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PERIODIC SOLUTIONS OF AUTONOMOUS DIFFERENTIAL 
EQUATIONS IN HIGHER DIMENSIONAL SPACES 

WILLIAM GRASMAN 

1. Introduction. The Poincaré-Bendixson theorem supplies a power
ful technique for finding periodic orbits of dynamical systems in the 
plane. As is well known, the theorem does not apply in higher dimen
sional spaces since it depends on the Jordan curve theorem. 

Even though the Poincaré-Bendixson theorem does not apply to 
higher dimensional systems, some higher-dimensional analogies to 
results for the plane are hard to disbelieve. For example, suppose a 
dynamical system in Rn, n è 3 , leaves the n-disk Dn invariant in the 
positive direction and has a single rest point which has an unstable 
manifold of dimension at least two. It seems very likely, at first, that 
such a system must have a periodic orbit. 

Such results are not valid. The method which Schweitzer [11] 
used to disprove the Seifert conjecture also applies to this and similar 
situations. Schweitzer's method will be outlined in § 3. 

There must be additional hypotheses on the vector field in order to 
insure the existence of periodic orbits. Rauch [9] and others have 
used a technique of finding a positively invariant solid torus and 
showing that a particular flow "twists" around the torus. This "twist
ing" hypothesis allows one to construct a "first return" map and apply 
the Brouwer fixed-point theorem to find a periodic orbit. 

The process of finding a positively invariant solid torus can be very 
difficult. For equations that model ecological systems, in particular, it 
is much more feasible to find a positively invariant disk. In § 2 we 
state and prove a theorem about systems which have positively in
variant disks and satisfy a "twisting" condition and in § 4, we apply 
the theorem of § 2 to an ecological model of three competing species. 

Throughout this paper, R is the set of real numbers, Rn is Euclidean 
n-space, Ck(M, N) is the set of fc-times continuously differentiable 
maps from M to N, and Ck(M) = Ck(M, R). 

I would like to thank Z. Nitecki and J. A. Yorke for a conversation 
at the 1976 NSF-CBMS conference on topological methods in differen
tial equations, which clarified Schweitzer's method for me. Professor 
Nitecki must also be credited with the first remark following the state
ment of the theorem in § 2. I would also like to thank my advisor, Paul 
Waltman, for suggesting this problem and for his encouragement and 
patience. 
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2. Sufficient conditions for the existence of a periodic orbit. We 
will denote a flow on the domain D by a map 

A : (R X D) -» D 
(2.1) 

A : (t, x) H> A«(x) 
where At(As(x)) = A'+*(x) and A°(x) = x. We can regard the solution 
of an autonomous differential equation x ' = f(x) where / G Cl(D, Rn) 
and D is a compact region in Rn as the restriction of a flow to a sub-
domain of R X D [6, p. 19]. A region M Ç D i s positively invariant 
under the flow A, or the differential equation x ' = f(x), if x0 Œ M 
implies that x(t) = A'(x0) is a solution of the differential equation, 
which is contained in M for t = 0. 

Suppose that a differential equation x ' = f(x) has 0 as its only 
critical point in Dn and that this critical point is hyperbolic; that is, the 
Jacobian £(0) has no eigenvalues with vanishing real part. We apply 
the topological index (also known as the Poincaré-Hopf index) [2, 4] 
to this situation. If Dn is positively invariant under x ' = f(x), then / 
never points radially outward along the boundary of Dn, and the index 
of / relative to the boundary of Dn is ( — l)n . Now if m is the number 
of eigenvalues of £(0) which have negative real part, the index of the 
critical point is (—l)m, so ( —l)m = ( —l)n. In particular, if n = 3, m 
must be 1 or 3. If m = 3, 0 is an attractor. The theorem of this section 
concerns the general case m = n — 2. 

Consider the system of differential equations 

(2 2) *'i = tt*i> •••>*») 
fiEC^M), l g i g n . 

This system can be transformed into cylindrical coordinates by making 
the substitution 

(2.3) x2 = t/2 s in^i) 

Xi= tji for 3 ^ i ^ n. 

