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STABLE HOMOTOPY AND ORDINARY DIFFERENTIAL 
EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS 

JEAN MA WHIN 

1. Introduction. This paper is a continuation of [1] where coin
cidence degree arguments have been used to give fairly general exis
tence theorems for nonlinear boundary value problems relative to 
ordinary differential equations. In contrast with [1] where the case 
of nonlinear perturbations of Fredholm mappings of index zero has 
been treated, we consider here the case where this index is positive. 

Following Nirenberg [5] we use stable homotopy arguments to get 
a continuation theorem which was announced in [4] and is given here 
with complete proof for reader's convenience (Section 2). This con
tinuation result leads in Section 3 to a fairly general existence theorem 
for boundary value problems. An interesting specialization and an 
example are given in Section 4. 

2. A continuation theorem for some nonlinear perturbations of 
Fredholm mappings with non-negative index. Let X and Z be real 
normed spaces and L : dorn L C X—> Z a linear mapping such that 
Im L is closed and 

q = codim I m L ë dim ker L = p. 

We shall call L a Fredholm mapping of index p — q. Let R > 0 and 
N : B(R) C X—> Z be L-compact on the closed ball B(R) of center 0 
and radius R. That means [4] that if F : X-» X and Q.Z-+Z denote 
continuous projectors such that the sequence 

P L Q 

X -* dorn L -» Z -> Z 

is exact, and if 

KP>Q = (L | dorn L D ker P)~\I - Ç), 

then QN is continuous on B(R), QN(B(R)) is bounded and KP>QN : B(R) 
—» X is compact. It is known [4] that those conditions are indepen
dent of the choice of Fand Q. If now 

r : Rv^> ker L, T ' : Im Q -> R« 

are isomorphisms, we shall define the mapping v by 
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for all points u where QNT(Ru) ^ 0. We shall denote by Sr the unit 
sphere in Rr+1. 

THEOREM 2.1. Assume that the following conditions hold. 
1. For each X G ] 0,1 [ and each x G dorn L H dB(R), one has 

(2.2) Lx ^ kNx. 

2. For each x G ker L fl dB(R), Nx $ Im L, i.e., QNx f 0. 
3. 77ie mapping v : Sp_1—> Sq~l defined by (2.1) has nontrivial 

stable homotopy. 
Then the equation 

(2.3) Lx = Nx 

has at least one solution x G dorn L H B(R). 

PROOF. If there exists x G dorn L Pi dß(R) such that (2.3) holds, the 
theorem is proved. Hence one can assume that (2.2) holds for all 
X G ] 0 ,1] . As shown in [ 3] , for all linear one-to-one / : Im Q —> 
ker L and all X G ] 0 ,1] , (2.2) is equivalent to 

x = M(x, X) 

with 

M(x,X) = Px + (JÇ + \KP}Q)Nx, 

and 

x = M(x, 0) 

is equivalent to 

x G ker L, QNx = 0. 

Therefore, by conditions 1 and 2, 

x f M(x, X) 

for any X G [0,1] and x G dB(fì). Also, M : B(R) X [0,1] -* X is 
clearly compact and hence its restriction to dB(R) X [0,1] is a per
missible deformation in the sense of Nirenberg ([6] , p. 128). Conse
quently I — M( -, X) will have a zero in B(R) for any X G [0,1] if the 
restriction of I — M( -, 0) to dB(R) is essential, i.e., if any extension of 
this map to B(R) in the class of compact perturbations of the identity 
has a zero [2 ,6] . But the mapping F : dB(R)^> X defined by 

/ - M( - , 0 ) = I - P- JQN 
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restricted to dB(R) is clearly homotopic to the mapping F0 : dB(R) 
-* X defined by 

F0=I-P- JQNP 

which is of the type considered in Proposition 4.1.1 of [6] with 

X0 = ker P,W= ker L, 4> = -JQN. 

Therefore, using this Proposition, F0, and hence F, will be essential if 
and only if the map v defined in (2.1) has nontrivial stable homotopy 
(see [6], p. 29, for a definition). The result then follows using assump
tion 3. 

REMARK. When p = q, assumption 3 is equivalent to requiring that 
the degree of v is nonzero, i.e., that the Brouwer degree 

dB[JQN\ ker L,B(R),0] 
is nonzero. 

