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ON THE UNIQUENESS AND GLOBAL ASYMPTOTIC 
STABILITY OF PERIODIC SOLUTIONS 

FOR A THIRD ORDER SYSTEM 
S. P . HASTINGS 

i. Introduction. Stability theory for periodic solutions of 
autonomous ordinary differential equations is, from some points of 
view, in a reasonably satisfactory state of development. All standard 
texts in the subject discuss the way in which local orbital stability is 
related to the Floquet multipliers or exponents, and there are important 
perturbation theorems which can be applied when n — 1 of these ex
ponents have negative real parts. In practise, however, it is usually 
only in two dimensions, or near a "bifurcation point" that this theory 
can be applied. Even then, it may be difficult to determine the stability 
properties of the solution. In three or more dimensions the very 
existence, non-locally, of a periodic solution may be in question, and 
when this can be established, it is often by a fixed point theorem which 
leaves even the isolated nature of the solution in doubt. 

Moreover, even if it were possible to determine the Floquet mul
tipliers, this would at most establish the stability of the solution in a 
small region containing the trajectory. I know of very few examples 
where global asymptotic orbital stability of a periodic solution has 
been demonstrated in more than two dimensions. When this has been 
done, it has usually been for examples constructed particularly to have 
this stability property. Such constructions may indeed be difficult, 
because the researcher wishes to obtain the desired behavior within a 
certain restricted class of equations, e.g., [4], [5]. Sometimes the 
proof of stability depends on the existence of an attracting two dimen
sional submanifold on which limit cycle behavior is known to occur 
[3], [5]. 

In this paper I do not construct a system with stable periodic solu
tions. Instead, a particular set of equations, introduced over ten years 
ago in connection with certain biological phenomena, is considered. 
This system (given below) involves four real parameters, a,/3, y, and p, 
all positive. The main results is, roughly, that if p is sufficiently large 
and \oßy — /£| is sifïiciently small, then there is a unique non-constant 
periodic solution such that all trajectories except those near the equi
librium point or starting on a particular one dimensional curve tend to 
the orbit of this solution. Moreover, the system is "structurally stable" 
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away from the equilibrium point, which in this case is equivalent to 
saying that n — 1 Floquet exponents have negative real parts. 

The restrictions on a,ß,y, and p make the result weaker than is 
desirable. On the other hand, this is not a bifurcation theorem, and 
the periodic solutions in question may have arbitrarily large amplitude. 
Nor is this a singular perturbation result, at least in the usual sense that 
there is a related "reduced" problem which is of lower order. I do 
treat a limiting case (p = » ), but while the resulting problem is cer
tainly more tractible than the case of finite p, it is still three dimen
sional. 

The equations to be considered are 

x ' = -—•— — ax 

(1) y' = x-ßy 

z' = y-yz 

They were introduced by B. Goodwin as a qualitative model of a 
cellular control system with negative feedback [ 1], but the present 
analysis is mainly concerned with the mathematical features of the 
system. Let u denote the vector (x, y, z), and write (1) as 

The positive octant R3
+ : x, y, z > 0 is readily seen to be positively 

invariant and to contain a unique equilibrium point u0. The Jacobian 
matrix fu(u0) always has at least one real negative eigenvalue. How
ever, the other two eigenvalues may have positive real parts. It can be 
verified that this occurs as described in the following result. 

PROPOSITION. Suppose a/3y < 1. Then there is a p0 such thatfu(u0) 
has two eigenvalues with positive real parts whenever p > p0. 

In [6] Tyson proves, as may be expected, that there is a periodic 
solution of (1) whenever fu(u0) has some eigenvalues with positive real 
part. (In [2] the existence proof was extended to a class of ri
dimensionai systems, including (1) but possibly having nonlinear 
terms in every equation. Some of the present paper can probably be 
extended to n dimensions.) Numerical evidence suggests that the 
periodic solution is unique, and that every trajectory not on the one-
dimensional stable manifold <£ at u0 tends to the periodic orbit. 

The system (1) appears quite simple, with only one non-linear term, 
and I hoped originally to give a direct proof of the stability and 
uniqueness of the periodic solution, perhaps by analyzing a particular 
"Poincaré map". Such a hope may have been naive; in any case, I have 
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not achieved this goal. Instead I consider first the limiting value 
p = oo. 

If H denotes the Heaviside function: 

f 0, w ^ 0 
H(w) = < 

\ ^ l , u ; > 0 , 

then the equations for p = oo take the form 

x ' = H(l — z) — ax 

(2) y> = X-ßy 

z' = y-yz. 
To avoid unnecessary complications, the point (ßy,y,l) will be ex
cluded from consideration, since the nature of the flow defined by (2) 
near that point is a little unusual. If aßy = 1, it can be shown that 
every trajectory tends to the point (I/o, ll(aß), ll(aßy)). However the 
main interest is in the case aßy < 1, when there are periodic solutions. 
(This will be apparent later.) Uniqueness and stability of these solu
tions are discussed separately. 

THEOREM 1. If aßy < 1, then every trajectory of (2) in the positive 
octant tends either (I) to some periodic orbit or (II) to (ßy, y, l). 

REMARK. I think that it should be possible to eliminate the latter 
possibility, except for two distinguished orbits, because 03y,y, 1) is 
close to the unstable equilibrium point of the continuous system, for 
aßy < 1 and p large. However I haven't found a quick way to do this, 
and since the main use of Theorem 1 is in conjunction with Theorem 
2, where the possibility II can be eliminated, it doesn't seem worth a 
lot of effort. 

Clearly this result is most useful when the uniqueness of the periodic 
solution can be established. I have been able to do this only when the 
point (a,ß,y) lies near a certain plane in the three-dimensional pa
rameter space. On the other hand, near this plane the alternative II is 
eliminated, and uniqueness and stability are established for the con
tinuous system (1), when p is large. 

