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1. Introduction. In this note we consider some reformulations of a 
little known result of Brfs [2] which relates the existence of a solution 
of the first order equation f(t,u,u') = 0 to the existence and the 
asymptotic behavior (as €—»0+) of solutions of the boundary value 
problem 

ey" =f(t,y,y'),a<t< b, y{a, c), y(b, e) 

prescribed. The theory developed here includes several earlier studies 
of problems of this form which possess turning points. Turning point 
problems can be characterized roughly as those whose reduced 
(e = 0) equations have singular points in [a, b]. Our principal tech
nique of proof is Nagumo's theory of second order differential in
equalities [13] (cf. also [10] for a more modern treatment) to
gether with some elementary results from linear and nonlinear stability 
theory. The present discussion divides naturally into a consideration 
of two cases: namely, the quasilinear case, i.e., f(t, y,y') = 0( | t / ' | ) , as 
Ij/'l"-* °°, and the quadratic case, i.e.,f(t,y,y') = 0( | t / ' | 2) ,as | t / ' | —» oo. 
This follows on the one hand from the inherent limitation of Nagumo's 
theory to functions / which are at most quadratic in y ', and on the 
other, from the nonexistence of boundary layer behavior (in the solu
tion itself) in the presence of cubic or higher nonlinearities with 
respect to y '. (See, e.g., [17] and [16; Chap. 2].) 

2. The Quasilinear Case. Consider now the boundary value prob
lem 

(2.1) ey" = f(t,y,y'),a<t<b, 

(2.2) y(a,e)=A,y(b,e) = B, 

together with the corresponding reduced equation 

(2.3) f(t,u,u') = 0,a<t<b. 

•Partially supported by the Mathematics Department of the University of Wis
consin at Madison, and by the National Science Foundation under grant no. MCS 
76-05979. 

Copyright © 1977 Rocky Mountain Mathematics Consortium 

491 



492 F. A. HOWES 

We study here and throughout the paper those reduced equations 
whose solutions u need not satisfy either of the original boundary con
ditions (2.2), i.e., in general, u(a) ^ A and u(b) ^ B. The following 
theorems are extensions of Theorem 4 in [2]. 

THEOREM 2.1. Assume 

(1) the reduced equation (2.3) has a solution u = u(t) which has a 
piecewise differentiate first derivative on [a, b] ; 

(2) the function f is continuous in (t, y,y'), of class Ci2q+l) (q è 0) 
with respect to y, and of class C(1) with respect to y ' in R: 

a^t^b,\y- u(t)\ g d,(t, €), \y ' - u '(t)\ ^ d2(t, e), 

where 

dl(t,e) = 0 ( | A - u(a)\ exipl-ke-^t - a)]) 

+ 0(\B - u(b)\ exp[-ke-l(b - t)]) 

+ 0(e'(29+D-i ), 

and 

d2(t,€) = 0 ( € - 1 e x p [ - f c € " 1 ( ^ - a)]) 

+ 0 (€ - 1 exp[ - fc€ - 1 ( fo - t)]) 

+ 0(€'(2^+1)~I ); 

in addition, f(t,y, y') = 0( | j / ' | ) , as |t/' | -» °°> (t,y)in R; 

(3) there exists a constant k > 0 such that fy, =—k < 0 in RH 
[a, a+ 8], if u(a) ^ A, and fyf^ k> 0 in RD [b - 8, b], if u(b) 
^ B, for 8 a small positive constant; 

(4) there exists a constant m > 0 such that 

djf(t,u(t),u'(t)) = 0,1 g j^2q,a^t^b, 

and 

dy
2q + lf(t>y>u'(t))^m > 0, \y - u(t)\ g d^e^a ^ t ^ b. 

Then there exists an e0> 0 such that for each €, 0 < € ^ e0, there 
exists a solution y = y(t, e) of (2.1), (2.2). Moreover, for a ^ t^b, 

y(t,e) = u(t) + 0 ( | A - u(a)\ exp[-ke~l(t - a)]) 

+ 0(\B - u(b)\ exp[-ke-l(b - t)] ) 
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PROOF. The theorem is proved by constructing lower and upper 
solutions of the full problem, i.e., functions a and ß which have piece-
wise differentiate first derivatives and which satisfy the inequalities: 
a ^ / 3 , a ( a , € ) g Aê ß(a,€),a(b,€)^ B^ß(b,€\ and ea" ^ f(t, a, a'\ 
€ß"^f(t, ß,ß'). Then, as follows from the theory in [13] or [10], 
the problem (2.1), (2.2) has a solution y = y(t,e) for such € > 0, with 
a(t>€)^y(t>e)^ß(t,e),a^t^b. 

