THE TOPOLOGY ON CERTAIN SPACES OF MULTIPLIERS OF TEMPERATE DISTRIBUTIONS JAN KUCERA AND KELLY MCKENNON

ABSTRACT. In [2] and [3] the space \mathcal{S}' of temperate distributions was characterized as a union of Hilbert spaces L_{-q} , $q \in N = \{0, 1, 2, \cdots\}$. Then spaces \mathcal{O}_q were defined to consist of all functions u for which mappings $f \rightarrow uf : L_{-q} \rightarrow \mathcal{S}'$ are continuous, and it was proved that $\bigcap_{q \in N} \mathcal{O}_q = \mathcal{O}_M$, where \mathcal{O}_M is Schwartz' space of multipliers on \mathcal{S}' , see [6]. In [4], two topologies for \mathcal{O}_q were suggested. It is shown in this paper that those topologies coincide and each \mathcal{O}_q , equipped with this topology, is a bornological, complete, and reflexive space. In addition, bounded sets in \mathcal{O}_q are characterized.

1. Notation. For $\alpha \in N^n$ and $x \in R^n$ we write $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$, and $D^{\alpha} = \partial^{|\alpha|} (\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n})^{-1}$. Further, $C^{\infty}(R^n)$ is the space of all functions which have continuous derivatives of all orders on R^n , $C_0^{\infty}(R^n)$ is the space of all $f \in C^{\infty}(R^n)$ with compact support, $L^s(R^n)$, where $1 \leq s < +\infty$ (resp. $s = +\infty$), is the space of all functions whose s-th power is integrable on R^n (resp. functions which are bounded almost everywhere on R^n),

$$\mathcal{S} = \{ f \in C^{\infty}(\mathbb{R}^n) : \sup_{x \in \mathbb{R}^n} |x^{\alpha} D^{\beta} f(x)| < \infty, \alpha, \beta \in \mathbb{N}^n \},\$$

and \mathcal{S}' is the strong dual of \mathcal{S} . It is convenient to introduce a weight function $W(x) = (1 + ||x||^2)^{1/2}$, where $||x||^2 = x_1^2 + x_2^2 + \cdots + x_n^2$.

We use the so-called Sobolev (generalized, weak) derivatives. A function g is the Sobolev derivative of order α of a locally integrable function f if, for any $\phi \in C_0^{\infty}(\mathbb{R}^n)$, we have

$$\int_{\mathbf{R}^n} g\phi \, dx = (-1)^{|\alpha|} \int_{\mathbf{R}^n} f D^{\alpha} \phi \, dx.$$

In [1] we defined for each $q \in N$ a Hilbert space

$$L_q = \left\{ f: \mathbb{R}^n \to \mathbb{C} : \|f\|_q^2 = \sum_{|\alpha| \leq q} \int_{\mathbb{R}^n} |W^{q-|\alpha|} D^{\alpha} f|^2 \, dx < +\infty \right\}$$

and denoted by L_{-q} its strong dual. The derivatives in the definition of L_q are Sobolev. But it can be shown that each $f \in L_{q+r}$, where r = 1 + [(1/2)n], has continuous classical derivatives of all orders $\leq q$. The projective limit of $\bigcap_{q \in N} L_q$ equals \mathcal{S} . The set of all functionals from $\bigcup_{q \in N} L_{-q}$, restricted to \mathcal{S} , equals \mathcal{S}' . By [3] the inductive

Received by the editors on December 4, 1975, and in revised form on March 10, 1976.

topology of $\bigcup_{q \in N} L_{-q}$ equals the strong topology $\beta(\mathcal{S}', \mathcal{S})$ of \mathcal{S}' .

For any $p, q \in N$, $\mathcal{O}_{p,q}$ is the set of all functions $u: \mathbb{R}^n \to C$ for which the mapping $f \to uf: L_p \to L_q$ is continuous. Since $\mathcal{O}_{p,q}$ is a subspace of the Banach space $\mathcal{L}_b(L_p, L_q)$, of all continuous operators from L_p into L_q , it is a normed space. In fact, it is also Banach. The norm on $\mathcal{O}_{p,q}$ is denoted by $\|\cdot\|_{p,q}$. For any $q \in N$ the space $\bigcup_{p \in N} \mathcal{O}_{p,q}$, equipped with the inductive topology T_i , is denoted by \mathcal{O}_q .