THEOREM 2. Suppose that a*,ß*, and y* are positive, with a*ß*y* = 
1/2. Then (2) has a unique periodic solution in R+3. Also, there are 
two trajectories which tend to the point (ßy, y, 1), and in fact arrive 
at this point infinite time. Any solution in R+3 which does not lie on 
one of these trajectories tends to the periodic solution (orbitally) as t 
tends to infinity. 
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Further, let ß be a sufficiently small open neighborhood in R+
3 of 

(j3y, y? 1). Then there are p* > 0 and e > 0 such that ifp>p* and 
\a — a*| -f 1/3 — /3*| H- |-y — y*\ < e, then (1) has a unique periodic 
solution in R+

3 — ß, and every trajectory of (1) starting in R+3 — ß 
and not on the stable manifold of (1) at u0 tends to the periodic orbit 
as t approaches infinity. 

2. Stability. 

PROOF OF THEOREM 1. First analyze the system (2) in the region 
z > 1, where 

x' = —ax 

(3) y' = X-ßy 

z' = y-yz. 

The first two equations in (3) do not depend on z, and the x, y phase 
plane is easily sketched. Figure La illustrates the case/3 > a. 

For any a, ß > 0, the origin is a stable node. Furthermore, if a solu
tion of (3) begins in the region z > 1, x(0) > 0, t/(0) > 0, it must even
tually intersect the plane z = 1, with 0 < y ^ y at the point of inter
section. It is, of course, easy to solve (3) explicitly, and by considering 
dyldx and dzldx, the "time" t can be eliminated. However, the result
ing equations are not very illuminating, and it is better to use qualita
tive methods at this stage. 

When z < 1, the system (2) becomes 

x' = 1 — ax 

(4) y' = X-ßy 

z' = y-yz 

The x, y equations have a stable node at (1/a, l/(a/3)). If a solution of 
(2), or (4), starts in the region z ^ l , 0 < y < y, it must eventually 
enter the region ßy < x < Ha, y < y < l/(ûj3), and then intersect z 
= 1. Also, y < xlß at the point of intersection. Figure l.b is illustrative. 

The general picture of the flow determined by (2) is now clear. 
Every trajectory in the positive octant eventually enters, and remains 
in, the region 0 < x < 1/a, 0 < y < II (aß), 0<z< l/(a/3y), if aßy < 1. 
If z(0) > 1 then the trajectory follows an orbit of (3), and eventually 
intersects z— 1, in the region 0 < y ^§ y. Unless x = ßy and y = y 
at this point, in which case the solution can be continued no further, it 
then switches to an orbit of (4) and again intersects z = 1, this time in 
the region ßy < x < Ha, y < y < xlaß). (A sequence of successive 
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Figure la. Trajectories of (3). 

Figure lb. Trajectories of (4). 
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switch points is shown in Figure 2.) Except possibly for the first one, 
the switch points alternate between the regions {ßy < x < Ha, y < 
y < xlß}, and {0 < x < ßy, xlß < y < y}. Only two trajectories, one 
starting in z > 1 and the other starting in z < 1, fail to alternate 
eventually in this fashion. 

It will be shown that any sequence {P^} of "even" switch points 
must tend to a limit P* in the region 0 < x < Ha, 0 < y < ll(aß). If 
P* j£ (ßy, y, 1), then P* clearly is a switch point of a periodic solution. 

2.1. Basic Comparison Lemma. The principle tool in proving 
Theorem 1 is a comparison Lemma relating switch points for certain 
pairs of solutions starting on z = 1 in the set ßy < x < lia, y < y < 
xlß. 

NOTATION: Suppose that u(t) = (x(t), y(t), z(t)) is a solution of (3) in 
the positive octant, with u(0) = u0. Then x '(t) < 0 for all t, so y(t) and 
z(t) can be expressed as functions of x(t). Let these functions be 
y(x, u0) and z(x, u0). 

LEMMA 1. Let ul(t) = (**(£), y\t), z\t)), i = 1, 2, be two solutions of 
(3), with distinct initial conditions w0* = (x0\ y0

l, 1) which satisfy 

ßy<x0\ y<y0
i<x0

ilß. 

Suppose further that x0
l â x0

2, and that 

!/(*o2, V ) = î/o2-

Define xY
{ by the conditions zf(xil, w0*) = 1, i = 1, 2, and let yx

{ = 
ylxi1, t v ) . Then 

(5) *i2<xi\yi2<yil 

PROOF. Change notation slightly by letting y\x) = y(x, u0
l), zl(x) = 

z(x, UQ1). That is, in the proof of Lemma 1, j/*( • ) and z{( - ) will denote 
"functions of x\ rather than t. Both yl(x) and y2(x) satisfy the equation 

(6) dj=x-J»L 
dx —ax 

so their graphs in the x, y plane do not intersect. Hence y2(x) > yl(x) 
for 0 < x < oo. Also 

tó_ = yl - yz{ 

dx —ax 

which is negative if z = 1, y > y. Hence 
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Figure 2. (Trajectories of (2) ). 

/ 
/ 

S («), *(x^W 

,2 ..2 
(Xo>V>z=1 

ißr*r) z=1 

Figure 3. (Two trajectories of (3) ). 
X 
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(8) Z 2 ( t o 1 ) ^ 2 1 ( X o 1 ) = l . 

LEMMA 2. z2(x) > z1(x)for0 < x < x0
l. 

PROOF. If not, then from (8) there is a largest x* in (0, x0
l) with 

z2(x*) = zl(x*). Then, however, 

dz2 y2(x*) ~~ yz2(x*) 

— ax* 

,y\x*) - yz\x*) 

~(x*) = ' 
dx —ax* 

< * 
— ox* 

dzl/ *\ 
= dx" ( x >' 

which contradicts the definition of x*. 

COROLLARY. zl = 1 "before" (i.e., for a larger value ofx< x0
l) z2 = 

1. 

This proves the first half of (5). For the second half, define x < x0
x 

by the equation 

Then 

(9) z2(«) = yl(£)ly = maxzl(x) > 1. 
x>0 

By Lemma 2, 

(10) z2(x) > y\x)ly, and t/2(x) > t/^x). 

Also, suppose that x < x is defined by 

y2(x) = y\x). 

lidz2ldx(ot) < 0, let S be the unique zero of dz2ldx, while if dz2ldx)£) i= 
0, let £ = x. Then O g f ^ f . Also, define x by 

t/H*) = y\% 

and let t/ = t/^x). 

