If (a, x) G AX H,a = (al9 • * -, an), then 

B(û ,* ) ' ( t )= ( -1 )< 

|fl
fl'+1 Q(t, s; ah ai+l)f(s, ( - 1 ) ^ ) , ( - l ) V ( s ) ) ds 

for almost all £ G (a*, a i+1) for 0 ^ i ^ n. The fact that the integrand 
is in L^di, ai+l]) implies that B(a,x) G AC2([aiy ai+l]) and that 
B(a, x)' G C([aÌ9 ai+ì] ), 0 ^ i ^ n. Furthermore, D±B(a, x) exists on 
(0,1) and |D±B(a, x)(t)| ^ || V(a9 x)\\x ^ J| *(a, x)\\q ^ 4M for all (a, x) 
G A X H. Hence, B(a, x) is Lipschitz with Lipschitz constant 4M for 
all (a, x) G A X H. Since B(A, H) is a uniformly bounded equicon-
tinuous family in C([0,1] ), it is precompact by the Arzela-Ascoli 
Theorem. 

LEMMA 7.5. B : T X K—» K is completely continuous. 

PROOF. Lemma 7.3 has established the continuity of B so it suffices 
to show compactness. 

Suppose {(am, xm)}m=i *s a bounded sequence in T X K. By the 
previous lemma we may assume that a subsequence has been selected 
so that {B(am,xm)}Z=i converges to some g G C([0,1] ). We may 
also assume that {a m }^ = 1 converges to some a = (ax, • • -,an) G T. 

Let J = {i : 0 ^ f ^ nanda i + 1 — a{> 0},38 = min{a i+1 — a{ : i G 1} 
andCfc = UiG/ [ßi + 8/fc,ai+1 — 8/fc] forfc = 1,2, • • \ Fixfcandchoose 
Nk such that a{

m $ Ck for O g i ^ n + 1 for all m ^ Nfc. It was 
shown in the proof of the previous lemma that {B(am, xm)'}m>Nk 

is a uniformly bounded sequence in C(Ck). Also, for u, v G C&, if 
\u — v\< 28/fc, then w, Ü G (<Zjm, a?+l) for some i G I and for all 
m ^ Nk. Therefore, 
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\B(a^xmy{u)-B(am,xm)'{v)\= I f" B(am,xm)"(s) ds I 

= I I" ?{am, xj(s) ds I 
I J V I 

^\u-v\W\\V(a™,xm)\\q. 

Hence, {B(am, xm)'}m^Nk is a uniformly bounded equicontinuous 
family in C(Ck) and has a uniformly convergent subsequence by the 
Arzela-Ascoli Theorem. We construct a subsequence as follows: let 
Sk = {B(am, xm)'}m^Nk for k = 1, 2, • • •, and let Tx be a subsequence 
of Sx which converges uniformly on Cx. Proceeding inductively, sup­
pose that the subsequences Tj have been chosen with T{ converging 
uniformly on Q for i = 1, • • -, j ; choose Tj+l C Tj Pi SJ+1 to be a sub­
sequence which converges uniformly on CJ+1. 

Let us write T{ = {B(am>\ xmyi) '}m=i for each i = 1, 2, • -, and con­
sider the diagonal subsequence {B(a m ' m ,x m m ) , }^ = 1 . It is clear from 
the construction that this subsequence converges uniformly on com­
pact subsets of (0, l)\{öi} r=i to a function gi E. C((0, 1 ) \{ÖJ}? = 1 ) . A 
further consequence of this convergence is that gY(t) = g'(t) for t G 
(0, l)\{o*}?_i and hence, {B(am>m,xm>m)}™=l converges to g in E. 

We will now turn our attention to the matching operator F. 

Define F : T X K-> Rn by F = (Fl9 • • -, Fn) where 

F,(fl, x) = Gt(au s; a{_x, a{) D(a, x)(s) ds 

f ai+\ 

+ Gt(ai,s;ai,ai+i)*?(a,x)(s)ds 
J ai 

for x G K, a = (ah • • -, an) £ f . 

LEMMA 7.6. F is continuous and maps bounded sets to bounded 
sets. 

PROOF. The proof is similar to that of Lemma 6.7 and will be 
omitted. The essential difference between the proofs is that S2(a, x) 
$ Loo in general, however, the fact that <3(a, x) G Lq allows Holder's 
inequality to be used in conjunction with Lemma 7.1. 

8. The Auxiliary Functions h and k. The theorems of section 4 
made use of auxiliary functions h and k. Below, these functions are 
constructed and some of their properties are given. In particular, the 
construction makes it clear that h and k depend only upon the linear 
differential operator and the nodal conditions. 
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Let a = (ai9 • • -, an) Œ T and let c be a fixed positive parameter, to 
be determined later. 

DEFINITION 8.1. For 0 Si £ = 1, define 

n 

h(t; a, c) = 2c YJ mi(Ci> di){t)X[ciidi] (t) 

where 

and Ci = a{ + (a i+1 — a^/3, dj = a* + 2(a i+1 — a^/3. 
The notation A a i = a i + 1 — a* will be used. It is verified that 

ft( •; a, c ) £ C ( [ 0 , 1]) with norm 3c/ra, m = min{Aaj : 0 ^ i Si n, 
Aöi > 0}. Further, Jçh(t; a, c) dt = c(n + 1). 

DEFINITION 8.2. For each c > 0, define the operator h : T—» K by 
h(a)(t) = J<J £?(£, s; a)h(s; a, c) ds, 0 Si £ = 1; where the kernel <g? 
is defined in section 6. 

Explicitly, 

c(t - aj)/4, aie tè Ci 

c(t - a,)/4 - 3c(t - c^/Aa*2, c< è t è (a, + a,+1)/2 

d(a i+1 - f)/4 ~ 3c(dt - t)/Aoi2, (a, + a i + 1 ) / 2 è t è d { 

c(ai+l - t)l4,diè tèai+u 

(8.1) fc(a)(*)=< 

for a* ^ £ ^ a i + 1 ,0 ^ i è n. 
In view of (8.1) and the definition of h some of the following lemmas 

do not require proof. 

LEMMA 8.3. The function h(a) is continuous on [0,1] for each 
a G Tandh(a)(t) > Qfort E [0, l ] ^ } ^ 1 -

LEMMA 8.4. The function h(a) G C2([ai9 ai+i] ) whenever a{ < ai+1. 

LEMMA 8.5. For each a ET, \\h(a)\\c è c/9. 

PROOF. Definitions 8.1, 8.2 and the representation (8.1) show that 
h(a) is concave on each of the intervals [ai9 ai+l], 0 è i = n, and that 
the maximum occurs at (a* — fli+i)/2 for some i, 0 Si i = n. Now (8.1) 
gives 

h(a)((ai - fli+1)/2) = cAa</9 è c/9. 
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LEMMA 8.6. If a G TandtÇ {öi}t
n

=1, \h(a)'(t)\ ^ c/4. 