2. Auxiliaries.

LEMMA 1. Let X, Y be Banach spaces, Y reflexive, $Y \subset X$, and the identity mapping $id: Y \to X$ continuous. Let $x_0 \in X \setminus Y$, $y_0 \in Y$, and let V be a bounded closed convex neighborhood of 0 in Y such that $y_0 \notin V$. Then there exists a bounded closed convex neighborhood U of 0 in X such that $V \subset U$ and $x_0 \notin U$, $y_0 \notin U$.

PROOF. We show first that V is closed in X. Let a be an element of the closure of V in X. There exists a net $\{a_i\}_{i \in I} \subset V$ such that $a_i \rightarrow a$ in X. Since V is weakly compact in Y (Alaoglu Theorem), there exists $K \subset I$ such that $\{a_\kappa\}_{\kappa \in K}$ weakly converges in Y to $b \in V$. Therefore for all $f \in X' \subset Y'$ we have $f(a) = \lim_{\kappa \in K} f(a_\kappa) =$ f(b), and by the Hahn-Banach theorem a = b.

Again, by the Hahn-Banach theorem, there exist $f, g \in X'$ such that $f(x_0) > 1$, $g(y_0) > 1$, and f(x) < 1, g(x) < 1 for all $x \in V$. Since V is bounded in X, we have $d = \sup\{\|x\|_X, x \in V\} < +\infty$, and the set $\bigcup = f^{-1}((-\infty, 1]) \cap g^{-1}((-\infty, 1]) \cap \{x \in X; \|x\|_X \leq d\}$ has the required properties.

LEMMA 2. For any pair $p, q \in N$, the space $W^pL_q = \{u : \mathbb{R}^n \to C; W^{-p}u \in L_q\}$ (with the norm of an element $u \in W^pL_q$ given by $\|W^{-p}u\|_q$) is a Hilbert space. The indictive limit $\bigcup_{p \in N} W^pL_q$ equals (\mathcal{O}_q, T_i) .

PROOF. Fix $p, q \in N$ and put r = 1 + [(1/2)n]. Since $W^{-p-r} \in L_p$ we have $W^{-p-r}u \in L_q$ for any $u \in \mathcal{O}_{p,q}$. Moreover, $\|W^{-p-r}u\|_q \leq \|W^{-p-r}\|_p \cdot \|u\|_{p,q}$. Therefore, the identity mapping $id : \mathcal{O}_{p,q} \to W^{p+r}L_q$ is continuous, which implies the continuity of

$$id: \mathcal{O}_q = \bigcup_{p \in N} \mathcal{O}_{p,q} \to \bigcup_{p \in N} W^{p+r} L_q = \bigcup_{p \in N} W^p L_q.$$

On the other hand, choose $p, q \in N$. There is a constant A > 0such that $|D^{\gamma}W^{p}(x)| \leq AW^{p}(x)$ for all $x \in \mathbb{R}^{n}$ and all $\gamma \in \mathbb{N}^{n}, |\gamma| \leq q$. It was shown in [1] that there exists another constant B > 0 such that $\|W^{p+q-|\delta|}D^{\delta}f\|_{\infty} \leq B\|f\|_{p+q+r}$ for all $\delta \in \mathbb{N}^{n}, |\delta| \leq p+q$, and $f \in L_{p+q+r}$, where r = 1 + [(1/2)n]. If $u \in W^{p}L_{q}$ and $f \in L_{q+q+r}$, then $\|uf\|_{q} = \|W^{-p}uW^{p}f\|_{q}$ $= \left(\sum_{|\alpha| \leq q} \int_{\mathbb{R}^{n}} |W^{q-|\alpha|}D^{\alpha}(W^{-p}uW^{p}f)|^{2} dx\right)^{1/2}$ $\leq \sum_{|\alpha| \leq q} \sum_{\beta+\gamma+\delta=\alpha} \left[\alpha \atop{\beta,\gamma,\delta}\right]$ $\left(\int_{\mathbb{R}^{n}} |W^{q-|\alpha|}D^{\beta}(W^{-p}u)D^{\gamma}W^{p}D^{\delta}f|^{2} dx\right)^{1/2}$ $\leq A \sum_{|\alpha| \leq q} \sum_{\beta+\gamma+\delta=\alpha} \left[\alpha \atop{\beta,\gamma,\delta}\right]$ $\left(\int_{\mathbb{R}^{n}} |W^{p+q-|\alpha|}D^{\beta}(W^{-p}u)D^{\delta}f|^{2} dx\right)^{1/2}$ $\leq AB\|f\|_{p+q+r} \sum_{|\alpha| \leq q} \sum_{\beta+\gamma+\delta=\alpha} \left[\alpha \atop{\beta,\gamma,\delta}\right]$