LEMMA 3. z2(^) § ^(x). 
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PROOF. First suppose that dz2ldx(x) > 0, so that x = x, Ï = I. 
Since y2(x) ig yl(x) f o r | g x § f , it follows from (10) that z2(x) ^ 
yl(x)ly on this interval, and the conclusion of Lemma 3 follows from 
(9). If, on the contrary, dz2ldx(&) < 0, then z2(x) increases as x de
creases from x to î , and the result follows from Lemma 2. 

Continuing with the proof of Lemma 1, observe that in the interval 
0 < x < x, both yl(x) and y2(x) increase with x. Hence we can ex
press x and z{ as functions of y{\ 

z\x) = Z\y\x)\ 

Then 

dZ{ u - yZ{ 

(11) = -* > 0, ( J dy X\y)-ßy ' 

with y - yZ' < 0, X\y) - ßy < 0 because dx/d* < 0. 
Also, X2(y)<Xl(y) in 0 < y < y, and Z\y)>Z\y). Suppose 

that Z2(y) = Zl(y) for some largest t/ in (0, t/). Since t/ - yZ\y) < 0 
and X2(y) - ßy < Xl(y) - ßy < 0, (11) implies that 

dZ2 dZl 

dy< dy^y* 

a contradiction which proves Lemma 1. 

2.2. Proof of Theorem 1. Now consider Z < 1. Then x(t), y(t), and 
z(t) solve (4). It is easily verified, however, that (1/a — x(£)), (ll(aß) — 
y(t)), and (l/(a/3y) — z(£)) solve (3). Hence Lemma 1 has the following 
implication. 

LEMMA 4. Let u\t) = (x*(£), !/*(*)> **(*))> * == 1» 2, foe fu;o solutions of 
(2) suc/i tfiaf z*(0) = 1, and ac'(0) = xY\ y'(0) = t/^, witfi 

V ^ i 1 , y i 2 < y ( ™ * i 2 , t v ) , 

where y( -, * ) is fhe same function as in Lemma 1, and LV = (1/a — 
*y, U(aß) - yiS l/(a/3y) - 1). Define x2< by zQJa - x2\ Uj) = 1, 
i = 1,2, and Ze£ 

y2* = t/(l/a - x2<, U0*). 

r/ien 
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x2
2>x2\y2

2>y2K 

Now let u(t) = (x(t), y(t), z(t)) be a solution of (1) with u(0) = (x0, 
t/o> 1), and 

0 < x 0 < ^ 0 < Î / O < ^ u(0)^(ßy,y,l). 

Define A(£0> t/o) = (*i> î/i) to be the next switch point of the solution 
u. (Thus (*!, j / J ^ (x0, t/o))- If ßy < *o < I/o, y < t/o < *o//3, then 
0 < xl < ßy, xjß < y Y < y. Also, define a "Poincaré map" B by B = 
A2. It will be shown that if B(x{, y{) = (xi+2, t/»+2)> then the sequences 
{XQJ}, {yoj} are eventually monotone, as well as bounded, and that p* 
= lim^oofa^, t/^) is either Oy,y, 1), or a switch point of a periodic 
solution. This will prove Theorem 1. Let 

M= {(x,y)\ßy<x< \>y < V < | } , 

and for each Ç = (x0, i/o) in M, define four subsets of M as follows, 
where Q* = (x0, i/o» 1) G R3. 

S'(Ç) = {(x, «/) | x0 < x < ì , t/(x, <?*) < t/ < x/ß} , 

S2(Ç) = {(x, «/) | öy < x ^ xo, y(x, Q*) < y < x /ß} , 

S3(<?) =\((x, «/) I ßy < x ^ x0,y < y ^ y(x, <?*)}, 

S4(Ç) = { ( x , y) I x0 < x < ± y < y ^ (/(x, Ç*) } • 

Similarly, for a point R = (xj, j/x) in the region 0 < x < ßy, xlß < 
y<y, let 

Let " ° " and " — " denote the interior and closure, respectively, of a set 
in Rn. Then the following result follows from Lemma 1 and 4. 

LEMMA 5. IfB(Q) Glï\Q\but B(Q) fi Ç, then AB(Q) G T1(Â(Ç)), 
and in fact, 

&+i(Q)ŒSW(Q)),j= 1,2,3, • • • . 

This implies that if (x0 ,y0) = Ç G M and Bk+1(Q) G Sl(Bk(Q)) for 
some k^ 0, then B-*+1(Ç>) G S^B^Ç)) for all k^j, and hence p* = 
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\ìmk_J,0oBk(Q) exists. The trajectory starting at Ç>* "spirals out" to the 
trajectory starting at p*. 

It is clear that p* lies in the closed triangle M and that p* ^ (ßy, y). 
As long as 

<12> ^(i-i)-
it must be a switch point for a periodic solution. To check (12), con
sider the solution u* of (2) with initial conditions x(0) = I/o, t/(0) = 
ll(aß), z(0) = 1. This solution first follows a trajectory of (3). The 
second switch point B(l/a, ll(aß)) lies in M, so (I/o, H(aß)) G 
S1(B(l/a, ll(aß))). (Hence by repeated application of Lemma 1, u* 
"spirals in".) By using Lemma 1 to compare u* and the trajectory start
ing at Q, it is easily seen that P* lies below and to the left of 
limn^00B

n(l/a, ll(aß))9 which implies (12). 
Next consider a Ç G M such that for some j , 

W+KQ) G S W i ) . 
This is equivalent to 

BJ(Q) G Si(B'+1(Ç))> 

and unless the trajectory is periodic, it must eventually spiral in. Again 

\imßn(Q) = p* 

exists. Either p* = (ßy, y), or it is the switch point of a periodic solu
tion. 

Next solutions which neither spiral in nor spiral out must be con
sidered. This would occur if, for some Q ÇzM, 

W+l(Q) $ S1(Bj(Ç))US3(B^(Ç)) 

for j = 1, 2, 3, • • \ If B^l(Q) G S2(B->(Ç)) for all large j , then again 
p* = limn_>00B

n(Ç) is well defined. This is also the case if Bj+l(Q) G 
S4(Bj(Q)) for all large j . The only problem arises if Bi+l{Q) sometimes 
lies in S4(B*'(Q)) and sometimes in S2(B;(Ç)), for arbitrarily large j . 
This possibility is eliminated by 

LEMMA 6. IfB(Q) G S2(Ç>), then B2(Q) $ S4(B(Ç)). 