A consequence of Lemma 8.6 is that h(T)Q K for each choice of 
the Banach space E in sections 6, 7. Further, ||^(a)|| ^ 13 c/36 and 
| W UP S c/4. 

Let D+ and D~ represent the right and left-hand Dini derivative 
operators, respectively. 

LEMMA 8.7. If a G T, then D+ h(a)(ai) + D"/i(a)(ai) = 0, l g i 
S n , 

In order to show continuity of h : T-* K a. representation is given 
which is more readily manipulated. If a = (ai9 • • -, an) G T and a{ < t, 
s < ai+1, substitute fi = (t — a^lAa^ A = (a — a /̂Aa* into defini­
tion 8.2. This gives 

f2/3 

fc(ii)(t) = 6cAfli g(M, A)0(A) dX, Of ^ f ^ ai+1, 
» 1/3 

(8.2) where g(/ut, A) = min{/i(l — A), A(l — /Lt)} and 

0(A) = min{3A - 1 , 2 - 3A}. 

REMARK 8.8. For A G [1/3, 2/3], 0 g 0(A) g 1/2 and 0 ^ g(/i,, A) ^ 
i/r(/x) = min {/ut, 1 — /ut}, 0 â / i § l , It follows that (8.2) can be used 
even when a{ = ai+1. 

LEMMA 8.9. The function g satisfies |g(/ut,X) — g(Mi>X)l â 2|/LC — /xj 
whenever fi, fiÌ9 A è [0 ,1] . 

LEMMA 8.10. I / 8 > 0 a n d o - ô < f l ' < o + 8 ë ^ f c - - ô < f c ' 
< b + 8, £ften 

| ( * - f l ) / ( b - a ) - {t-a')l(b' - a')\ < 38min{(fo - a)~\ (b' - a ' ) " 1 } . 

Furthermore, if 8 < (b — a)/6, #ien 

2 ( f o - a ) < 3 ( f c ' - a ' ) < 4 ( & - a ) . 

LEMMA 8.11. The function h : T—> C( [0,1] ) is continuous. 

PROOF. Using the notation developed above, suppose that \a — b\ 
< 8 and 68 < minfA^ : 0 ^ i g n and AÖ; > 0} where & = 
(fci, • • -, bn) G f. Put Abj = &i+1 - fy and fix = (* - fo^/A^ when­
ever bj^t^bj+l. Let *G [0,1] be fixed. Then t G [öi,a i+i] fi 
[foj, fy+J for some 0 § i , j § n and by (8.2) 
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r 2/3 

\h(a)(t)-h(b)(t)\^ ôctlAoï-Aty g(,*,AWX)dX 
•J 1/3 

f 2/3 

+ A f o i J 1/3 lg(M> X ) - g(/*l> X)I*(X) d X ] 

^ c\ÙLui - AbJ/i + cA&imin{^(ft) + *(/ii),2|fA - t^l}, 

by Remark 8.8 and Lemma 8.9. Consider the following possibilities: 

Case 1. If tE. [ah a{ + 8), then </*(tt) ̂  it ^ 8/Aa* and i^Mi) ^ 
28/Afy. Hence 

\h(a)(t) - h(b)(t)\ ^ c[8(l - Ab/Aa*) + «(Afe/Ao, H- 2)] ^ 6c8. 

If £ G (a i+1 — 8, a i + 1 ] , then the same estimate holds. 

Case 2. If * G [öi + 8, a i+i - 8] , then t G (foi? fc4+1), that is, j = i. 
Lemma 8.10 gives 

|h(a)(0 - h(b)(t)\ ^ c [ | A f l i - Afc,| + Abritt - M l |] ^ 8c. 

It follows that \\h(a) - h(b)\\c -» 0 as 8 -> 0. 

LEMMA 8.12. The function h :T—> Kis continuous. 

PROOF. It has been shown in previous lemmas that h maps T into 
K and that ||h(a) - h(b)\\c-»0 as |a - b\ -+ 0. This is sufficient if 
E = C([0,1] ) as in section 6 but if E = Lp

l([0,1] ) as in section 7, 
then it remains to show that \\h(a)' — h(b) '||p—> 0 as b—> a in T. The 
notation of the previous lemma will be used. Suppose that a{ < t < 
ai+1, then 

h(a)'(t) = &J-(h(a)(t)) = 6c-^ ( \2 g^xWO dx) 

f2/3 

= 6c &(^X)0(X)dX, 
J 1/3 

where 

^ ^ ; \ -X, tt>\. 

Thus, if |a — b\ < 8 and £ G (aiy ai+i) H (bp bj+l), then 

I f 213 I 

J.. [&(/*>*)-g,0ti,AMx) A J 
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S 6c 

( f*1 

(l - k - (-kMk) dk, n< ßl, 

f* | — X — (1 — kMk) dk, MI < n 
7 Ml 

^ 3c | jx - / i j . 

Case 1. If t G [ai? a< + 8) U (a i+1 — 8, a f + 1 ] , then 

|fc(a)'(t) - Hb)'(t)\ g 3c|/i » ALJ § 3c. 

Case 2. If * G [fli + 8, a i+i - 8] , then t G (bh bi+1) and |/»(a)'(f) 
- fc(&)'(*)l = 9c8/Aaiby Lemma 8.10. 

Hence, 

\\h(a)'-h(b)'\\;= jl
o \h(a)'(t)-h(b)'(t)\r>dt 

g 2(n + l)8(3c)*> + (QcSym1-?, 

where m = minfA^ : 0 § i g n , A^} > 0. Therefore \\h(a) ' - h(b) ' \\p 

- * 0 a s 8 - » 0 . 
The function k will be the same as the function h but with a dif­

ferent value for the parameter c, again, to be determined later. To 
avoid confusion, whenever we are dealing with the function k we will 
call this parameter d. 

9. Projection Methods. The idea behind a projection method is to 
approximate the equation to be solved by another, simpler equation, 
which usually reduces to a finite system of scalar equations. 

Let E and F be real Banach spaces and N : D(N) C E -» R(N) C F 
a nonlinear operator. The projection method for the nonlinear equa­
tion Nx = 0 is as follows. Let {£„}, {Fn} be two sequences of sub-
spaces of E and F, respectively, En C D(N) C E, FnC F and let Pn 

be a linear projection of F onto Fn, i.e., 

F 2 = P P F = F 

The projection method replaces Nx = 0 by the approximate equation 

(9.1) Pn2V*„= 0, * „ £ £ „ . 

In contrast to these usual projection methods, the one used in this 
work is motivated by the pair of coupled operator equations 

x = B(a, x), 
(9-2) {l-*4 
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the second of which is already finite-dimensional. The idea is to re­
place the first equation by a finite-dimensional approximate equation. 
Unfortunately, this leads us to define projections parameterized by the 
variable a, hence it does not precisely fit the usual context of a projec­
tion method. However, it does seem reasonable to call it a projection 
method, in view of the properties of the parameterized projection 
operators. 