Suppose, for definiteness, that u(a) ^ A and u(b) ^ B, then define 
fore > 0 and a g t ^ b, 

o(*,e) = u(t) - (u(b) - B)exp[-k€~l(b - t)] 

ß(t,e) = u(t) + (A- u(a))exp[-k€-l(t- a)] 

+ (eym-1) (2</+ir1. 

The constant y > 0 will be determined later. Clearly, <x = ß, a(a, e) 
â A § ß(a, €), and a(fo, f ) g ß ^ 0(fc, e). To verify that the differen
tial inequalities are satisfied, we first note that for a = a or/3, 

f(t,v,<r') = f(t,u,u')+ {f(t,v,u')-f(t9u,u')} 

+ {/(*, a, a ' ) - / ( * , a, u ')} 

(2.4) = jt(fl)-ldJf(t,u,u')(v-uY 

+ ((2<? 4- l)\)-ldy
2q+lf[ ' ] (a - w) 2 ^ 1 

where[ • ] = (t,u + 0i(a - u),u')and[ • • ] = (*,<J,U' + 02(a ' - fi')), 
0 < ^x, 02 < 1- Consider now only a = a(t,e), since the demonstra
tion forß is analogous. Differentiating a and substituting into (2.1) via 
(2.4), we have by virtue of assumptions (1) and (4), for E(t,e) = 
(u(b)-B)exp[-**-l(b-t)], 

ea" - f(t, a, a') = eu" - k2e-1E(t,e) 

+ ((29 + 1)!)- V + 1 / [ •]{£(*,«) 

+ (€ym-1)(2" + 1 ' - 1 } 2 ' » + 1 

+ / „ [ ••]he-^E(t,e) 

è - e M - jfc%-i£(t,e) + ey((2<7 + l)!)"1 

+ / , [ ••]**-!£(«,«). 
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(Here \u"\ =î M.) On the subinterval [b — 8, b], by assumption (3), 
fyt [ • • ] §£ k > 0; therefore, for such £, 

€a" - f(t,a,a')^ -eM±k2€-lE(t>e) 

+ € y ( ( 2 9 + l ) ! ) - i 

^ 0, provided y ^ (2q + 1)!M. 

On the rest of the interval, [a, b — 8], the function E(t, c) is transcen-
dentally small, i.e., E(t,e) = 0(eN), for any integer N e l . Thus, for 
this range of £, 

ea" - f{t, a, a') ^ - e M + ey((29 + l)!)"1 - KT(«), 

where K > 0 and r(e) > 0 represents the contribution of the transcen-
dentally small terms. For € sufficiently small, we need only choose 
y = (2*7 + 1)!(M + 1) to guarantee that the required inequality is 
satisfied on all of [a, b]. The existence of a solution y = t/(£, e) of (2.1), 
(2.2) with a(f,€) = y(M) = /8(M), a ^ t ê b , now follows from 
Nagumo's theorem. For the other cases in which u(a) j ^ A and 
u(b) ^ B, analogous bounding functions a and/3 are defined. 

We remark that this theorem is valid under the weaker assumptions 
that: (i) djf(t, u, u ') = 0, 1 ^j g 2q, a+Ô^têb-ô, and (ii) 
dy2q + lf(t, u, u ' ) =1 rn > 0 , a + ô^t^-b- 8. Bris [2] formulated 
this generalization in the case q = 0. The proof of this only involves 
the construction of slightly more complicated bounding functions 
a and ß. For example, suppose that u(a) > A, u(b) =? B and 9 = 0, 
i.e., fv(t, u,u')^m>0,a + ò^-t^b. Then define 

fu(t) - (u(a) - A) exp[Xi(f - a)] 

- e y J l - K e x p t ^ - J o ) ] - 1), 

a =î t =î t0 = a + 8, 

!*(*) — eym - 1 — Xi(n(fl) — A) expfA^o — a)]t 

+ e\2y£- icr- Aexp [-<r(t- t0)], t 0 ^ t ^ b . 