PROOF. Since two solutions of (3) cannot have trajectories which 
cross when projected onto the x, y plane, it is clear that if B(Ç>) G 
S2(Ç>), then 
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AB(Q) G T\A(a)) U T\A(Q)\ 

If AB(Q) G T\A{Q)), then A(AB(Q)) = B%Q) G S1(B(Ç)), and the 
solution spirals out. If AB(Ç) G T4(A(Ç>)), then B2(Ç>) G S^BiQ)) U 
S2(B(Ç))), because solutions of (4) cannot cross in the x, y plane. Hence, 
in any case, B2(Q) (£ S4(B(Ç)), which proves Lemma 6 and completes 
the proof of Theorem 1. 

S2(Q) 
. 1 

y 

v r s ^ Q ) 

_ sfy)_ _i S*(QJ ] 

|T4(R)| J} 

T1(R)J\"1: 
(R) 

Figure 4. 

3. Uniqueness (a,/3, y distinct). To study uniqueness it appears 
necessary to solve equations (3) and (4) explicitly. As before, (3) can be 
solved for y and z as functions of x, because x is monotone. I proceed 
for now under the assumption that a, ß, and y are distinct. This gives 
the following equations, for some constant c. 

!/(*) = + cx*° 
ß - a 

Z(x) _ z(x0) _ a-r/q+i - x0-y
,a+1 _ c 

xyla XQyla (a _ ß)(a _ y) ß _ y 

(X(/3-y)/a _ X^/ 3 -?) /«) . 
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Suppose that z = 1 at x = x0, y = y0 and again at x = xx, y = t/1? with 
z > 1 in between. Then the following three equations must be 
satisfied. 

(13) 

(14) 

(15) 
1 

X]yla 

„„=^w, 
»<-F=-«+a""" 

1 _Xj -W°+l - xQ-vla+1 

x0yl" ~ (a-ß)(a-y) 
c 

ß-y 
(X l ( /3-y) /a _ X0

iß~y),a). 

This is without any requirement of periodicity. Continuing from (xly 

yi, 1) with a solution of (4), recall that 1/a — x, l/(a/8) — y, H(aßy) — 2 
solves (3). The solution will be periodic if x = x0 and y = y0 at the 
next point where z = 1. This results in three further equations: 

1 1 Irv — X 
(16) ^ ~yi = ß^r+d{lla-Xi)ßla 

(17) -o -yo= 1'"~X°+ d(lla - Xo)ßl-, 
aß ß — a 

and 

(-L-1V l ì ) 
\ agy / \ (1/a - x0)*/a (1/a - xtf*" I 

(Ha - x0)-yi"+1 - (Ha - Xl)-yi«+i 

(a - S)(a - y) 

d((lla - xpYfi-y»* - (Ha - XiY'-y»") 

ß-y 

where c and d are constants. 
By adding equation (13) and (17) and equations (14) and (16), t/0 

and y i can be eliminated. Then c and d can be eliminated to give two 
equations which must be satisfied by the pair (x0, Xi): 

* < - - *o-n = o » ( m - ì x » - l ) ( X l 1 " " " X ° " n ) 

(19) 
1 ((1/a - x0)m - (1/a - x1)m)(x1

m-" - x0
m-") 

(18) 

ma3(m - l)(m - n) (^""(l/a - x0)m - x0
m(l/a - xY)m) 

where m = ßla, n = y/a, and 
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( - i - - i ) ( ( i y a - * o ) - " - ( i / « - * i ) - n ) 

. = ( l / t t - S o ^ - C L / t t - * ! ) * - " 
1 ; a2(m - l)(n - 1) 

[ (xr - *om) ((1/a - x 0 ) " -" - (1/a - xQ^-") 

a3(m - l)(ro - n) ( x ^ l / a - x0)m - x0
m(l/a - xx)

m) ' 

To prove that (2) has a unique periodic solution it must be shown 
that (19)-(20) has a unique solution (x0, xY) with 

(21) 0 < xx < ßy < x0 < 1/a. 

I have been able to do this only under the assumption that a&y = 1/2, 
or \aßy — 1/2| small. However some preliminary results do not have 
this restriction, so I continue with the case of general (distinct) aßy 
satisfying aßy < 1. 

LEMMA 7. For each fixed x0 in (ßy, 1/a), equation (19) has at most 
one solution xx in (0, ßy). 

PROOF. Suppose that (x0, *i) is a solution pair for (19), alone, which 
also satisfies (21). Then there are corresponding values of y0, yi9 c, and 
d such that (13), (14), (15), (16), and (17) are all satisfied. This means 
that there is a solution u(i) of (2) such that u(0) = (x0, y0,1), and 
u(tx) = (x1? t/x, 1) for some first tx > 0. Furthermore, the "return 
trajectory, along an orbit of (4), must intersect some point (x0, y0, z*), 
but not necessarily for z* = 1. 

Nevertheless, Lemma 1 implies that for any given x0, this is possible 
for at most one y0, and hence at most one xv 

LEMMA 8. For any x0 in (ßy, 1/a), there is exactly one xx, such that 
(19) is satisfied. 

PROOF. Again this makes use of Lemma 1. Let v(t) be the solution 
of (4) such that v(0) = (0,0,1), and let T denote the projection of the 
trajectory of v onto the x, y plane. For a fixed pair (x0, y0) with ßy < 
x0 < 1/a, 0 < t/0 < xjß, there are unique "downward" and "upward" 
solutions, solving the first two equations of (3) and (4), respectively, 
which begin at (x0, y0). Let yY and y2 denote the trajectories of these 
solutions. If (x0, t/o) lies between T and the line y = xlß, then yx and 
y2 will intersect at precisely one other point, (xi9 t/i), in the x, y plane. 
Consider a fixed x0 in (ßy, 1/a), and let £(t/0) denote the value of z when 
the solution of (3) starting at (x0, y0,1) reaches the plane x = xx. It is 
easily checked that f (t/0) -» 0 as (x0, t/0) - > r from above, while 
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£(t/o) > 1 for t/0 sufficiently close to x0lß. The result therefore follows 
by continuity. 