The projection method used in this work considers a sequence 
{Em(a)}m=\ of subspaces of E and a sequence of projections 

Pm(a) : E -+ Em(a), 

defined for each a G T. These projections will be constructed so as to 
map the cone K of nonnegative functions back into itself. 

The nonlinear system (9.2) will be replaced by the system of approxi­
mate equations 

(q «v pm = Pm{à)B{a, Xm),_Xm £ Em(a), 
[ ' } 1 0 = F(a,xm),a E T . 

This system is finite-dimensional. 
In contrast to standard methods, it seems that (9.3) cannot be 

viewed as a projection scheme of the form (9.1). This is due primarily 
to the intermixing of the variable a in the projections themselves. 

10. The Projection Operators. A family of projection operators shall 
be constructed, tailored to the problem at hand. Each of the projec­
tions will map E onto a finite-dimensional subspace where the corre­
sponding approximate equations may be solved using numerical 
methods. It is shown that the identity is uniformly approximated by 
these projections, and that the approximate equations (9.3) suitably 
approximate (9.2) in the case of a nodal problem (3.3). 

Let E= {xE AC([0,1] ) : x' G Lp([0,1] )} with norm ||x|| = ||x||c 

+ II* 'UP-
For each a = (al9 * • *, an) G T and m == 2. Let IIm(a) = {sifj = 

aj + (i — 1)^ : l^iêm, O^jtè n} where hj = (aj+l — aj)l(m 
— 1). Notice that sXj = a, = smJ_i and that sifj = aj ifaj+i = ajt 

Define the projection Pm(a) : E —» E by letting Pm(a)x be the con­
tinuous function on [0,1] which agrees with x at each point of IIm(a) 
and which is linear on l{j = [sifj, si+lJ), 1 ^ i ^ m — 1, O^j^n. 
We may write 

m—1 n 

*\n(fl)* = S S X(sij)eij + X(Sm,n)em,n 
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whose e{j is the continuous function which satisfies: eifj(sk>i) = ô^m,* 
and eitj is linear on each Ikl, 1 ^ i, k ^ m, 0 â m, 0 ^ m, 0 â j , I ^ n. 
The operator Pm(a) is a projection from E onto the subspace Em(a) = 
s p a n { ^ : l â i â m , O ë j S n } . The dimension of £m(a) is (m — l)(n 
+ 1) - h i is a G T; it is strictly less if a G dT. The topology on Em(a) 
is the topology induced by E. 

LEMMA 10.1. Pm(a) is a bounded linear operator from E onto Em(a) 
such that \\Pm(a)\\ = I for allaE.T,m^ 2. 

LEMMA 10.2. If x G E is Lipschitz with constant M then \\Pm(a)x 
- x||c g M/2(m - 1). 

PROOF. Let t G [0,1] be arbitrary. If t = 1, Pm(a)x(t) = x(t); other­
wise t G lij for some l â i S m - 1,0 ^j â n, and 

|Pm(ö)x(t) - x(*)| = \x(Sij)[Si+ij - q V 1 

+ *(^j)[*-*uJV1-*(*)l 

+ IxiSi+ui-xWllt-SiJhj-i 

ê 2M(si+lJ - t)(t - Sijhj-i 

^ Afty2 = M/2(m ~ !)• 
LEMMA 10.3. Ifx G E is such that x ' G AC(Iitj) for l ^ i g m - 1 , 

O^j^nand x" G L„( [0,1] ) for some K q g p } then || (Pm(a)x) ' -
x ' | | p S \\x"\\q{m - l)-w, where llq + l / 9 ' = 1. 

PROOF. Let x by as above, then 

\\(Pm(a)x)'-x'\\p 

- r c I Y s w*i+u) - *(^))^-*lg(t) - *(o ip 1̂ 
^ T s ' É f ( j M»)-*'(t)IV1<fr)P<ftl,A' 

L i = 1 j'=o J 'U X J U j ' "" ' ' J 

1/P 
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*VU[t ±1 (J h^dsYdt]1"' 
L i = i j = o Jli>i N J ï*.j / J 

[ m—1 n /• i 1/p 

S 2 f V' * 1 
i=i j=o J hi J 

= \\x"\\qhJu<'^\\x"\\ql(m-l)W. 

LEMMA 10.4. Let y be Lipschitz on [0,1] with constant M, and 
suppose [a, b], [c, d] C [0,1] . 

Let i(t) = i/(b)\(f) + t/(a)(l - k(t)) - y(d)^(t) - t/(c)(l - M(*)), 
where X(f) = (t — a)l(b — a) and fx(t) = (t — c)l(d — c), then the fol­
lowing estimates hold for 

A = max{|£(*)| :tG[a,b] H [c, d] }: 

(i) A ^ max{min{|b - c\9 \c - a\}, min{|b - d\, \d - a\ }}2M 
i£[c,d\ C [a ,b] , 

(ii) A ^ max{min{|d - a|, |c - a\}, min{|fo - d\9 \b - c\}}2M 
i f[a,b] C [c ,d] , 

(iii) A ^ max{min{|b - c\9 \c - a\}, min{|fc - d|, \b - c| }}2M 
if a ^ c ^ fo ^ d, 

(iv) A = max{min{|d — a\, \c — a\}, min{|b — d\9 \d — a\ }}2M 
i f c g a ^ d g f o . 

It will be shown below that if y G E is Lipschitz with constant M 
and if ak -* a0 in f as fc-> oo then ||Pm(a*)y - Pm(fl°)y|| -» 0 as fc -» oo 
for each fixed m ^ 2. Let {/»}"=i be an enumeration of the lijs cor­
responding to nm(s) and {K|}f=1 and enumeration of those correspond­
ing to nm(ak). We have suppressed the dependence of K* on k. It is 
clear that a, ß g (n + l)(ra - 1). 

LEMMA 10.5. Let a0, ak G T and let 8 = min{b — a:a< b G 
nm(a0)}, where m è 2 is fixed. Suppose that \ak — a°| < Ô/4 and tfwrt 
[a, b) H [c, d) ^ 0 where a, b are adjacent points in nm(a°) and 
c, d are adjacent points in IIm(afc), £hen 

max{min{|b — d, |d — a|, |c — a||, 
(10.1) 

min{|& - c\9 |d - a|, |fo - d|}} ^ |afc - a°|. 

PROOF. Since 8* = |afc — a°| < ô/4, the definition of 8 implies that 
the ^-neighborhoods of the points in Il^a0) are disjoint. Further, 
each of these neighborhoods contains a point of IIm(afe). In addition, 
each of the points of IIm(afc) lies in one of these neighborhoods. 
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The proof is completed by examining each of five distinct cases 
arising from eight possible locations of a, b, c, d. One deduces the 
following: 

if \d - a\ > 8k, then \b - c\ g 8k or \c - a\ g 8k; 

if \b - c\ > Bk, then \d - b\ S 8fc or |d - a| g 8fc. 