Here \i(e), X2(
€) < 0 a r e t n e r o o t s °f €^2 + kk + I = 0 of order 

0(€_ 1) , 0(£fc-1), respectively. The constants is a uniform bound on 
\fy(t, y,u')\,a^t^a+ 8,\y - u(t)\ =̂  dY{t,e). On each subinterval 
[a, a + 8] and [a + 8, b], this function satisfies the requisite in
equalities, as follows by a direct computation, for a > 0 and sufficient
ly large. 

In the next two theorems we present different formulations of assump
tion (4). 

a(f,e) = 
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THEOREM 2.2. Assume (1), (2) and (3) as in Theorem 2.1 with the 
following exceptions: (i) u" =̂  0 at those points in [a + 8, b — 8] at 
which it exists, and (ii) / is of class C{n)(n =" 2) with respect to y in 
R. Assume also (4) ' forj = 1, • • -, n - 1, djf(t, u(t), u '(*)) ê 0 , a + 8 
=î £ â b — 8; in addition, there exists a constant m > 0 such f/iaf 
dy

n/(fc ii(t), M '(0) ^ » » > f l , f l + 8 i ^ b - 8 . 
iTien there exists an €0 > 0 st/c/i £/ia£ /or eac/i e, 0 < € =î e0, tfi£ 

problem (2.1), (2.2) has a solution y = y(t, e) such that for a^ t^b, 

y(t,e) = ii(t) + 0( |A - u{a)\ exp[ - f a " 1 ^ - a)} ) 

+ OflB-t t^lexpI-fc- 1^- *)]) 
+ 0(€"-r). 

THEOREM 2.3. Make the same assumptions as in Theorem 2.2 with 
the exceptions that in (1), u " ^ 0 , f l + 8 ê ^ f c ~ ô , and that (4) ' is 
replaced by (4)" forj0e = 1, • • -, n - 1 dj*f(t, u(t), u'(t)) ^ 0 and 
dyJef(t, u(t), u'(t)) ë 0 , a + 8 = f = f c - 8 , where j 0 denotes an odd 
integer and j e an even one; in addition, there exists a constant m 
< 0 such that dy

nf(t, u(t), u '(t)) è m > Q, if n is odd, or dy
nf(t, u(t), 

u '(t)) =î —m < 0, ifn is even, a + 8^â t^-b — 8. 
Then the conclusion of Theorem 2.2 is valid. 

The proofs of these theorems are similar to that of Theorem 2.1. 
We consider next the case in which fy, is only nonpositive in a 

neighborhood of t = a and/or only nonnegative in a neighborhood of 
t = b. 

THEOREM 2.4. Make the same assumptions as in Theorem 2.1 with 
the exception that assumption (3) is replaced by 

(3) ' fyf g 0, in R H [a, a + 8], ifu(a) ^ A, and 

fy, =" 0, in R PI [b - 8, b], ifu(b)f B. 

Then there exists an e0 > 0 such that for each e, 0 < e^e0, there 
exists a solution y = y(t, e) of (2.1), (2.2). In addition, for g = 0, 

y(t,e) = u(t) + 0( |A - u(a)\ e x p ^ m * - 1 ) 1 ' 2 ^ - a)]) 
+ OflB - u(b)\ exp[-(m€-l)V2(b - t)]) 
+ 0(€) , f lgfgfe; 

while, for 9 = 1 , 

y(t,e) = t#(t) + 0( |A - u(a)|(l + cr^"1'2^ - a ) ) -^ 1 ) 

+ 0( |B - ii(fe)|(l + a2€-li2(b - OH" 1 ) 
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Here aìya2 are positive constants which depend on q ^ 1. 

THEOREM 2.5. Assume (1), (2) and (3) as in Theorem 2.4 with the 
exception that in (1), u" =1 0 at those points in [a, b] at which it 
exists, and that f is of class C(n) (n =1 2) with respect to y in R. Assume 
also that u(a) g A, u(b) ^Band djf(t, u(t), u '(t)) ê O , l ^ j â n - l , 
a ^ t ^ b . Finally assume that dy

nf(t, y, u '(t)) g m > 0 , a ^ ^ b , 
\y — u(t)\ =̂ dl(t,e),for a positive constant m. 

Then there exists an e0 > 0 such that for each e, 0 < e = €0, there 
exists a solution y = y(t,e) of (2.1), (2.2). In addition, for a ^ t ^ b , 

u(t) ^ y(t,€) ^ u(t) + (A - u(ö))(l + ä iC- 1 ' 2 ^ - a))-*»-!)"1 

+ (B - u(fe))(l + ätf-Wib - f))-2^-1)-1 

+ ycNn-i)] '1 , 

where y is a known positive constant, and &l9 ä2
 are positive 

constants which depend on n =̂  2. 