$$\left(\int_{\mathbb{R}^n} |D^{\beta}(W^{-p}u)|^2 dx\right)^{1/2}$$
$$\leq C \|f\|_{p+q+r} \cdot \|W^{-p}u\|_q$$

for a sufficiently large constant C. It implies $u \in \mathcal{O}_{p+q+r,q}$ and $\|u\|_{p+q+r,q} \leq C \|W^{-p}u\|_q$, i.e., the identity mapping $id: W^pL_q \rightarrow \mathcal{O}_{p+q+r,q}$ is continuous and the mapping $id: \bigcup_{p \in N} W^pL_q \rightarrow \bigcup_{p \in N} \mathcal{O}_{p+q+r,q} = \bigcup_{p \in N} \mathcal{O}_{p,q} = \mathcal{O}_q$ is continuous, too.

LEMMA 3. The space \mathcal{O}_q is the strong dual of the Fréchet space $\bigcap_{p \in N} W^{-p}L_{-q}$ with the duality form

$$(u, v) \rightarrow \langle u, v \rangle = (W^p u)(W^{-p}\overline{v}) : \bigcap_{p \in N} W^{-p} L_{-q} \times \bigcup_{p \in N} W^p L_q \rightarrow C.$$

Proof follows from [5], Chapter IV, Theorem 4.4.

LEMMA 4. Let $B \subset \bigcap_{p \in N} W^{-p}L_{-q}$ be bounded and Δ the unit ball in L_{-q} . Then there exists $\phi \in S$ such that $B \subset \phi \Delta$.

PROOF. For each $p \in N$ there exists $C_p > 0$ such that $B \subset C_p^{-1}W^{-p} \Delta$. Let B° , resp. Δ° , be the polar of B, resp. Δ . Let $v \in C_pW^p \Delta^{\circ} = (C_p^{-1}W^{-p} \Delta)^{\circ}$. Then for each $u \in C_p^{-1}W^p \Delta$ we have $C_pW^p u \in \Delta$, $C_p^{-1}W^{-p}v \in \Delta^{\circ}$, and $|\langle u, v \rangle| = |(C_pW^p u)(C_p^{-1}W^{-p}\overline{v})| \leq 1$. Since $B \subset C_p^{-1}W^{-p} \Delta$, it follows that $|\langle W^p u, W^{-p}v \rangle| = |\langle u, v \rangle| \leq 1$ for all $u \in B$, i.e., $v \in B^{\circ}$ and $C_pW^p \Delta^{\circ} \subset B^{\circ}$.

Take $\psi \in C^{\infty}(R)$ such that $0 \leq \psi(t) \leq 1$ for $t \in R$, $\psi(t) = 0$ for t < 0 and $\psi(t) = 1$ for t > 1. Then

$$\begin{split} \lim_{d \to \infty} \sup_{h \in \Delta^{\circ}} \| \Psi(\| \cdot \| - d) W^{-1}h \|_{q} \\ & \leq \lim_{d \to \infty} \sup_{h \in \Delta^{\circ}} \sum_{|\alpha| \leq q} \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \\ & \left(\int_{\mathbb{R}^{n}} |W^{q-|\alpha|} D^{\beta}h D^{\alpha-\beta}(\Psi(\|x\| - d) W^{-1})|^{2} dx \right)^{1/2} \\ & \leq \sum_{|\alpha| \leq q} \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \lim_{d \to \infty} \| D^{\alpha-\beta}(\Psi(\| \cdot \| - d) W^{-1}) \|_{\infty} = 0, \end{split}$$

where $\|\cdot\|$ is the norm in \mathbb{R}^n and $\|\cdot\|_{\infty}$ is the norm in $L^{\infty}(\mathbb{R}^n)$. Therefore for each $p \in N$, there exists d_p such that

$$\sup_{h\in\Delta^{\circ}} \|\psi(\|\cdot\|-d_p)W^{-1}h\|_q \leq C_{p+1}2^{-1-p}.$$