LEMMA 10.6. Suppose that y G E is Lipschitz with constant M and 
that ak, a0 ŒT with \ak — a°\ < 8/4, 8 being defined in the previous 
lemma, then 

\\Pm(ak)y - Pm(a°)y\\c = 2M|a* - a% for each m ^ 2. 

PROOF. Let t G. [0 ,1] , then either t — 1, in which case Pm(ak)y(t) 
= Pm(a°)y(t), or * £ / ; Pi K, for some l g i g o , l^j^ß. Write 
/ , = [a,fc) and *̂  = [c,d), then |Pm(n*)y(t) - Pm(a°)y(t)\ = |A(t)| S 
A, for t G Ji H Kj, where we are using the notation of Lemma 10.4. 
This lemma gives estimates for A with the four possible locations of 
a, by c and d under the restriction that [a,b] H [c, d] ^ 0 . We 
will combine these estimates with the result of Lemma 10.5 to reach 
our conclusion. 

If \b - c\y \d - a\ > 8k = \ak - a°\, then (10.1) implies that \c - a\, 
\b — d\ ^ 8k and so A = 2M 8k in all cases. If |cZ — «I = 8k, then only 
cases (i) and (iv) can occur; in case (i) this condition implies that 
\c — a\ = 8k and so A = 2M 8k in all possible cases. If \b — c\ ^ 8k, 
then only cases (i) and (iii) can occur; in case (i) this condition implies 
that \b — d\ S 8k and so A = 2M 8* in all possible cases. 

LEMMA 10.7. Under the assumptions of Lemma 10.6, 

\\(Pm(ak)y - Pm(e°)y)% ^ 4M aß\ak - a° |^ , 

where a,ß S (n 4- l)(m — 1). 

PROOF. The notation is as above. Then for £ G [a,b] D [c,d] 

\if(t)\^min{LuL2} 

where 

L, = (|«/(&) - t/(d)| + |y(c) - «/(a)|)/|& - a\ 

+ W)-y(c)\\(b-a)-i-{d-c)-% 

U « l«/(&) - y(«)l/|fc - al + ly(d) - y(c)\l\d - c\. 
Therefore, 

|£'(*)| ^ 2M • min{(|fe - d\ + \c - a\)l\b - c|, 1}. 
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Each set J{ D Kj is of the form [a, b) D [c, d\ furthermore, one of 
the following must occur: (i) [a, b] D [c, d] has length less than 
\ak - a°\; (ii) \a - c\9 \b - d\ < \ak - a°\. 

Considering cases (i) and (ii) leads to the estimate 

f | r ( t ) | " < f c ^ ( 4 M ) " | a * - a ° | . 

This inequality implies the conclusion. 

Let B be as defined in section 3. If P is a continuous projection of 
E onto K (for example Px = \x\) define B*(a, x) = B(a, Px). 

LEMMA 10.8. The function (a, x) —> Pm(a)B*(a, x) is continuous from 
T X E into Kfor each m g 2. 

PROOF. Suppose (a\ xk) -> (a0, x°) in T X E as k -+ » . Then by 
continuity of B, yk = B*(a\ xk) -+y°= B*(a°, x°), as k -^ oo. We 
have 

\\Pm(ak)yk - Fm(nVII = l l ^ û W - y°)\\ 

+ \\Pm(ak)y° - Pm(a°)y°\\ 

= \\yk - »°ll + 2M\ak - a°\ + 4Maß\ak - a°\ 

by Lemmas 10.6 and 10.7. Here, M is a Lipschitz constant for t/°, con­
structed as in the proof of Lemma 7.4. 

LEMMA 10.9. The function (a, x) —• Pm(a)B*(a, x) is completely con­
tinuous from T X E into K for each m è 2. 

PROOF. This follows from compactness of B and Lemma 10.8. 

LEMMA 10.10. Let $S be a subset of T X E such that there exists a 
uniform Lipschitz constant M for B*(a, x) and a uniform bound Mx 

jor\\B*(a,x)"\\q,(o,x)G!B. Then 

\\Pm(a)B*(a,x) - B*(a, x)\\ â (M -h M^m - 1)W, 

where q > 1 and 1/g + 1/q ' = 1. 
Zn particular, Pm(a)B*(a, x) uniformly approximates B*(a, x) on !B. 

PROOF. Apply Lemmas 10.2 and 10.3 and the definition of the norm. 

11. Convergence. This section uses the results of sections 10, 11 to 
obtain existence of solutions to the finite-dimensional approximate 
equations (9.3). Furthermore, the approximating operators are shown 
to be collectively compact. The solutions of the approximate equa­
tions are shown to cluster to the solution of the nodal problem, in the 
presence of uniqueness (theorem 11.4). 
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Recall A : T X E -> Rn X KJs given by A(a, x) = (a + F*(a, x), 
B*(a, x)). Let us define A ^ T X E - * fl"XK by Am(a, x) =_(a + 
F*(a, x), Pm{a)B*{a, *)) for each m ^ 2. Let fi C fi Ç T X (BR\Br) be 
open. 

THEOREM 11.1. If the Leray-Schauder degree d(I — A, fi, 0) d j t ó , 
tfien, for m sufficiently large, so does d(I — A^, fl, 0) and the two 
degrees are equal. In particular, d(I — A, fi, 0) ^ 0 implies d(I — Am, 
fi, 0) ^ 0/or aU large m. 

PROOF. The operator A^ is completely continuous by virtue of 
Lemma 10.9. Due to the computations of section 7, the hypotheses of 
Lemma 10.10 are satisfied for any bounded subset 03, therefore A^ 
uniformly approximates A on fi as m —» oo. The result follows from 
basic theorems of Leray-Schauder degree. 

COROLLARY 11.2. Suppose that the fixed points of A are isolated and 
that d(I — A, T X (BR\Br), 0) ^ 0. Then there exists a sequence 
{<f>mj} l=i Ç T X (BR\Br) converging to a fixed point of A and such 
that Amj <f>m. = <f>mj,j = 1 , 2 , • • •. 

LEMMA 11.3. The family of operators {Am}m^2 is collectively com­
pact. 

PROOF. Let {(ak,xk)}k=i be a bounded sequence in T X E. By 
taking subsequences, if necessary, assume that ak —» a0 G T, yk = 
B*(afc, **) -+y0EE, and fofc = a* + F*(a*, xk) -* b0 G Rn as k -> oo, 
this being possible by the results in Section 7. 

Let {mk}%=lQ N and consider the sequence {Am (ak,xk)}%=1. 
It suffices to show that S = {Pmk (a

k)B*(ak,xk)}k=l has a convergent 
subsequence. If {mk}k=l is bounded, then S is bounded in a finite 
dimensional space and possesses a convergent subsequence. If 
{mk}k=l is not bounded, then by taking a subsequence, if necessary, 
we may assume that mk —» » as fc —> oo. In this case 

||Pm* (a*)«/k - t/oll ^ | |P . t (a*)yfc - Pmk (ak)y0\\ 

+ \\Pmk (<>k)yo - î/oll 

^ lift - yo|| + ||P„4 («*)y0 - yo||-
Lemmas 10.2 and 10.3 complete the proof. 