We remark that the conclusion of Theorem 2.5 is valid if instead 
we assume that u" ^ 0 and that dy

iodd)f[u] = 0, dy
(even)/|>] ^ 0, 

with dy
nf(t, y, u ') == m > 0, if n is odd, and dy

nf(t, y, u ') g - m < 0, 
if n is even. Of course, we must also have u(a) = A and w(fo) è B. 

These theorems are proved in basically the same manner as the 
previous ones. For example, as regards Theorem 2.4, suppose u(a) 
=1 A, u(b) =î B, and q ^ 1. Then define for e > 0 and a ^ t^ b, 

a(t,e) = u(t) - (u(a) - A)(l + a^-^t - a)) - ^ 

ß(t,€) = u(t) + (B - u(b))(l + a2e~^{b - t)) -<r> 

+ (€(29)" 1 7m- 1 ) (29+i ) _ 1 , 

whereof = q[m{(q + 1)(2<7 + l)!}"1] "1/2 | A - u(a)K 

<r2 = q[m{(q + l)(2q + l)!}"1] -i/*| B - u(b)\«, and 

-y is a positive constant to be chosen sufficiently large. In the case of 
ß, we have for 

F(t,€) = (B - u(b))(l + *2e-u*(b - t))-i-\ f(t,ß,ß') - eß" 

= ((29 + i ) i ) - 1 a ^ + 1 / [ •] {F(t€) 

+ (€(2c/)-1 y m _ 1 ) ( 2 9 + i r l }<2<* + 1> 

+ fyf[ --]F'(t,6)-eu" 
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- (^29_1)2(9 + ! ) ( ß - "(b))(l + ^~l,2(b - t))-^-1(2q + 1) 

^m((2<7 + l ) ! ) - 1 {F( f , e )} 2 ^ 1 

-m((2q + l)!)-1{F(f,€)}2^+1 

(by the choice of cr2). On the subinterval [fo — 8, b], ^ [ • • ] ^ 0 by 
assumption (3) ', and thus (since F '(t, e) §£ 0), 

f(t,ß,ß') - eß" ^ eWr1 y((2q + l ) ! ) - 1 - é J f g O , if y è Af(2qr + 1)! 

and 0 < € < 1. On the rest of the interval, [a, b — 8], the estimates 
|F '(*, €)| ^ RE W1 and |/y, [ • • ] | g L imply that 

f(t,ß,ß') - €ß" ^€^-ly((2q + l ) ! ) - 1 -eM - €^~l LK^ 0, 

if y = LK(2q + 1)! and 0 < e < 1. Thus the desired inequality holds 
on all of [a, b] by setting? = (Af + LK)(2q + 1)!. 

We consider finally a situation in which the solution u of the re
duced equation has the "wrong" stability at t = a or t = b, in the sense 
that /yf [u] > 0 near £ = a or /y, [w] < 0 near t = b. It will however 
turn out that a solution of the full problem (for small e > 0) remains 
in a neighborhood of such a u provided that \fyt [u] | is not too large 
near t = a or t = b, and that the function w is stable with respect to the 
linearized coefficients of y. The simplest instance of such a phe
nomenon is contained in the next theorem. 

THEOREM 2.6. Assume (1) and (2) as in Theorem 2.1 with q = 0 
and R replaced by R: a^ t^ b,\y — u(t)\ ^ d(t,e), |t/ ' | < oo9 where 
d(t,€)^\A-u(a)l a ^ t ^ a + ô and d(t,e)^\B - u(b% b-8 
^ t ^ b . Assume also (3)" for (t9y, y ') in fin [a, a + ell*\,fy,(t, y, y') 
g 0 and fy,(t9 y,y')= 0(€"), p > 1/2, if u(a) f A; for (t, y, y') in 
R H [b - 61'4, &],/ ,(*, y, y') g 0 and/,,(*, y, y') = 0(€*), if u(fo) ^ 
B. Assume finally that fy(t, y, u'(t)) ^ m > 0, a ^ £ ê b, \y — u(t)\ ^ 
d(t, e),for a positive constant m. 