Observe also that if (x0, xx) solves (19), then so does (xl9 x0). 

LEMMA 9. The set A of solutions (x0, xx) of (19) is the graph of a 
continuous function xY — f(x0)9 0 ^ JC0 = 1/a. (Clearly, f(ßy) = y, 
f(Ha) = H(aß). It is only necessary to consider Ax = A fi [ßy, Ha].) 

PROOF. It has been shown that Ai is the graph of a function Fx de
fined on [ßy, Ila]. The continuity of Fi therefore follows because it is 
bounded and is the inverse image of 0 under a continuous function, 
and hence closed. 

To obtain further results, it will now be assumed that aßy = 1/2. I 
continue also to consider the case a, ß, y distinct. This restriction will 
eventually be removed. 

If aßy = 1/2, then llaßy — 1 = 1, so (19) and (20) become symmetric 
in the following sense: If (x0, xx) solves (19) and (20), then so do 
(*i> *o)> (Ha — x0, lia - xx)9 and (1/a - xl9 Ha - x0). 

COROLLARY. If aßy = 1/2, then all solutions of (19)-(20) lie on the 
line x0 + Xi = Ha. 

PROOF. The solution set of (19) alone is the graph of xx = f(x0). 
Suppose (x0*, *!*) solves (19) and (20), and x0* + xx* ^ lia. Then 
the graph off passes through four distinct points which are symmetric 
with respect to the line xx + x0 = 1/a. The entire graph is symmetric 
with respect to the line xx = x0. Assume for definiteness that x0 < 
Ha — Xi < 11 (2a) < xx < Ha — x0. Then the arc of the graph of / 
connecting (x0, xx) with (xt, x0) cannot contain (1/a — JC0, 1/a — xx) and 
therefore cannot contain (1/a — xÌ9 Ila — x0)9 which gives a contradic
tion. 

If follows that when aßy = 1/2,1 can set xx = 1/a — x0 and consider 
a single equation \(x0) = X(l/a — x0)9 where 

A(*) = *-» \- - x i - " 
a2(m — l)(n — 1) 

_ xm~n 1 
a3(m - l)(m - n) (xm + (Ha - x)m) ' 

I did not find the analysis of this equation easy. However, it turns 
out that a simple way to proceed is to set x0 = 1/a • r. Then (22) be
comes 
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(1 — r)m 

1- K(l-r)- L-—V „ }
 x x (1 - r)n _ v ; (rm + (1 - r)m) 

1 - Kr - L-
(rm + (1 - r)m) 

where 

~__ 2mn j __ 2n 

(m — l)(n — 1) (m — l)(m — n)' 

(Recall, m = ßla, n = -y/a.) 

Letting s = (1 — r)/r, this reduces to 

fc = 1 K L 

with 

1 + Sn 1 + 5 1 + Sm ' 

7 —2m 
(n — l)(m — n) 

Write this as 

(23) *>(*) = 0, 

where 

ip(s) = a!Sm + n + 1 + a2sm + n + a3sm + 1 + a4s
m 

+ a5s
n+l + a6sn + a7s + a8 

for certain constants ai9 • • -,ö8. (a! = 1.) A computation, using the 
specific values of ai9 • * -, as in terms of a, m, and n, shows that 

y,(l) = v>'(l) = ¥>"(l) = 0,and 

*>'"(i)<o. 
Since <p —» + oo as s -» + oo ? <p must have an odd number, say 2fc + 1, 
of zeroes on 1 < s < <», counting multiplicity. 

Also, the symmetry of (22) implies that if s* > 0 is a root of <p(s) = 0, 
then so is lis*. Hence (23) has 2k + 1 roots on 0 < x < 1. 

It is necessary to show that (23) has exactly one root on 1 < s < oo ; 

i.e., that k = 0. If k è 1, then <p(s) must have at least 9 zeroes on 0 < 
s < oo, counting the triple root at s = 1. 

However an easy inductive proof shows that a function of the form 

2 w* = o, 
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fc/s any real numbers, has at most N — 1 real zeroes on 0 < s < oo, 
and in this case N = 8. 

4. Completion of proof of Theorem 2. The proof when a, ß, and y 
are not distinct is similar, except that the function <p(s) involves loga
rithmic terms. For example, if a = ß j ^ y9 then m = 1, n ^ 1, and 
^>(s) becomes of the form 

<p(s) = $n + 2 + a2sn + 1 + a3sn + a4s
2 + a5s + a6 

+ a7sIns + ass
n + l In s. 

This may be seen, for instance, by taking limm_^l<p(s) with m ^ 1, n j£ 
m and n 7̂  1. Once again, <p, <p ', and <p" all vanish at s = 1, and >̂ "'(1) 
is negative. A similar induction to that used for m ^ 1 shows that <p 
cannot have more than seven zeros in (0, 00 ). 

This completes the uniqueness proof if aßy = 1/2, p = 00. There 
remains to finish proving stability by showing that Bn(x0, y0) -t>(ßy, y), 
for any (a0, y0) G M. 

I point out the following consequence of Lemma 1: If u^t) is a 
solution of (2) starting at (xhyh 1), i = 1,2, and (x2, t/2) ^ S 1 ^ , t/x), 
then B"+1(*2> t/2) G Si(Bn(xn, t/n)), n = 1,2, 3, • • •. Hence if (x0*, t/0*) 
G M is a switch point of the periodic solution up of (2), and if x(0) > 
*o*> î/(0) > !/o*> then Bn(x0, f/0) - • (£y> y), and so Bn(x0, y0) -» 
(*o*> J/o*)- It must be shown that solutions beginning near enough to 
(ßy, y), in M, spiral out to uv. 

To prove this, observe that when a/3y = 1/2, (19) and (20) take the 
forms 

(24) G(xo,*i) = 0 

and 

(25) G(l/a - x0,1/« - *i) = 0. 