In making this transformation it is helpful to note that 

y'i = (cos(yi)x2 - sin^)*;)/^ 
(2.4) 

y 2 = c°s(ï/i)*i + sin(t/1)x^. 
It should be noted here that the hypotheses of the theorem will re
quire that fi(0,0, x3, - • -, xn) = 0 for i = 1, 2. If y2 = 0, c o s ^ ) ^ — 
sintyx)*; = cosfyJ/^O, 0, t/1? • • -, t/n) - sin(y0/1(0, 0, t/1? • • -, t/n) = 0. 



PERIODIC SOLUTIONS 459 

Thus if (2.2) transforms to 

(2.5) y'i = gi(t/i, • • - ,»„) , l S i S n , 

g! can be defined when t/2
 = 0 by taking limits. 

Let c : y h* x be the transformation given by (2.3) and let Mc = 
{ j / £ K n | c(y) G M}. Since {j/ G Mc | 0 ^ yx ^ 2TT} is compact if M 
is and the functions g{ are 2zr-periodic in yl9 each g; attains its maxi
mum and minimum in Mc. 

The main result may now be stated. 

THEOREM. Suppose 
(i) There is a compact neighborhood M C Rn which is star-shaped 

from 0 and is positively invariant under (2.2), 
(ii) 0 is the only critical point of (2.2) in M, this critical point is 

hyperbolic, and exactly two eigenvalues of fx(0) have positive real 
parts, 

(iii) The stable manifold ofO contains {x G Rn | x2 = x2 = 0} fi M, 
(iv) System (2.2) can be transformed by (2.3) to (2.5) where g{ G 

C\MC) and gl ^ 0 on Mc. 
Then (2.2) has a nonconstant periodic orbit in M. 

REMARKS. Hypothesis (iii) can be replaced by the milder require
ment that the stable manifold of 0 is contained in {x G Rn \ xY — x2 = 
0} and the set { x £ f l n | x 1 = x2 = 0 } n M is positively invariant 
under (2.2). 

The requirement that M be star-shaped from 0 will be taken to 
mean that 0 is in the interior of M and that every ray from 0 intersects 
the boundary of M in exactly one point. 

PROOF. Without loss of generality, assume gx > 0 on Mc. Then 
there exists a k > 0 such that gx ^ k > 0 on Mc. Let B be the flow 
generated by (2.5). For every y G Mc, there exists a unique t(y) > 0 
such that (Bt{y\y))l = yx + %r. Since B is a C1 flow, it can be shown 
that t(y) G Cl(Mc) by using the implicit function theorem. 

Let r ^ = {c(y) | y G Mc, yx = <p}. T ̂  is the intersection of an n — 1 
dimensional subspace of Rn with M, and since M is star-shaped from 0, 
r ^ is also star-shaped from 0. Let A be the flow which corresponds 
to (2.2). Define F : I%-> r \ by F : x |-> A'^(x) where t/ G {Mc, ^ 
= <p} is such that c(y) = x. F is well defined and F e c ^ r ^ T J . 
Since F maps 1% to itself, the map V:x\-> F(x) — x is a tangent 
vector field on T ̂  Note that each critical point of V corresponds to a 
fixed point for F and a periodic orbit for (2.2). 

0 is a critical point of V. We will use an index argument to show 
that there are other critical points. If V has a critical point along the 
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boundary of 1%, there is nothing to prove. Otherwise the (n — 1 
dimensional) index of V with respect to the boundary of T^ is 
( —l) n _ 1 , since V never points radially outward along the boundary of 
r^. We will show that the index of 0 is ( —l)n~2. This implies the 
existence of other critical points of V. 

Let t0 = t(y), where y G. {Mc | yY = <p) is such that c(y) = 0. If 
Vx(0) and F JO) are the Jacobians of F and V at 0, Vx(0) = Fx(0) - 7, 
Fx(0) = dAJdx(t0 0) + dAldt(t0, 0) • dtldx(0) = dAldt(t0, 0) since 
dA/dt(s90) = 0. 

Now dAldx(t9x) satisfies the variational equations [1, p. 25], that 
is, the matrix initial value problem dldt dA/dx(t, x) = fx(A(t, x)) • 
dAJdx(t, x), dAJdx(0, x) = 7. Since x = 0 is a critical point of (2.2), 
fx(A(t, 0)) = /x(0) = / . Therefore dAJdx(t, 0) = eJ* and Fx(0) = 
exp(/«b). 