Then there exists an e0 > 0 such that for each e, 0 < e ^ e0, the 
problem (2.1), (2.2) has a solution y = y(t, c) such that for a ^ t ^ b , 

y(t,c) = u(t) + 0( |A - u(a)\ exp[-(m1€-1)1 '2(* - a)}) 

+ 0 ( | B - u W l e x p f - ^ e - 1 ) 1 / 2 ^ - f)] ) 

+ 0(€)f 

where 0 < mY< m. 
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The proof of this theorem is once again a direct application of 
Nagumo's theorem. For instance, suppose that u(a) < A, u(b) > B, 
then define 

ß(t,c) = u(t) + (A - t/(a))exp[-(m1€-1)1/2(f - a)] + eym~l. 

Differentiating ß and substituting, we have for 

H(t,e) = (A - ti(a)) exp[-(mi€-^
2(t - a)], 

f(t,ß,ß') - *ß" = / „ [ • ] {H(t,e) + eym^} 

+ / , [ • • ] H ' ( t , € ) - € t * " - r o 1 f f ( M ) . 

On the subinterval [a,a + €1 / 4] , since fyt = 0(ep), 

f(t,ß,ß') - eß" ^ mH(t,e) + ey - KVm^-^H^e) 

Now for 0 < mx < m and € sufficiently small, m > rrij + KVm^P"1 '2 . 
(Here |^ f | ^ Kep.) Consequently, by choosing y = M, we have the 
desired inequality. On the rest of the interval, [a + €1/4, &], note that 
H(t, c) is transcendentally small. Thus by choosing y = Af + 1, 
/(*, i8, /8') - €i8" ̂  €y - r(€) - e M è 0, where T(C) > 0 represents 
the contribution of the transcendentally small terms. 

3. Some Applications. We present here several immediate applica
tions of the theory discussed above to quasilinear singular perturba
tion problems of the form 

(3.1) ey" = f(t, y)y ' + g(t, y),a<t<b, 

(3.2) y(a,e)=A,y(b,e)=B. 

An enormous amount of attention has been paid to such problems; 
the basic theory is summarized, for instance, in [18, Chap. 10] and 
in [ 15, Chap. 5]. These books also contain many additional refer
ences to the literature. 

Consider first the case when f(t, y) behaves like an even power of 
t with a = — 1 and b = 1. Although f(t,y) vanishes at t = 0, the 
solution y = y(t,e) of (3.1), (3.2) experiences only boundary layer 
behavior at t = — 1 or t = 1, depending on the sign of f(t, y) near 
these endpoints. More precisely, if f{t,y) is positive for t in [ — 1,1] 
— {0}, then y(t,€) exhibits boundary layer behavior at t = 1; if / is 
negative for such t, then there is a boundary layer near t = — 1. Of 
course, the reduced equation must have a smooth solution u which is 
stable and which satisfies the appropriate boundary condition. Such 
results are known in the linear case (see, e.g., [14] ) under the condi-
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tion of first order (/-stability, i.e., gy[u] > 0. Our theory naturally 
includes these considerations and extends their validity to higher order 
(/-stability. In the quasilinear case there are results of Dorr [3] and 
Howes [5] which again depend on first order (/-stability. (Actually 
Dorr considers only the case of (3.1), (3.2) for which g = 0.) The 
present treatment not only extends these results but also provides 
sharper boundary layer estimates than those in [ 5] . 

The theory of § 2 can also be viewed as establishing a framework 
for the existence of some types of resonant turning point behavior. 
This problem has likewise attracted much attention recently; namely, 
the formulation of necessary and sufficient conditions for the occurrence 
of resonant and nonresonant behavior in solutions of (3.1), (3.2). We 
mention here only the basic results of Ackerberg and O'Malley [ 1] 
and Kreiss and Parter [ 12]. In many of these problems one is forced 
to choose a solution u of the reduced equation corresponding to (3.1) 
which satisfies neither boundary condition. The theory above gives 
then one set of sufficient conditions for the existence of solutions of 
(3.1), (3.2) which are close to u on (a, b). Similar phenomena are 
known to occur in the absence of any form of (/-stability in the linear 
case; see, e.g., [1] , [14], and [12]. The more general nonlinear 
case is currently under investigation [8]. 

As an example of such behavior in the linear case, consider the 
simple problem 

€y" = 1y'+y,-l<t<l9 

( / ( - 1 , € ) = A ^ 0 , ( / ( 1 , 6 ) = B ^ 0 . 