An immediate consequence of Lemma 11.3 is the following: 

THEOREM 11.4. If fl is a bounded set in T X E then p= {<£ G fi : 
A]rf> = 0 /or some k} is precompact. In particular, if<f>0 G [lis a fixed 
point of A, unique in fi, then all sequences {<f>k}k=i Q P satisfying 
(f>k = Afĉ fe converge to <f>0. 
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11.5. REMARK. The uniqueness in ft of a fixed point of A does not 
imply the uniqueness of fixed points of the operators {Ak}. However, 
the fixed-point sets Kp = {<j> : $ = A^} are compact sets geometrically 
close to the singleton {fo} in the Hausdorff metric. In this sense, any 
solution <f> G Kp is a "good" approximation to <f>0, provided p is suf­
ficiently large. 

A-priori estimates for the rate of convergence need to be developed. 
This should be possible in the sublinear case, due to the more likely 
possibility of uniqueness (i.e., Kp is a singleton). Our progress on 
these problems is presently too incomplete to report. 

12. A-priori Bounds: The Superlinear Case. This section contains 
several technical lemmas which give a-priori bounds for the solutions 
to certain types of differential equations satisfying nodal properties. 
These bounds are used to define open sets on which degree computa­
tions can be made. 

Consider the differential equation 

(12.1) y"(t) + g{t, y(t), y'(t)) = 0,0 < t < 1. 

Suppose that g has the form 

(12.2) g(t, y9 z) = /(*, y, z) + sign(y)q(t), 

where / : [0,1] X R2 -» R and q : [0,1] -* [0, oo ) are continuous. 
Further, assume that / satisfies 

(12.3) f(t,y,z)ly^p(t)\yh 

t G [0 ,1] , zGR, \y\ ^ Y, for some fixed a, Y > 0, and p : [0,1] 
—» [0, oo ) is continuous and not identically zero on any interval of 
length 3-l(n + l)~K In addition, f(t, y, z)y^0 for all (t, y, z) E 
[0,1] X R2. 

If x is a continuous function on [a, b] let \\x\\atb = max{|x(£)| : a = t 
^ b). Define m(qj))(t) = min{t — a, b — t}l(b — a). An imme­
diate consequence of the concavity of positive solutions of (12.1) is 
the following: 

LEMMA 12.1. Suppose that y is a solution o/(12.1) having a< b as 
adjacent zeros, then 

\y(t)\^\\y\\a>Ma,b)(t),a^t^b, 

and 

m i n d t / ^ a ^ l t / ' ^ l j ^ l l t / I U f o - a ) - 1 . 
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LEMMA 12.2. The function p satisfies 

p* = inf | j b m(a, b)2+«(t)p(t) dt.b- a 

^ 3 - * ( n + l)-\0^a<b^l \ > 0. 

REMARK 12.3. If p(t) è p > 0 for 0 g t ^ 1, then p* g p[3(n + 1) 
•(3 + a ) •2 2 +«]" 1 . 

LEMMA 12.4. Let y be a solution of (12.1) having a < b as con­
secutive zeros. Let c = a + (b — a)/3, d= b — (b — a)/3. 7f\0 is £/ie 
minimum eigenvalue of 

ju"(t) + Ap(*)m(a, &) W ) = 0 
* ' lu(c) = t*(d) = 0 

*en||y| | . fbSmax{3Y,X0
1 / 2}. 

PROOF. Suppose that y(t) ^ 0 for a S * S b. If ||t/||a>& > 3Y then 
by Lemma 12.1, y(t) è Y for c §̂ t S d. Furthermore, if ||y ||s,i, > X0, 
then conditions (12.2) and (12.3) and Lemma 12.1 show that (12.4), 
with X = X0, is strictly majorized by (12.1) on (c, d). This contradicts 
y not vanishing on (c, d), by Sturm's comparison theorem. 

For computational purposes the following is given: 

LEMMA 12.5. Using the notation of Lemma 12.4, if (b — a) ê 
( n + I)-1, then 

X o S 3 ( n + l ) / p * = ( f l o ) « . 

Given p > 0 (p = 1, usually), define <£ : [0, oo ) x [0, oo ) _• [0, oo ) 
by 

0(r, t) = max{|/(*, y, z)\ : 0 g s ^ 1, % | g |z| g r + p, |y| ^ * + p}. 

Let* t : [0, » ) -» [0, oo ) be defined by 

<*>*(")= T r l ^ r , * ) ] - 1 * . 
Jo 

Hereafter, we assume a Nagumo Condition: t < f%t r[<f>(r, i)] ~l dr, 
t ^ 0. This allows us to define* : [0, oo ) _> [0, oo ) by 

LEMMA 12.6. Ift ^ 0, thenar ° V(t) ^ ¥(t) ^ *. 
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LEMMA 12.7. If y is a solution of (12.1) having b> c as adjacent 
zeros in [0 ,1] , and if q(t) = 0 for tG[b,b+ (c- b)/3] H [c -
(c — fo)/3, c], then u = \\y\\b,c satisfies 

(12.5) max{|t/'(fe)Uy'(c)|}^<Du-i(M + <l>u(3u(C- b)~% 

PROOF. The inequality for y'(b) will be proved, the argument for 
y'(c) is similar. Without loss of generality assume that y'(b)> 0. If 
y'(b) è 3||t/||b)C(c - b)-\ then (12.5) follows by the monotonicity of*. 

If y'(b) < 3\\y\\b,c(c "" k) - 1 ' then there exists a first value d G (b,b 
+ (c - b)l3] such that y'(d) = 3||t/||bc(c - fe)"1 (otherwise, y(t) = 
Si y'(s)ds >3||t/||fo>c • (t - b)l(c - b)9 which fails at t = b + (c 
- b)/3). The following is valid: 

the last inequality is a consequence of the definition of <f> and the 
inequality y '(s) è 3||t/||fe c, s G [fo, d] . Performing the change of vari­
ables t = y '(s) and integrating leads to 

\\y\\b,c^Qu(y'(b))-<P„(y'(d)). 

Solving for y '(b) gives the desired result. 

REMARK 12.7. Since <É> is increasing the right hand side of (12.5) 
may be replaced by "ty(||y||btC(c — &)-1). 

Define Rx = (n + l)Ro, ^o being given by Lemma 12.5, and set 
R i + 1 = ^ ( R i ) forici. 

THEOREM 12.8. Suppose that y is a solution of (12.1) having exactly 
n + 2 zeros a£ 0 = a0 < ÖI < • • * < an < an+1 = 1. If q(t) = 0 /or 
* G Uni=o [öi, a, + (ai+l - Oi)l3] U [a i+1 - (ai+l - aJ/3, ai+1, then 

PROOF. For brevity put N{ = ||y||aitai+i (ö i+1 - a*)-1, i = 0,1, • • -, n. 
By Lemma 12.1, 

(12.6) N , S | y ' ( < i O l , l y ' ( « . + i ) I ^ W ) -

fori = 0,1, • • -, n. 
Now for some f O ë j ë n , aj+l — a , S (n + 1)_1. It follows from 

Lemmas 12.4,12.5 and 12.6 that 

Nj ^ ( n + l)flo =Rl^Rn> 

\\y'\\aj,aj+1 = m a x d y ' ^ M y ' ^ O I } ^ ^ ^ ) ^ R2. 