3. A continuation theorem for ordinary differential equations with 
nonlinear boundary conditions. Let I = [0,1] and 

f:IXRnX • • X fln->Rn 

{t,x\x\ • • ;xm)t-*f(t,xl,x2
9 • • -,xm) 

be continuous. Let X be the (Banach) space Cm_1(/, Rn) of mappings 
x : /—» Rn which are continuously differentiable up to the order m — 1, 
with the norm (we use the Euclidian norm in Rn) 

|*| = max{max|x(*)|, • • -,max |s (m-1)(*)l}, • 
tei tei 

and let g : X—> Rq be continuous and such that it takes bounded sets 
into bounded sets. We shall be interested in the nonlinear boundary 
value problem 

*(m) = / ( * , * , * ' , * * •,* (m-1)) 
(3.1) 

g(«) = o. 
If we denote by Z the (Banach) space 

Z = C(7, Rn) X Ro 

with C(I, Rn) the (Banach) space of continuous mappings x : I—» Rn 

with the usual supremum norm | • |0, and if we denote by dorn L the 
subspace of X of m-times continuously differentiable mappings x : I 
—• Hn, it is clear that (3.1) is equivalent to the operator equation in 
dorn L 
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(3.2) Lx = Nx 

when we define L and N respectively by 

L : dorn L C X - ^ Z , x h (x(m), 0) 
(3.3) 

N : X - * Z , x h * (/(*,*,*', . . . , x ( m - i ) ^ g W ) . 

Now it is easy to check that 

ker L = {x G X : x(t) = a0 4- (tlllfa + (t2W)a2 

+ • • • + (r»-V(m - l)!)am_i, a0 G R», • • -, am_! G i 

so that 

dim ker L = mn 

and 

Im L = C(I, Rn) X {0}. 

Thus Im L is closed and 

codim Im L = q. 

Therefore L is a Fredholm mapping of index mn — q and also, 
Arzela-Ascoli's theorem, L has compact right inverses. Thus N is 
compact on bounded sets of X. We shall denote by T : Rmn —• ke 
the isomorphism 

(ao9ai9 • - •,flm_i)l->f( • ; % « ! , • • sflm-i) 

where 

m - l 

f(t; flo, * ' S fl«-i) = S (^' !H- (* G R), 
i=o 

and we shall define the mapping y by 

for all points where gT(Ru) ^ 0. 
We then have the following continuation theorem. 

THEOREM 3.1. Assume that the following conditions hold. 
a. There exist M > 0 such that, for all (t, x\ • • -, xm) G I X R" 

• • • X Rn, one ftas 



ORDINARY DIFFERENTIAL EQUATIONS 421 

\f(t,x\--;xm)\^M. 

b. There exists R > 0 such that, for all x G Cm(I, Rn)for which 

g(*) = « 

and 

|*<™>lo^M, 

one has 

|*| fé R. 

c. ITie mapping y : Sm n - 1 —» SQ_1 defined by (3.4) fow nontrivial 
stable homotopy. 

Then the boundary value problem (3.1) has at least one solution 
xsuch that\x\ == R. 

PROOF. We shall apply theorem 2.1 to the equivalent problem (3.2) 
with L and N defined in (3.3). Equation 

Lx = kNx 

for \ G. [0,1] is clearly equivalent to 

x(m) = \f(t,X,x', • ' ',X<m-») 

0 = g(s) 

and hence, by conditions (a) and (b), assumption (1) of Theorem 2.1 is 
verified. Now 

QNx-(0,g(x)) 

and hence by (b) applied to the elements of ker L, condition (2) of 
Theorem 2.1 holds. Now assumption (c) clearly corresponds to condi
tion (3) of Theorem 2.1 and the proof is complete. 

4. A class of nonlinear two point boundary value problems. Let 
h : Rm n-* Rq be continuous and let a^ (i = 0,1, • • -,ra — l;j = 1, • • -, n) 
denote 0 or 1. We shall consider in this section the special case of 
(3.1) where 

g(x) = M*i(aoi)>V(«ii)> ' ' , ^ i ( m " 1 k - u ) ^ 2 ( % ) ) 

(4.1) 
•••,^n (m-1)(am_1 ,n)). 
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THEOREM 4.1. Assume that conditions (a) of Theorem 3.1 as well as 
the following assumptions hold. 

b '. There exists S > 0 such that each solution b of 

h(b) = 0 

is such that 

\b\ < S. 

c '. The mapping y defined by (3.4) with g given by (4.1) and 

R = n^mS + M) 

has nontrivial stable homotopy. 
Then problem (3.1) has at least one solution. 

PROOF. We shall apply theorem 3.1. Let x G Cm(I, Rn) be such that 
M*l(«Ol)> * * • ^ n ( m " 1 k - l ) « ) ) = 0, 

and 
|x(m>|o ^ M. 