Also, G(a, b) = - G(fo, a). 
The partial derivatives Gx(ay b) = dGx(a, b)lda and G2(a, fo) = 

dG(a, b)ldb certainly are continuous on 0 < a, b < 1/a. As pre
viously described, (24) defines xx as a continuous function of x0 — say 
xi = f(*o)>ßy < x0 < 1/a. Also the equation 

(26) G(l/a - x2, Ha - x j = ° 

defines x2 as a continuous function s( - ) ofxl 0< xx < ßy. 
The switch point x0* of up in (ßy, 1/a) is the unique point in this 

interval such that r(x0*) = 1/a — x0*. Similarly, xx* in (0,ßy) is 
characterized by 
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Ä(XX*) = x0*. 

Since (p '($*) ^ 0 at the unique root s* of (23) in 1 < s < °°, it follows 
that 

— G(x0,l/a - x0) |x0 = x0* ̂  0, or 

(27) G^xo*, 1/a - x0*) - G2(x0*, 1/a - x0*) ^ 0. 

I shall assume that G2(x0*, 1/a — x0*) ̂  0. If this is not the case, the 
roles of x0 and xY should be interchanged, expressing x0 as a function 
ofxx near (x0*, Xx*). 

Now let p(x) = s ° r(x), ßy < x < 1/a. Because solutions starting in 
S^XQ*, t/o*) spiral in, it is seen that 

p(x0) < x0 if x0* < x0 < 1/a. 

A l s o , p ' ( x 0 * ) - 1 ^ 0 , p ( x 0 * ) = x0* 

LEMMA 10. p'(x0*) < 1. 

PROOF. Clearly, 

p'(x0*) = ^(r(x0*))r'(x0*). 

Using (24) and (25), it is easily shown that 

>i *\ - G1(x0*, 1/a - x0*) 
™ = G2(Xo*,lla-x0*) =*('<*<>*»> 

and hence p '(x0*) = r '(x0*)2. But Lemma 1 shows that r '(x0*) ^ 0, and 
(27) implies that r '(x0*) ^ — 1. Hence p '(x0*) ^ 1, as desired. 

Lemma 10 clearly shows that p(x0) > x0 if x0* — x0 is positive but 
small. Because x0* is the unique solution of p(x0) = x0 in (ßy, 1/a), it 
can only be that p(x0) > x0 for ßy < x0 < x0*, so solutions starting on 
(x0,/(x0), 1), near x0 = ßy, must spiral out. From Lemma 1 it is seen 
that if (x0, t/o) £ M, then Bn(x0, j/o)—» (*o*> J/o*) a s n -> » . This 
proves the global asymptotic orbital stability of up. 

This completes the discussion of uniqueness and stability for (2), and 
I now indicate how the assertions in Theorem 2 about the continuous 
system (1) are obtained. Some of this is a technical exercise, and will 
not be given in complete detail. 

The treatment proceeds by considering a certain Poincaré map de
fined by the flow of (1). Let q = Up, and for each q > 0 let 
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« * c ( g ) = M<i)> ydq), *c(q)) 
be the unique critical point of (1) in the positive octant. Then zc(q) 
satisfies the equation 

from which it follows that if aßy < 1, then zc(q) —> 1 as q —» 0. Hence, 
*c(q) -*ßy>yc(q) ->y-

For q <C 1, the trajectories of (1) have high curvature near the plane 
z = zc(q), as in a "corner layer". For this reason it seems more con
venient to study a different Poincaré map from that discussed earlier, 
in connection with (2). Thus solutions are thought of as starting on, 
and returning to, the plane x = xc(q). To be precise, let Èq denote the 
rectangle 

x=xc(q),*c(q)^Z^ ±,ye(q)*y* i , 

(y> *) ^ (yc(q)> zc(q))-

In [6] it is shown that for small q, every trajectory of (1) in the positive 
octant except those on the (one dimensional) stable manifold at uc(q) 
eventually intersects Aq non-tangentially. These trajectories define a 
diffeomorphism tlq of Éq into itself, as follows: 

If u(t) = u(t, j / 0 , z0) is the solution of (1) with u(0) = (xc(q), y0, z0), 
and ti(0) G Àq, then there is a first Tq = Tq(y0, z0) > 0 such that 
u(Tq) G Èq. Let 

tlq(xc(q\ t/o, «0) = u(Tq(y09 z0\ y0y z0). 

If Rq is the usual projection of Èq onto the (y, z) plane, let II9 be the 
mapping of Rq into itself induced by tlq. It will be useful to write IF 
as the composition of four mappings, defined in an obvious way by 
following trajectories of (1) from the rectangle Èq first to the plane 
z = zc(q), then to the rectangle 

S* : x = xc(q), O g j / g yc(q)fi g z ^ zc(q\ 

(y>z) / (ydql *Âq)\ 

then again to the plane z = zc(q), and finally back to the rectangle Aq. 
Thus 

IF = i v ° n3« o n2
q ° i v , 

where Tliq maps Rq into the set 0 â x â xc(q), 0 ^ y ^ t/c(g), etc. 
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All of these definitions of sets and mappings have obvious extensions 
to the case g = 0, where they are done with reference to the system 
(2). Observe that a map considered previously, starting in the region 

z = 1, (x, y) EL M 

and returning to this set, is the restriction of 

p = n 3° o n2° o i i i0 o n4° 

to M. It has been shown that if a = a*,ß = ß*,y = y*, with a*ß*y* 
= 1/2, then 

(a) P has a unique fixed point, (x0*, j/0*), and 
(b) For any (x0,y0) G {ßy < x0 < I/o, y < y0 < H(aß)}, 

l i m ^ P"(x0, t/o) = (*o*> î/o*). 
This implies that n 0 also has a unique fixed point, (y0, z0), and 
limn^oo(Û°)n(y, z) = (y0,z0), for any (y,z)GR°. It must be shown 
that if U is a given open neighborhood of (y, 1), then IF has essentially 
these properties also, if (y, z) and (y, z) are restricted to Rq — U and if 
q > 0 and \afiy — 1/2| are sufficiently small. 

In the following I assume that aßy = 1/2, and verify the desired con
clusion for small q > 0. The extension to small \aßy — 1/2| will be 
obvious, because slight changes in a,ß, and y result in a C^small 
perturbation of IF. 