Equation (12.6) implies that 



PROJECTION METHODS 599 

Nj_, =i \y '(o,.)l ^ R2 and Nj+1 â \y '(aj+l)\ ^ R2, 

SO 

and 

N,+2 ^ | t / > j + 2 ) | =i*(N,+ 1) =i¥(R2) = «a-

Continuing by induction (when permissible) one gets 

and 

N j + i;g | i / ' (a i + i) l=ÌRi+ i 

for fc ̂ § ̂ ' and i=-n—j. The conclusion follows from the observations 
that ||t/|Uai+1 g N J S i g n , and ||y'||c = max{|y'(a,)| : 0 g I g n 
+ 1}. 

Using the notation of section 7, \\y\\E = ||t/||c 4- | | t / ' | |p^ i^+i + 

To find a lower bound for the norm of a nontrivial solution of (12.1), 
the following definition is made. 

DEFINITION 12.9. Define TJ : (0, oo ) _» (0, oo ) by 

(12.7h(r) s sup{f(t, y, z)ly : t G [0 ,1] , \z\ g fl^, 0 < \y\ g T,}. 

THEOREM 12.10. Suppose that y is a solution of (12.1), where f 
satisfies (12.2), (12.3). Ifri(r) < 8/5 and 

j l \q(t)\dt<r(8-57i(r))ll0 

for some r < H ^ , then \\y\\ = \\y\\c + \\y'\\p ji r. 

PROOF. Let a < b be consecutive zeros of y in [0,1] such that for 
some t0 G [a,b], \y(t0)\ = ||y||c. It can be assumed that t / ê 0 on 
[a, b]. By Theorem 12.8 and definition 12.9, if \\y\\ = r, then 

IMIc = y(to) = fb G(t0, s; a, b) [f(s9 y(s), y'(s)) + q(s)] ds 

S \b G(t0,s;a,b)[r,(r) + q(s)]ds 
J a 

S fî?(f)/8 + f1 q(s) dsl4. 
JO 
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Similarly, \\y ' \\p ^ \\y ' ||c ^ rr)(r)l2 + ft q(s) ds. These inequalities 
contradict ||j/|| = r and the hypothesis. 

REMARK 12.11. In the previous theorem the requirement that 
Soq(t) dt < r(8 - 5rj(r))/10 may be replaced by ||<7||c < r(8 - 5 
V(r))l5. 

13. A-priori Bounds: The Sublinear Case. Bounds for solutions of 
(12.1) in the C^-norm will be obtained in the setting where / is sub-
linear in y near °° and satisfies certain other growth conditions. The 
specific requirements are as follows: 

Suppose that there exist Q > 0, Yx ̂  0 and r > 0 such that 

(13.1) \f(t,y,z)\ëQ(l + z*) 

for\y\^Y1,z<=R,tE[0,l], 

(13.2) y = sup{/(t, y, z)ly : \y\ >Y1,zGR,tG [0,1] } < 8, 

and 

(13.3) p(t)4,(y)^f(t,y,z)ly 

for 0 < \y\ g r, z G R, t G [0 ,1] , where p : [0,1] -> [0, » ) is con­
tinuous and positive off a set of measure zero, ^ : [—r, r]\{0}—» 
[0, » ) is continuous and i/»(t/) —* + °° as y —» 0. 

LEMMA 13.1. If y is a solution of (12.1) having a< b as consecutive 
zeros and if q(t) = 0 on 1= [a,a + (b - a)/3] U [b - (b - a)/3, b] 
and [a, ax] U [blt b]C {tGI: \y(t)\ g Y1; \y'(t)\ > 0}, then 

1 + (t/ '(a))2^ (Yj2/(o - ax)2 + l)e2<?y. 

and 

1 + ((/ '(b))2^ (Y^Kb - fej)2 + l)e2<?y.. 

PROOF. Suppose that y(t) § 0 on [a, b]. The first inequality will 
be proved; all other cases are proved in a similar manner. 

For a g t^ au \y(t)\ ^ Yi and by (13.1), 

.U)^,U)f(t,y(t),u'(t)) _ -y'(t)y"(t) 

By integrating with a change of variables it follows that 

Y > iaiu'(t)dt> - r o i ) sds = — t o * + ( y , ( a ) ) 2 

Y 1 = Ja «/ ( t ) d t = J ^ ç ( 1 + s2) 2 Ç * n i + (!/'(«i))2' 

and 

l + tyW^a + ^ a , ) ) ^ 2 ^ . 
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Finally, the concavity of y implies that 

O^y'(a,) g y(al)l(al - a) S Y ^ - a). 

THEOREM 13.2. If y is a solution of (12.1), with f replaced by Kf, 
A E [0,1] , having a < b as consecutive zeros in [0 ,1] , and ifq(t) = 0 
on I s [a, a + (b - Ö)/3] U [b - (fc - a)/3, 6 ] , tfien ||t/||a,fe g R ' , 

H' s m a x ^ , (8 - Y ) - ^ ^ 2 + l)Ç>e2W + 5||9||c)/9} 

PROOF. Again, assume that y(t) §̂  0 for a == £ ^ fo. Let £0 ^ [#> &] 
be such that y(t0) = \\y\\a,b and suppose that ||t/||0)fc^ 3Y1? then by 
Lemma 12.1 there exist ax< bY E [a, b] such that (/(d )̂ = y(bY) = 
Yx and y ' > 0 o n [ û , a j , t / ' < 0 on [&i>&]> a n d furthermore / = 
[a, ax] U [bìtb] C /. It follows from Lemma 13.1 and condition 
(13.1) and (13.2) that 

\\y\\a,b = y(to) = P G(f0, s; a, b)(\f(s9 y(s), y '(s)) + q(s)) ds 
J a 

g j } G(t0,s;a,b)Q(l + (y'(s))2)ck 

+ G(t0,s;a,b)y\\y\\atbds 

„ „ fb-(fa-o)/3 
+ ? c G(t0,s;a,b)ds 

Ja+(b-a)l3 

g Ç>[ Y^fl - fll)
2 + 1] e 2 ^ fai G(*0, *; a, fo) & 

J a 

+ Q[YJ(b - fej)2 + 1 ] e 2 ^ f G(*0, s; a, b) ds 
J bx 

+ rl|y||0,fc/8 + 5||9||c/72. 

The integrals fy G(t0, s; a, b) ds and / ^ G(£0, 5; a, b) ds are bounded 
by (a — fli)2/2 and fc — &i)2/2, respectively, therefore 

||«/IU(1 - y/8) â « ^ V ^ + 5|M|c/72 
+ Ç>e2<?r>((a - Cj)2 + (b- b,)2)^. 