The only bounded solution of tu ' + u = 0 on ( — 1,1) is u = 0 which 
fails to satisfy either boundary condition. However, by Theorem 2.1, 
this problem has a solution y = y(t,e) (which is, in fact, unique) of 
t h e f o r m , f o r - l g t^ 1, 

y ( M ) = A e x p [ - t e " 1 ( l + t)] + Bexp[-ke-l(l - t)] 

plus a transcendentally small term, where 0 < k < 1. The essential 
feature which characterizes the observed behavior is that the co
efficient of (/', namely t, has the correct sign at each endpoint, and 
consequently, the reduced root u = 0 is a stable attractor of the rapidly 
changing boundary layer functions. 

4. Quadratically Nonlinear Problems. We consider now briefly the 
case when the righthand side f(t, y, y ') of (2.1) satisfies f(t9 y, y') = 
0( |( / ' |2) , as |(/'|—> °°. A more complete discussion can be found in 
[6]. The theory developed in § 2 carries o^er with little change to 
this class of problems. The essential distinction is that in the presence 
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of a nonlinearity of the form (y ' )2 , the behavior of the solution inside of 
the boundary layer depends on the sign of the (linearized) coefficient 
of (y ' )2 . To fix the ideas, consider the illustrative special case 

(4.1) ey" = p(t, y)(y ' ) 2 + q(t,y,y'),-1 < t < 1, 

(4.2) y(-l,e)=A,y(l,e)=B, 

where q is an affine function oft / ' . Inside a boundary layer, say, at 
t = — 1, the derivative y ' is unbounded as a function of € and therefore, 
ey" is closely approximated by p(t, y)(y')2. If p(t, y) is positive near 
t = — 1, then ey" is also positive there, i.e., the solution y is convex 
inside the layer. Similarly, if p(t, y) is negative near t = — 1, then y 
is concave. Consequently, if the reduced solution u is to approximate 
y to the edge of the boundary layer, it must satisfy (A — u( — l))p( — 1, 
y) > 0, for all y between A and u( — 1). By restricting 
the reduced solutions in this way, the theory given above applies in 
this quadratically nonlinear case. More generally, we can assume that 
(A — u(a))fy,y, > 0 near t = a, if u(a) ^ A, and (B — u(b))fyfy, > 0 
near t = b, if u(b) ^ B. 

5. More General Reduced Solutions. One of our basic assumptions 
has been that the reduced solution possesses a piecewise differentiable 
first derivative. However, one frequently encounters reduced paths 
which are composed of several distinct solutions of the reduced equa
tion which intersect at an angle, i.e., their slopes are unequal. The 
first stiidy of such phenomena was, of course, the classic paper of 
Haber and Levinson [4] which considered a quite general class of 
nonlinear righthand sides f(t, y, y'). Their treatment however neg
lected the possible occurrence of boundary layer behavior. Not sur
prisingly, one can adapt the basic theory of Haber and Levinson to 
the situations treated above. Some results in this direction are given 
in [7]. The basic assumptions here can again be motivated by 
stability considerations. A bounded solution of the full problem is 
attracted to a stable solution of the reduced equation. Stability (or 
instability) is first determined by the sign of fy, evaluated along the 
branch of the reduced path in question. At an interior point, say, t0, a 
root uL entering t0 from the left is stable if fy, [uL] ^ 0, t0 — 8 = t ^ t0, 
while a root uR entering from the right is stable if fyf [uR] ^ 0, t0 ^ t 
^ t0 + 8. If fyf[uL, uR] = 0 at t = t0, then the root must be stable 
with respect to djf in any one of the senses outlined above. It may 
even be possible for a root uL or uR to attract a solution y(t, e) if fy, 
has the "wrong" sign near t = t0, but is sufficiently small in magnitude 
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there. Some of the theory of this "contrary" stability is also considered 
in [7]. 

6. Some Examples. In conclusion we study several simple examples 
which illustrate and motivate the theory discussed above. 

EXAMPLE 6.1. Consider the problem 

€y» = -t2my' + (y - t2)2n~l + 2t2m+\ - 1 < * < 1, 

t / ( - l , € ) = A , t / ( l , e ) = l , 

where m, n = 1 are integers. 
The reduced solution of interest is u = t2. By Theorem 2.1 we con

clude that for each e > 0, e sufficiently small, this problem has a 
solution y = y(t,e) with 

y(t,e) = t2 + 0(\A- l | e x p [ - f e - 1 ( l + t)] ) 

+ 0(€<2"-i)_1), - l ^ t ^ l , 

f o r 0 < k< 1. 