There are two main steps in the following argument. First it is shown 
that in R° - U, I F is a C^small perturbation of II0. Then it is verified 
that DU°(y0, z0) has eigenvalues lying strictly inside the unit circle. 
These two steps complete the proof of Theorem 2. 

It is not hard to show that the mappings IF, for q > 0 and small, 
can be extended to the set R° — U, which may be larger than Rq — U, 
and that IF(y, z) —» U°(y, z) as q —» 0, uniformly in R° — U. It is more 
difficult to show that 

(28) DW(y,z)^Dn°(y,z) 

uniformly in R° — U, so I shall outline how this is done. Because 
R° — U is compact, it is only necessary to prove (28) in a neighborhood 
of any point (j/, z) in R° — U. 

Write IF as the composition of two maps, Aq = U2
q ° II ̂  and 

Bq = n ^ ° n3
q . These are essentially symmetric with each other, and 

I shall show that DAq(y0, z0) -+ DA°(y0, z0), if (t/0, *0) e R°- C 1 ^ 
extension to uniform convergence in a neighborhood of (t/0, z0) will be 
clear.) 

file:///afiy
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Let tt«(t, tjo, ZQ) = (x?(t9 t/0, *o)> y«(t, t/0, z0), z«(t, y0, z0)) solve (1), or 
(2) if q = 0, with initial condition (xc(q), y0, z0),(yo> zo)in R°- Let rq = 
Tq(y0, ZQ) denote the first t > 0 where zq(t, t/0, z0) = zc(q), and let 
V*(y0, z0) be the first t > 0 where x?(t, y0, z0) = xc(q). Thus 0 < rq < 
ta. It must be shown that 

(29) - — (««(*„ y0, z0)) - • -7— a°(«b, y0, z0) and 
dt/o dt/0 

(30) ~ - (u«(tq, y0, z0)) -* -77- «°(<o, !/o, zo) 

as 9 - » 0 . 
Concentrating on (29), it is seen that 

(31) -T— !**(*«, I/o, *o) = M '(*„, t/0, «0) ^ - + -7— (^, J/o> «0). 
dy0 dy0 dy0 

Also, 

( u 9 ) ' «**>• Z o ) = ( i + ^ , y o . ^ " " * * " ß y q ' y q ~ 7 z q ) -

Since %°(£o> ?/o> *o) < 1> it follows that 

(wq) '(*n, !/o> *o) -* (tt°) '(*o> !/o, *o). 

Observe that £Q(t/o> *o) is defined, locally, by the equation 
xq(tq, t/o> s0) = xc(q). Therefore 

The denominator tends to 1 — axc(0) = 1 — ccßy. Referring to (31) 

and (32) it is seen that (29) will be proved if it is shown that 

W*(tq)= ~ ( * o , ! / o , S o ) 

tends to W°(t0) = dy°ldy0(t0, y0, z0) as q -» 0. 
For any 9, W(0) = (0,1,0). If 9 > 0, then W satisfies 

(33) 

where Wh i = 1,2,3 are the components of W, iffq(t) = pzq(t, y0, z0>p-1/ 
(1 + z"(t, y0, z0)p)2, and 
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n = 

Also, W° satisfies W = ÜW, except at t = r0, where z° = 1. 
The function i/fq acts like a "delta function" near T0, and it must be 

shown that the effect of this is, in the limit, the same as the effect of the 
discontinuity in (x°) ' at r0. Away from T0 the analysis is straight for
ward, because tyq(t) —» 0 as q —> 0, uniformly on any interval 
[ 0 , T 0 - ô ] o r [ T 0 + M o ] . 

First, consider the function W° = du°ldy0(t, y0, z0). It is necessary 
to determine 

lim+(W°(ro + € 1 ) - W ° ( T 0 - € 2 ) ) . 
«l ,«2-0 + 

This is done by computing with u° directly. On [0, T0) , u°(t, y0y z0) = 
^(ßy, yo, to), so 

(34) lim -^(ro-€,y0,z0) = e^i 1 
€_>o+ oy0 \ 

On the other hand, for t > t0, 

(u°)'(t,y0,z0) = Qu°+\ 0 

Solving this equation, one easily computes that 

- / - u°(t, y0, zo) = - nen«-'o>«°(To " 0, y0, z0)-^-
dy0 dy0 

(35) + e n ^ o ) ( M o ) ' ( T o - 0 ) ! / 0 ) Z o ) ^ -

+ e«<'-o> - ^ TO - 0, y0, zo) - e*'-*> - ^ - 0 

fyo ty0 \ 

But (u°) '(T0 - 0, t/0, z0) = Œ«O(TO
 - °> J/o> z0), so the first two terms on 

the right hand side of (35) cancel. 
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From the definition of r0 = r0(y0, z0) by the equation z°(r0, t/o> *o) = 
1, and (34), one finds in addition that 

(t/o, *o) = - r>^T0 

J 3 

%i - y) 

= -w3°(To)/(t/1-r), 

where t/i = J/O(TO> !/o> *o). 
In dealing with W*7 near rq it is necessary to have a uniform a priori 

bound on || Wq\\9 (any norm), over [0, tq]. This can easily be obtained 
from (33), if an estimate can be found for /0Vq(«) ds over this interval. 
To derive such an estimate, observe that because \\uq(t) — w°(f)|| —> 0 
as q -» 0, uniformly in [0, t0], there are Q > 0 and 8 > 0 such that 

\(#)'(t9 t/o, *o)l = \yq(ty t/o, *o) - y&(t, i/o, *o)l 

z 
for 0 < q < Ç and T 0 - 8 â ^ T 0 + ô. On [0,r0 - 8] 
[r0 + 8, t0], ^„(f) -* 0 uniformly as 9 -» 0. Also 

and 

(36) 

f8 , / j . w < f8 P(l + M"- 1 

« (1 + (1 + KS)")2 

1 

ds 

1 
1 + (1 - K8)p 1 + ( 1 + K8)P 

^ N 

for some constant N, as 9 —» 0. 
Continuing to choose 2V as some sufficiently large number indepen

dent of q, a bound on \\Wq\\ implies, in turn, a bound ||(W3
C')'|| â N 

on the derivative of the third component of Wq. 
Now let e > 0 be given. Integrating (33) gives a relation of the form 

W,«(T 0 + 8) - W'rtro - 8) = &*(*) 

+ fT0+8 UtW3
q(t)dt. 

where \hq(t)\ ^ Ne for some 2V independent of e, if 0 < q ^ Q(e), 
8 = 8(e) > 0. Also, 8(c) -» 0 as € - » 0 . Write the integral as 

fro+a 
*,(*)(*")'(*) 

w3"(Q 
(*«)'(') 

<ft 
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and use the mean value theorem for integrals to express this as 

W3«(t*) r 1 1 1 

I 1 + (*)'(**) Z " ( T 0 - 8 ) P 1 +Z" (T 0 + 8)P.. 

for some t* in [T 0 — 8, T0 + 8] • This enables one to prove the follow
ing result. 