Recall that (a, - a), (b - bj ^ (b - c)/3 g 1/3, hence, \\y\\0>b § R ' . 
It should be noted that the above proof does not depend on the 

number of nodes of y in [0 ,1] , nor does the bound depend upon 
[a, b], except that it be contained in [0 ,1] . Hence the following: 
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COROLLARY 13.3. If y is a solution of (12.1), with f replaced by 
XfO^X^l, with t/(0) = t/(l) = 0 and if support(g) lies in the union 
of the middle thirds of the intervals between the nodes of y, then 

WuWr.^R'. 

COROLLARY 13.4. If y and q are as above and if y has no more than 
n distinct zeros in (0,1), then 

\\y'\\c^K+2 

where R^+2 is (n + \)-fold composition off applied to (n + 1)R', 
^ being defined in Section 12 (see (13.1), (13.2)). 

PROOF. Proceeding as in section 12, Lemma 12.7 is still valid in 
this case. Furthermore, Theorem 12.8 relied only upon ||t/||fl,b(fo — a ) - 1 

having a bound independent of (b — a), for a < b some pair of conse­
cutive zeros oft/. In this case, that bound is R '(n + 1). 

LEMMA 13.5. Consider the problem 

u" + \p(t)u = 0, t G (a, b) { U T \p\l)U — U, 

U(a) = u(b) = 0. (a) = u(b) 

If K,b is the minimum eigenvalue of (13.4) for a < b in (0,1) 
with b — a^ (n 4- l ) " 1 , then \ab < (n + V)p~l where p = 
inf{/g m(a, b)2(s)p(s) ds : b - a ^ (n +' l )" 1 } > 0. 

With the above lemma it is easy to obtain a lower bound for the 
norm of nontrivial solutions of (12.1). 

THEOREM 13.6. Suppose that y is a nontrivial solution of (12.1) with 
t/(0) = ;/(l) = 0 and having exactly n distinct zeros in (0,1). Let 
r^rbe such that ift(s) = (n + l)lpfor allO < s^r, then 

|y|c < r-

PROOF. Suppose that \\y\\c ^ r. Because of the nodal assumption on 
y there exist a < b consecutive zeros of y such that fc-a§(n+ 1)_1 . 
By conditions (12.3), (13.3) 
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majorizes 

u"(t) + p(t)+(y(t))u(t) = 0 

which, in turn, majorizes 

u"(t) + p(t)(n + l)p-%(f) = 0 

on (a, &), by the choice of r. The previous lemma together with 
Sturm's comparison theorem implies that y must vanish in (a, fo), a con­
tradiction. 

14. The Main Results for the Superlinear Case. This section shows 
how certain superlinear ordinary differential equations with nodal 
conditions can be handled with the results in earlier sections. Con­
sider the differential equation with nodal condition 

(14.1) y"(t) + /(*, y(t), y '(*)) = 0,0 < t < 1, 

(14.2) t/(0) = t/(l) = 0, y has exactly n distinct zeros in (0,1). 

The assumptions on /shall be as follows: 
(14.3) / : [0,1] X R X fl -> R is continuous; 

(14.4) yf(t, y, z) è 0 for all t E [0 ,1] , y, z E R; 

(14.5) The function (y, z)—>/( -, y( • ), z( • )) is continuous 
from L£([0, 1 ] )XL P ( [0 , 1]) into Lq([0,l]) for 
some 9, 1 < q ^ p, and bounded sets are taken to 
bounded sets; 

(14.6) f(t, y,z) = 0 if and only if y = 0, t - a.e. in [0,1] ; 

(14.7) for some fixed a, Y > 0 and continuous function p : 
[0, 1] -+ [0, oo), f(t9 y9 z)ly^p(t)\y\« for all tG 
[0, 1] , z E fl, 11/1 ^ Y. Further, it is assumed that p 
does not vanish on any interval of length (3n + 3)_ 1 . 
Finally, / satisfies a Nagumo Condition (see section 
12). 

Consider the finite-dimensional nonlinear system 

[F(a,x) = 0, 

lPm(a)B(a, x) = x, 

where Pm(a) is the projection defined in section 10. 

(14.8) {^ 
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THEOREM 14.1. Assume (14.3)-(14.7). Then for sufficiently large m, 
system (14.8) has a solution (am, xm) G T X BR\Br. The sequence 
{(am, xm)} converges in the Hausdorff metric to the solution set of 
(14.1), (14.2). 

In order to prove Theorem 14.1, we prepare by verifying the hypo­
theses of Theorem 4.1. 

The complete continuity condition holds by virtue of Sections 6, 7, 8. 
The smallness condition on k holds because of Lemma 8.6 and our 

freedom to choose the parameter d > 0 as small as we please, (recall 
that k is, in fact, h with a different choice of the parameter, c = d). 
The number r > 0 will be given later and will not depend upon d. 

tf/(*> y> z) = /(*> y)y t h e n th e space E = C( [0,1] ) and || • || is mono­
tone on the cone K. Furthermore, if a £ T Aa{ ^ (n + 1) _ 1 for some 
f, O g i g n , and so by Lemma 8.5, ||fc(a)|| = ||fc(a)||c ^ c/(9n + 9). 
Hence, in this case the compression condition (a) will hold by choos­
ing c sufficiently large. The number R will be given later and will 
not depend upon c. 

If / does depend upon z9 its third argument, then the space E — 
L*([0,1] ) and || • || is not monotone on the cone K. This causes no 
problem, however, because sup{||x — B(a9x)|| : x £ K } ||JC|| Si 
R9 F (a, x)} < N, for some number N since B is completely continuous. 
Furthermore, ||fc(a)|| = \\h(a)\\c + \\h(a)'\\p^ cl(9n + 9) + c/4 by 
Lemma 8.5 and 8.6, hence the compression condition (c) will hold in 
this case too, by choosing c sufficiently large. 

LEMMA 14.2. The nonsingularity condition holds. 

PROOF. If a G BT and xGK are such that x^rk(a) or ac== 
rh(a)9 (these are equivalent for our definitions of h and k)9 for some 
T > 0, then x(a)(t) = x(i) is zero precisely when t G {a( : 0 ^ i ^ 
n + 1 } . Lemma 5.3 shows that F(a9 x) j£ 0. 

If, on the other hand, x = B(a9 x) j* 0, then there exists an interval 
(aj9aj+l) which is nonempty and on which x(t) > 0. Suppose that 
F(a9 x) = 0. Now 

0 = F i ( a , x ) = ( - i y - ^ 

\aj Gt(aj9 s; aj_l9 aj)f(s, (-iy-lx(s)9 ( - 1 ) ' - V ( * ) ) ds 

+ ( - l ) J \"i+l Gt(aj, s; aj} a,+1)/(«,.(-l)*(*), ( - l ) V ( s ) ) da, 
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and since the latter integral is nonzero, neither is the former. Hence, 
aj7^aj-i a n d x(t)> 0 on (dj-^dj) by concavity. Continuing by in­
duction, it is clear that if F^a, x) = 0 for all 1 ^ i ^j, then a{ ^ a{_v 

We may obtain the same conclusion for all j â i â n + 1 using induc­
tion, started by supposing that Fj+l(a9 x) = 0. This implies that a G T, 
a contradiction. 