The next step of the proof is to show that t0 = 27r/cZ where d is the 
imaginary part of either of the eigenvalues of / which have positive 
real parts. Since M D {xx = x2 = 0} is invariant under (2.2) by 
hypothesis (iii), ^(0,0, JC3, • • -,xn) = 0 for i = 1, 2, and dfJdxJO) = 
df2ldXj(0) = 0 for 3 ^ j ^ n . Let us adopt the notation ^ = 
dfjdxj(0). Then /has the form 

0 is a 2 X (n - 2) zero matrix, and / x and J2 are (n — 2) X 2 and 
(n — 2) X (n — 2) respectively. The eigenvalues of / are the eigen
values of/0 together with the eigenvalues of J2. 

By taking limits in (2.4) it follows that gi(t/i,0,0, • • -,0) = / 2 1 

cos2(t/!) + ( / 2 2 - /n )cos (y 1 ) s in (y 1 ) - f12 s i n 2 ^ ) = c o s ^ ^ i + 
(/22 - fn) tan(y1) - / 1 2 t a n 2 ^ ) ) and g ^ , 0, • • -, 0) = 0 for i = 
2, - -M». 

Sincegi(t/i,0, • • -,0) ^ 0 , the discriminant (/22 - f n ) 2 + 4/2 1 /1 2 < 0. 
This condition forces the eigenvalues of J0 to be the complex conju-
gate values (fn + /22)/2 ± id where d = (~4/ 1 2 / 2 1 - ( / n - /22)2)^2/2. 

If y(t) is a solution of (2.5) which satisfies y(0) = 0 then y{(t) = 0 
for i = 2, • • -, n while yi(t) = / 2 1 c o s 2 ^ * ) ) + (f22 - fn) cosiyjt)) 
sin(t/1(^)) — fi2 sin2(j/1(f)). This last equation can be explicitly solved 
by integration, and its solution satisfies tan(j/1(^)) = Kx ta.n(td + K2) 
+ K3 for appropriate constants K^, 1 ^ i ^ 3. Since yx(0) = 0, yJZnld) 
= 27T and t0 = %rld. 

If X is one of the eigenvalues of / with positive real part, A is an 
eigenvalue of/0 since an eigenvector V of / corresponding to an eigen
value of J2 must satisfy v1 = v2 = 0 and lie in the (complex) stable 
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manifold of (2.2). Since Im(A£(0)) = 2TT, exp (\t0) — 1 is a positive 
real eigenvalue of V*(0). We can choose <p so that a corresponding 
eigenvector of Vx(0) is tangent to i \ . 

If fi is an eigenvector of/2, exp(/utf0) — 1 is an eigenvector of Vx(0) 
with negative real part and the corresponding eigenvector is tangent 
to 1%, since 1% contains the stable manifold of (2.2) and hence the 
stable manifold of the linearization of (2.2). 

Therefore the index of 0 is (— l ) n ~ 2 and the proof is complete. 

EXAMPLE. A system in R3 which satisfies the hypothesis of the 
theorem is 

X j ^ X± ~~* OX2 ~~ Xi ~~~ X]X2 

(2.6) X2 = * i + x2 ~ *12*2 " x23 

x3 = """ (1 "̂  *1 X2 )x3' 

In verifying the hypotheses of the theorem it is useful to observe that 
the condition gi ^ 0 implies that there are no critical points x in M 
which do not satisfy xi = x2 = 0. If hypothesis (iii) holds, as it clearly 
does in this example, there are no critical points x £ M other than 0 
with xx = x2 = 0. 

The system (2.6) transforms to 

t/i = 008%!) + 5sin2(t/!) 

y 2 = !/2(l - 4 silici) cos(yi)) - y2
3 

y 3 = - ( 1 + ?/24 sin2!/! cos2t/i)t/3. 

The region M = {x| max|Xj| = (6)1/2} is positively invariant under 
(2.6) and the eigenvalues of the linearization of (2.6) are — 1 and 1 ± 

The theorem implies the existence of a nonconstant periodic orbit 
of (2.6). In fact, since the expression for y [ does not depend on y2 or 
t/3, the proof of the theorem implies that the period is 27r/(5)1/2. 