Then, by assumption (b '), necessarily, 

|xfcu>(rçfc)|<S ( / = 0 , 1 , • • • , m - l ; f c = l , •••,!») 

and hence, using the relations 

Xku~l)(t) = s ^ - 1 ^ - ! , * ) + f ' **(j)(*) ds, 
Jaj~l,k 

(j = 1,2, • • -,m;k = 1, • • -,n), 

one gets successively 

k ( m ~ 1 } l o<S + M, 

k ( m~2 ) lo < S + S + M, 

Ixjklo < mS + M, 

and hence 

|x| < n"2(mS + M). 

Putting R = n1/2(mS -h M) achieves the proof. 

As an example let us consider the case where ra=n=2, q = 3 and 

h = h(*(0), *'(!)) = ( ^ ( 0 ) + X l '*( l) _ X22(0) - ï 2 ' 2 ( 1 ) _ C l ) 

2(x!(0)x2(0) + Xl'(l)x2'(l))- c2,2(Xl'{l)Xi(0) - *i(0)*8'(l)) - c3), 
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with Ci, c2, c3 real constants. If we write 

w = xx(0) + t*i'(l),t> = x2(0) + ix2 ' ( l) , 

then 

(4.2) fc(*(0),*'(l)) = 0 

can be written 

M 2 - \v\2- cx = 0 

2 Re wv - c2 = 0 

2 1 m i ü t j - c 3 = 0, 

and hence each solution (x(0), x '( l)) of (4.2) is necessarily such that 

M 2 - \V\*-Cl = 0 

\w\2\v\2=4^(c2
2+c3

2), 

and therefore such that 

W^\cx\\v\2 + A~\c2
2 + c3% 

which implies that 

| Ü | 2 < C Z 1
2 

with di2 any number strictly greater than the positive root of the 
equation 

z2- | c 1 | % - 4 - 1 ( c 2
2 + c 3

2 ) = 0. 

Consequently, 

M 2<k 1 | + |d1|2-da
a, 

and condition (b ') of Theorem 4.1 holds with 

S = (di2 + da2)1 '2 

and it still holds if ci9 c2 and c3 are replaced by kcu kc2, AC3 for any 
A G [0,1] . Now, if M = (uly u2, t/3, u4) ê S3, i.e., if 

M l 2 + M22 + u32 + w42 = 1» 

then, if we define T by 

T(a, b, c, d) = (a, c) + *(fc, d), 

y ( W )= |gr ( f lu ) | - ig r (Ru) 

with 
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gT(Ru) = (R2(wr
2 + u2

2 - u3
2 - u4

2) - d , 2R2(ulu3 + u2u4) - c2, 

2R2(u3u2 - uYu4) - c3). 

If 

R > (di2 + d2
2) 

and if 

G(u,X) = (R2(Mi2 + U2
2 — u3

2 — u4
2) — kci9 2R2(uiU3 + u2u4) — \ c 2 , 

2R2(u3u2 - uYuA) - Xc3), 

then 

G(u, 1) = g i w , 
G(u,k)^0 for any u £ S 3 a n d \ £ [0 ,1] , 

which implies that |gr(Rw)|_1 gT(Ru) is homotopic to the Hopf map 
j : S3-» S2 defined by 

7 : (ti!, w2, w3, w4) f-> (Wi2 + u2
2 - W32 - u4

2, 2(u1ti3 + 1/2W4), 

2(w3u2 - «1^4))-

But the suspensions 2] kj of the Hopf map (fc = 1, 2, • • •) are the gener
ators of the homotopy groups 77"3+fc(S2+fe) which are cyclic of order two 
and hence j has nontrivial stable homotopy. The existence result for 
the example then follows from Theorem 4.1. 

REFERENCES 

1. R. E. Gaines and J. Mawhin, Ordinary differential equations with non
linear boundary conditions, J. Differential Equations, to appear. 

2. A. Granas, The theory of compact vector fields and some of its applica
tions to topology of functional spaces (I), Rozprawy Mat. 20 (1962), 1-93. 

3. J. Mawhin, Equivalence theorems for nonlinear operator equations and 
coincidence degree theory for some mappings in locally convex topological vector 
spaces, J. Differential Equations 12 (1972), 610-636. 

4. , Topology and nonlinear boundary value problems, Dynamical 
Systems: An International Symposium, vol. I, Academic Press, New York, 1976, 
51-82. 

5. L. Nirenberg, An application of generalized degree to a class of nonlinear 
problems, Troisième Colloque CBRM d'analyse fonctionnelle, Vander, Louvain, 
1971, 57-74. 

6. , Topics in Nonlinear Fucntional Analysis, New York University 
Lecture Notes, 1973-74. 

UNIVERSITÉ DE LOUVAIN, INSTITUT MATHÉMATIQUE, B-1348 LOUVAIN-LA-
NEUVE, BELGIUM 