Let R = fl^ + i^+2 + 1 and r > 0 be such that ij(r) < 8/5, r < 
Rn+i, where fln+i, Rn+2 anc^ v(r) a r e given in section 12. Let M = 
{xGK:r^\\x\\^R}. 

LEMMA 14.3. If (a, y) G T X M, y = B(a, y) + Aft(a), F(a, t/) = 0, 
for some A G [0 ,1] , then \\y\\ ^ R, tfwz£ is, condition (4.1) /loZds. 

PROOF. By definition of B, F and by virtue of Lemma 8.6 
if y = B(a, y) + Aft(û), F(a, y) = 0, then the function u(t) = J?=o 
( — \)iy(t)X[aitai+l] (t) satisfies equation (12.1) where q(t) in (12.2) is 
given by q(t) = kh(t; a, c). Furthermore, u has exactly n + 2 simple 
zeros at 0 = a0 < ax < • • • < an < an+1 = 1. Theorem 12.8 shows that 

IMI = NI < a 
LEMMA 14.4. If (a, y) G T X M, (/ = kB{a, y) + (1 - A)Jfc(a), 

F(a, y) = 0, for some k G [0 ,1] , f/ien ||t/|| ^ r, that is, condition 
(4.2) ftoZds. 

PROOF. It shall be assumed that d < r(8 - 5iy(r))/(10n + 10) so 
that (1 - À) JÔ *(*; a, d) dt ^d(n + 1) < r(8 - 5i|(r))/10. Now sup­
pose that y = AB(a, y) 4- (1 — k)k(a\ F(a, y) = 0, then the function 
u(t), defined as above, satisfies an equation of the type (12.1) where 
/ is replaced by kf and q by (1 - k)k(t; a, d) in (12.2). Theorem 12.10, 
with a slight modification to take into account the A coefficient of f 
gives the result. 

PROOF OF THEOREM 14.1. The results in section five, together with 
Theorem 4.1 show that d(l - A, TX BR\Br, 0) f 0. By Theorem 
11.1, the approximating operator A^ has a fixed point in T X BR\Br 

for all large m. This means that system (14.8) has a solution in 
T X BR\Br for all large m. 

The proof is completed by appeal to section 11. 

REMARK 14.5. The finite dimensional nonlinear system (14.8) can 
be written down explicitly, inasmuch as the operators involved are 
directly obtainable from (14.1), (14.2). 

In the presence of (local) uniqueness of solutions to (14.1), (14.2), 
any sequence {(am, xm)} converges by virtue of Lemma 11.4 to the 
unique solution of (14.1), (14.2). 
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15. The Main Results for the Sublinear Case. Consider the nodal 
problem 

(15.1) y"(t) + f(t, y(t), y '(*)) = 0,0 < t < 1, 

(15.2) y(0) = y(l) = 0, y has exactly n distinct zeros in 
(0,1). 

The assumptions o n / a r e (14.3)-(14.6) renumbered as 

(15.3) / : [ 0 , 1 ] X f l X f l - ^ R i s continuous; 

(15.4) yf(t, y,z)^0 for all t G [0,1] , y, z G R; 

(15.5) The function (y, z)—> f( -, y( • ), z( • )) is continuous 
from V ( [ 0 , 1 ] ) X L P ( [ 0 , 1 ] ) into L,([0,1]) for 
some q, 1 < q ^ p, and bounded sets are taken to 
bounded sets; 

(15.6) f(t, y,z) = 0 if and only if y = 0, t - a.e. on [0,1] ; 

The sublinear conditions on / contained in section 13 are also 
assumed: 

(15.7) For some Q > 0, Yl ^ 0 and r > 0 \f(t, y, z)\ ^ 
Q(l + z2) for \y\ g Y ^ G f l ^ G [0,1] ; 

(15.8) y = sup{f(t, y, z)ly : \y\ > Yl9 z G R, t G [0,1] } 
< 8 ; 

(15.9) there exists p : [0,1] -» [0, oo ) and $ : [ - r , r]\{0} 
—> [0, oo ) continuous with i/*(t/)-* °° as y—» 0, such 
that p(t)*(y) g /(*, y, z)/y for 0 < \y\ g r, z G R , 
f G [0,1] . Further, it is assumed that p is positive 
offa set of measure zero. 

Let R = R' + Rn+2 + 1, R' and R^+2 being defined in section 13. 
The R and r of Theorem 4.2 will be this R and the r of Theorem 13.6, 
respectively and M = {x G K : r ^g ||x|| ^ R}. 

Consider the finite-dimensional nonlinear system 

ci<::,=, 
THEOREM 15.1. Assume (15.3)-(15.9). Then for sufficiently large m, 

system (15.10) has a solution (am, xm) G T X B^\Br. The sequence 
{(am, xm)} converges in the Hausdorff metric to the solution set of 
(15.1), (15.2). 
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To prove Theorem 15.1, we first satisfy the hypotheses of Theorem 
4.2. The remainder of the proof is similar to that of Theorem 14.1. 
In section 14 it was shown that the complete continuity condition, 
the smallness condition on k, and the nonsingularity condition were 
all satisfied (for the parameter d sufficiently small). The proofs did 
not rely upon the growth of / and so these conditions are satisfied 
in this situation also. Furthermore, the compression conditions (b) or 
(d) may be satisfied as before, by choosing c sufficiently large. 

LEMMA 15.2. If (a, y)GTX M,y = kB(a, y) + (1 - k)k(a\ F(a, y) 
= 0 for some A GE [0 ,1] , then ||j/|| j^ R, that is, condition (4.3) holds. 

PROOF. If (a,y)GTX M, y = kB(a, y) + (1 - k)k(a), F(a, y) = 0 
for some k G [0 ,1] , then the function u(i) = ]£Lo ( - ^yy(t)X[ai,ai+li(t) 
satisfies equations (12.1), with / replaced by kf and q by 
(1 - k)k(t; a, d) in (12.2). Furthermore, u(0) = w(l) = 0 and u has 
exactly n distinct zeros in (0,1). Corollaries 13.3 and 13.4 show that 

IMI = UHI < fi-
LEMMA 15.3. If (a,y)GTX M, y= B(a,y) + kh{a), F(a,y) = 0 

for some k = 0 then \\y\\ ̂  r, that is, condition (4.4) holds. 

PROOF. Apply Theorem 13.6 where q in (12.2) is replaced by 
kh(t; a, c). 

REMARK 15.4. The comments made at the end of section 14 con­
cerning the existence of solutions to the "approximate" equations (14.9) 
and their convergence to solutions of the nodal problem, also apply 
here. 
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