Since the plane x3 = 0 is invariant, a periodic solution of (2.6) could 
have been deduced from the Poincaré-Bendixson theorem. A more 
serious example is presented in § 4. 

REMARK. It is not hard to generalize the theorem to the situation 
in which gx is nonnegative in Mc but gx = 0 at a set of isolated points 
(not including 0) in Mc. The theorem is not true in general if gx = 0 
is allowed on some set which is invariant under (2.2). In particular, 
those sets could be exceptional minimal sets as discussed in the next 
section. 



462 W. GRASMAN 

3. A counterexample to a more general conjecture. If n = 2, the 
theorem of section 2 follows from the Poincaré-Bendixson theorem, 
and hypothesis (iv) is not required. While the Poincaré-Bendixson 
theorem is only valid in R2, we might nevertheless believe that hypoth
esis (iv) could be deleted even for n > 2. This is not the case. 

To find a counterexample, we first construct a system such as 
x[ = x2 + xx(l - xx

2- x2
2) 

X2— ~~X1 + * 2 ( 1 ~~ Xl2 — x22) 

X3 = —X3 

which satisfies all of the hypotheses of the theorem and has a unique 
nonconstant periodic orbit [6, p. 356]. Uniqueness is only for con
venience. The generalization is false if we can perturb such a system 
so as to "break" the periodic orbit, add no new periodic orbits or criti
cal points, and maintain the hypotheses of the generalized conjecture. 

The construction of such perturbations is given in an important 
paper by Schweitzer [11]. Schweitzer's paper provides counter
examples to the Seifert conjecture that every non-vanishing vector 
field on the three-sphere S3 has a periodic orbit. This technique also 
disproves other possible higher-dimensional analogies of the Poincaré-
Bendixson theorem. A brief outline of Schweitzer's method of "break
ing" an isolated periodic orbit follows. 

Let N be the two-torus with a small disk removed, N = T2 — D2, 
and let N be its closure. N can be deformed to the highway overpass 
pictured in figure 1. Clearly N can be embedded as a transversal to a 
vector field on any manifold of dimension at least three. 

We now follow N along the integral curves of the vector field for 
some short time interval. As in the short-tube theorem [6, p. 333], 
if the time interval is chosen short enough, we have embedded a copy 
of N X [ - 1 , 1 ] in the manifold. 

Recall Denjoy's [3, 7, pp. 47-49, 11 pp. 396-399] well known 
C1 vector field on T2 which has an exceptional minimal set C. Let the 
small disk we removed from T2 to define IV be contained in T2 — C. 

Schweitzer's construction changes the vector field on a compact 
subset of the embedded copy of N X ( — 1,1) so as to accomplish the 
following three things. (1) The new flow will have minimal sets which 
are copies of C at N X {1/2} and N X {-1/2}. (2) Every orbit in N X 
[ — 1,1] will either be asymptotic to one of these copies of C or it will 
intersect the boundary of N X [ — 1,1] at (n, - 1 ) and (n, 1). (3) If 
the periodic orbit had contained the points (n, —1) and (n, 1) on the 
boundary of N X [ — 1,1], the new orbit through those points would 
be among those which are asymptotic to C. Because we have em-
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bedded N X [ — 1,1] by following integral curves of the original sys
tem, the points (n, —1) and (n, +1) were on the same orbit in the 
original flow. Clearly then, we have broken the old periodic orbit 
and added no new periodic orbits. 

4. An application in ecology. Consider the system 

Ni = Nx(l - Nx - aN2 - ßN3) + e 

(4.1) N ' 2 = N2(l - ßNx - N2 - aN3) + € 

N 3 = N3(l - aN1 - ßN2 - N3) + e. 

This is a model of the competition of three populations based on a 
model of May and Leonard [5]. The e represents immigration of 
each of the populations into the arena of competition. The model is 
somewhat artificial because of its symmetry, but one can expect 
similar behavior for perturbations of the system. We are interested 
here in the case 0<ß<l<a,a + ß>2, and 0 < e <3C 1. 

The following elementary lemma establishes the existence of an 
invariant disk for (4.1). 

LEMMA. There exist 8, B > 0 such that M0 = {(Nl9 N2, N3) | 8 ^ Nx 

^ B) is positively invariant under (4.1). 