EXAMPLE 6.2. Consider now 

ey" = -t2m+ly' + y2r,0 < t< 1, 

j , ( 0 , ( ) = A ^ O , y ( l , f ) = 0, 

where m §£ 0 and r ë; 1 are integers. Here the reduced solution which 
satisfies our hypotheses is u = 0. By Theorem 2.5 we deduce the 
existence of a solution y = y(t, e) for each e > 0, e sufficiently small, 
satisfying 

0 g y(t,e) g A(l + a^e-UH) - ^ r - i r 1 

+ y € [ 2 r ( 2 r - l ) ] - 1
> 0 ^ f ^ l , 

for positive constants or^n) and y. 

EXAMPLE 6.3. Consider next 

ey" = ty' + y2 - t2 - \t\, - 1 < t < 1, 

t / ( - l , e ) = A > l , t / ( l , e ) = B > 1 , 

and look at the reduced path u(t) = \t\, — 1 = £ ^ 1. Since ĵ f = £, 
this function w is stable with respect to boundary layer behavior at 
t = ± 1; however, it has contrary ^-stability at t = 0. Nevertheless, 
since fy, is small near f = 0 a solution t/ = y(t, e) of this problem exists 
for small e > 0 and satisfies 
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\t\ Ü y(t,e) =Ì \t\ + (A - 1) e * p [ - f a - i ( l + t)] 

+ ( B - l ) e x p [ - f c c - 1 ( l - t)] 

f o r 0 < f c < 1. 

EXAMPLE 6.4. Consider finally a problem with a quadratic non-
linearity, namely 

ey" = (yT-2ty' + y,-l<t<l, 

y ( - l , € ) = A , Î / ( 1 , € ) = B . 

The reduced equation (*) u = 2tu' — (w')2 is a D'Alembert equation 
(cf., e.g., equation 1.381 in [11]). We focus attention on the two 
parabolas ud(t) = t2 and u^t) = 3f2/4, and on the degenerate parabola 
u2(t) = 0. Clearly ux and u2 are solutions of (*), while ud is the p-
discriminant locus, i.e., any solution u = u(t) of (*) satisfies u(t) ^§ f2, 
— 1 ^ £ ^ 1. This follows by writing 

u(t) = 2tu'(t) - (u'(t))2 = - ( t i ' ( t ) - *)2 + *2. 

This if A, B > 1, there is no solution of (*) which satisfies either 
boundary condition. However, u^t) = 3t2l4 is stable with respect to 
boundary layer behavior at t= ± 1 , since/yf[w1] = t. In addition, 
ux( — 1) < A, iii(l) < B, and ^;y/ = 2. Consequently, for each e > 0, 
€ sufficiently small, the full problem (with, in fact, A, B^ 3/4) has a 
unique solution j / = y(t, e) satisfying 

3*2/4^t/(*,e) 

^ 3*2/4 + (A - 3/4) e x p t - f a - ^ l + *)] 

+ ( B - 3/4)exp[-fce-1(l - *)] + 2c> 

- l g f g l , 

f o r 0 < fc< 1. 
Suppose now that A = 0 and B > 3/4. Although ux is stable at 

t — — 1, this solution has the wrong convexity at t = — 1 in the sense 
that /yfyf = 2 > 0 requires that %( —1) < A, and we have Wi( — 1) = 
3/4 > A = 0. Nevertheless, the reduced solution u2 = 0 satisfies 
t*2 (— 1) = 0 and, in addition, fy, [0] = — 2£. Thus if we define 

[ 0, - 1 ^ * ^ 0 , 
u(t) = < 

3*2/4, 0 ^ * ^ 1 , 
V 

then û is of class C(2)[ { — 1, 1} — {0}]. More essential is the fact that 



A BOUNDARY LAYER THEORY 503 

û is stable with respect to boundary layer behavior at t = 1, since 
fy> [Ö(*)] = t > 0 near t = 1. Thus the full problem (with A = 0 and 
B = 3/4) has a unique solution y = y(t, e) for each € > 0 sufficiently 
small which satisfies 

û(t) g y(t,e) â tì(0 + (B - 3/4) exp[-ke-l(l - t)] 

+ 2 e , - l ^ * ^ l , 

f o r 0 < f c < l . 

There are several other interesting types of asymptotic behavior 
associated with this particular problem and related ones; a more 
complete discussion is given in [9]. 
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