LEMMA 11. For each pair 8 > 0, € > 0, there is a Q > 0 such that if 
0 < q < Q, then 

W « ( T 0 + 8) - W « ( T 0 - 8) -
W3°(T0)| 

<e. 

Also, if T0 + 8^t^ t0, then 

W«(*) -»• « " « • - ' • - « W ^ T O + 8) 

as q —> oo. 
To show, as desired, that 

lim || W(t„) - W°(t0) = 0, 

first choose 8 > 0 so that 

W°(TO + *) - W°(T° - 8) -
W 3

Q ( T 0 ) 

î / i - y 

is small. Then apply Lemma 11 and the remark following. I omit 
further details. 

Finally, it is shown that Dir(yo,z0) has eigenvalues \i,X2 °f 
absolute value less than one. Because solutions of (2) tend to the 
periodic solution, it follows that |X;| Si 1. (It is necessary to use Lemma 
1 once again, to show that a solution starting near up cannot first tend 
away from up, and then, eventually, approach the closed orbit from a 
different direction.) Hence the desired "hyperbolicity" of Dû 0 is 
equivalent to the local structural stability of the flow near up. It must 
be demonstrated that for q sufficiently small, IF has a unique fixed 
point in a neighborhood of (y0, z0) which is independent of q. 

The techniques for doing this are largely adaptations of those used 
earlier. Perhaps the major change is to "perturb" the previous analysis 
of (2) at the switch points z = 1 to nearby planar regions 2 = 1 + 
li(x9 y) G M, and z = 1 - /x,, (Ha - x, II(aß) - y) G M. 
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To be more precise, let v^ = (xM, t/M, zj be the solution of (2) such 
that 

(37) xM(0) = x0, t/(0) = %, «(0) = 1 + /m, >x > 0. 

Let (Xi,r)i, 1 — /ut) be the first subsequent point of intersection of this 
solution with the plane z = 1 — LL, say at t = T^ and let the next 
intersection with z = 1 + /* be when £ = £M. By choosing (X0, T?O) m a 

sufficiently small neighborhood <D of (x0*, t/o*)> the point (X1?i7i) will 
be close to (xx*, t/x*), for small /it, and the trajectory will be transverse 
to z = 1 + fx at (Xo, i?o) a n d to z = 1 — /x at (Xl5 r^). 

For small /x > 0, the conditions (19) and (20), written as in (24) when 
LL = 0, can be expressed in the form 

(38) W . X , ) - 0 

HM(X0,X1) = 0 

for certain functions G^ and HM such that 

GM(Xo> Xi) —• G(Xo, Xi) 

HM(Xo,X!) •-• G(l/a - X0,1/a - Xx) 

as n -» 0, uniformly in <D. Also, the first partial derivatives of GM and 
^ approach the appropriate derivatives of G uniformly in Ö, as 
LL ->0 . 

Assume again that G2(x0*, j/o*) ^ 0. (Otherwise, interchange x0 and 
xv) Because \r '(oc0)| < 1, and dldx0 G(x0, Ha — Xo)L=ab* / 0, it can be 
shown that when LL > 0 is sufficiently small, (38) has a unique solution, 
which is non-degenerate, in a neighborhood of (x0*, j/0*)- Furthermore, 
if LL > 0 is small, then comparison results like Lemma 1 hold for two 
solutions starting on z = 1 + fx near (x0*, y0*) and intersecting z = 
1 — LL at (Xi, î^i). In fact, one can prove that dXjdrfQ < 0. From this 
it follows that the uniqueness of the solution (X0,Xx) of (38) near 
(xo*> J/o*) implies the uniqueness of the periodic solution of (2) near 
" p . 

Fix fx > 0 small enough for these remarks to apply. Let vq(t, X0, i?o) 
denote the solution of (1) satisfying the initial conditions (37), and 
suppose that this solution first intersects z = 1 — fx at t = rq, and z = 
1 + LL at t = tq. Just as was done previously, in analyzing the map IF , 
one can verify that vq(t,X0,r)o) —• t^(£,X0 ,i?o) uniformly o n 0 ^ ^ f 0 

and in the neighborhood O of (x0*, t/0*). Further, the partial deriva
tives dvq/dX0(Tq) and dvqldr)0(Tq) tend to dvJdX0(T0) and 
dvJdr)0(T0) and similarly, the partial derivatives at t = tq approach 
the desired limits. Hence for small q > 0 one can conclude that the 
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periodicity conditions (38) undergo a further C1 perturbation, and the 
resulting equations still have a locally unique solution for small q > 0. 

Some final remarks are perhaps in order. The heart of this paper is 
in the analysis of the discontinuous system (2), more particularly, in 
analyzing the equations (19) and (20). The symmetry when aßy = 1/2 
results in further simplification, so that it is only necessary to prove 
one strict derivative inequality (|r'(x0*)| < 1). This implies that the 
two curves G = 0 and H = 0 in the (x0, xx) plane defined by (19) and 
(20) intersect each other non-tangentially at the point (x0*, *!*). The 
argument sketched in the last few pages shows that these curves un
dergo a 0 ̂ small perturbation for small \L > 0 and q > 0, enabling one 
to avoid the necessity of verifying a second derivative inequality, as 
long as a neighborhood of the point 03y,y, 1) is omitted. This point 
corresponds to a tangential intersection of the curves G = 0 and 
H=0. 
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