The proof (which is omitted) consists of showing, by dropping terms 
and using inequalities, that N\ ^ 0 if N{ = B = (1 4- (1 + 4e))1/2/2 
and Nj è 0 for j ^ i; and then, by a continuity argument, choosing 
8 > 0 so that N't ^ 0 if N{ = 8 and 0 ^ Nj g B for/ f i. 

Now observe that system (4.1) is unchanged if we cyclically per
mute the subscripts 1—» 2—» 3—> 1. This suggests that the line Nx = 
N2 = N3 is invariant. In fact, it is easy to show that the portion of this 
line contained in M is contained in the stable manifold of the critical 
point (y, y, y) where y = (1 + (1 + 4ep))1/2/%> and p = 1 + a + ß. 
This, by the same argument as in the example of section 2, is the only 
critical point of (4.1) in M. 

The eigenvalues of the critical point are 

À! = - V l + 4€p< 0 

A2,3 = 1 - y(l + p) + (ay + ßy)l2 ± iV3(ßy - ay)/2. 

It can be shown that Re(X23) > 0 if 

P l = (1 - 3€ L V I - 12c)/€ < p < (1 - 3e + V l - 12c)k = p2. 

Now pi -^ 3 and p 2 -* » as e —» 0, so for a + ß > 2 and € sufficiently 
small, the critical point will have one negative real eigenvalue and two 
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eigenvalues with positive real part. Assume that a, ß, and e have been 
so chosen. 

Before the system is transformed to cylindrical coordinates, the 
affine transformation 

x 1 = ( - N 1 + N3)/V2 

x2=(-Nl + 2N2-N3)lVB 

x3 = (Ni + N2 + N3)lV3 - V5y 

is applied. 
This transformation translates the critical point (y,y,y) to the 

origin and moves the stable manifold Nx = N2 — N3 to the line 
xY = x2 = 0. 

Since this transformation is affine it maps the convex region M0 

to a convex region M in the coordinate system. It is also easy to verify 
that eigenvalues of the critical point x = 0 are the same as those of 
the critical point of the original system. Therefore the new system 
satisfies hypotheses i, ii, and iii of the theorem. 

To verify hypothesis iv of the theorem it may be useful to note that 
the cylindrical coordinates (2.3) correspond to 

yx = arctan(jc2/x1) 

y2 = v V 4- x2
2 

The entire system can be written in this coordinate system, but 
only the expression for yx is needed. 

08 - l W N a + N2
2N3 + N^NJ 

+ (1 - a X N ^ 2 + A/2N3
2 + N3N^) 

L + 3 ( a - / B ) N 1 t f 2 N 3 . 
(4.2) J / J = V 3 / 2 

(4.3) 

Nf + N2z + N3
2 - N,N2 - N2N3 - N3N1 

= 2(0 -a}y + 2/V3(/3 - a)y3 

+ V6(ß - a)y2 sin yl cos 2 ^ 

+ V2(a + ß — 2)y2 sin2t/! cos yx 

+ V2/V3(a - ß)y2 sin3t/i 

- V2/3 (a + ß - 2)t/2 cos3 yv 

To show that y [ ^ 0 in Mc, it suffices to show that (4.2) is nonzero 
for (NUN2,N3) G M0. 
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Since Nx
2 + N2

2 + N3
2 - NXN2 - N2N3 - N3NX = 3/2(x2

2 + x3
2), 

the denominator of (4.2) is positive except on the line x1 = x2 = 0, 
which corresponds to Nx = N2= N3. The numerator U of (4.2) is non-
positive on each of the faces of the positive octant, and the directional 
derivative (d/dNl + dldN2 + d/dN3)U = (ß - a ) ^ 2 + N2

2 + 
N3

2 - NXN2 - N2N3 - N3NJ < 0 unless Nx = N2= N3. If Nx 

= N2 = N3 then y2 = 0. Since y3 > - V3y if y G Mc, (4.3) guaran
tees that t/3 < 0 for y G Mc. 

The hypotheses of the theorem are satisfied and thus there is a non-
constant periodic orbit for (4.1) which is contained in M0. 

Figure 1. The highway overpass. 
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