Choose $\{d_p\}_{p \in N}$ so that $d_{p+1} \ge 1 + d_p$, $p \in N$. For any $p \in N$ and any $h \in \Delta^\circ$ we have

$$\begin{split} \psi(\|\cdot\| - d_p) W^p h &= W^{p+1} \psi(\|\cdot\| - d_p) W^{-1} h \in 2^{-1-p} C_{p+1} W^{p+1} \Delta^\circ. \\ \text{Put} \quad \phi^{-1}(x) &= (1/2) C_1 + \sum_{p=1}^{\infty} \psi(\|x\| - d_p) W^p(x), \quad x \in \mathbb{R}^n. \quad \text{Then} \\ \phi &\in \mathcal{S} \text{ and, for any } h \in \Delta^\circ, \end{split}$$

$$\phi^{-1}h = (1/2)C_1h + \sum_{p=1}^{\infty} \psi(\|\cdot\| - d_p)W^ph \in (1/2)C_1 \Delta^\circ$$
$$+ \sum_{p=1}^{\infty} 2^{-1-p}C_{p+1}W^{p+1} \Delta^\circ \subset \sum_{p=1}^{\infty} 2^{-p}C_pW^p \Delta^\circ$$
$$\subset \sum_{p=1}^{\infty} 2^{-p}B^\circ = B^\circ, \text{ i.e., } \phi^{-1} \Delta^\circ \subset B^\circ.$$

Further, $\|\phi W^p\|_{\infty} < \infty$ for each $p \in N$. Therefore $\phi W^p L_q \subset L_q$ and $B^{\circ} \subset \bigcup_{p \in N} W^p L_q \subset \phi^{-1}L_q$. Take $u \in B$. Then $|\langle u, v \rangle| =$ $|(W^{+p}u) (W^{-p}\overline{v})| \leq 1$ for each $p \in N$ and $v \in B^{\circ} \cap W^p L_q$. Finally, $\phi^{-1}u \in \mathcal{D}'$ and $\phi^{-1}\Delta^{\circ} \subset B^{\circ}$. Hence for any $\omega \in \mathcal{D} \cap \Delta^{\circ} \subset \mathcal{D} \cap \phi B^{\circ}$, we have $|(\phi^{-1}u)\omega| = |u(\phi^{-1}\omega)| = |\langle u, \phi^{-1}\overline{\omega}\rangle| \leq 1$. Since \mathcal{D} is dense in L_a , this implies $\phi^{-1}u \in \Delta$, i.e., $B \subset \phi \Delta$.

Topology of \mathcal{O}_q . We have already introduced the inductive topology T_i of $\mathcal{O}_q = \bigcup_{p \in N} \mathcal{O}_{p,q}$. In [4] for each $\phi \in \mathcal{S}$ a seminorm $||u||_{\phi} = ||\phi u||_q$ was defined on \mathcal{O}_q . Let T be the topology of \mathcal{O}_q generated by the system $\{|| \cdot ||_{\phi}; \phi \in \mathcal{S}\}$. Evidently the topology T is for any $s, 1 \leq s \leq +\infty$, generated by the seminorms $||\phi D^{\alpha}u||_{L^s}$, $\phi \in \mathcal{S}, \alpha \in N^n, |\alpha| \leq q$, where $|| \cdot ||_{L^s}$ is the norm in $L^s(\mathbb{R}^n)$.

THEOREM. $(\mathcal{O}_q, T_i) = (\mathcal{O}_q, T).$

PROOF. It was shown in [4] that T_i is stronger than T. To prove the other inclusion, choose $U \in T_i$, $0 \in U$. By Lemma 3, there exists a bounded set B in $\bigcap_{p \in N} W^{-p}L_{-q}$ such that the neighborhood V = $\{u \in \mathcal{O}_q : |\langle u, v \rangle| < 1$ for all $v \in B\}$ is contained in U. The inner product $\langle \cdot, \cdot \rangle$ was introduced in Lemma 3. By Lemma 4, there exists $\phi \in \mathcal{S}$ such that $B \subset \phi \Delta$, where Δ is the unit ball in L_{-q} . Since for any $u \in \mathcal{O}_q$ we have $\sup\{|\langle u, v \rangle| : v \in B\} \leq \sup\{|\langle u, \phi w \rangle|; w \in \Delta\}$ $= \sup\{|\overline{w}(\phi u)| : w \in \Delta\} \leq ||\phi u||_q = ||u||_{\phi}$, the T_i -neighborhood V of 0 contains the T-neighborhood $\{u \in \mathcal{O}_q : ||u||_{\phi} < 1\}$ of 0. Hence $V \in T$.

3. Bounded sets in \mathcal{O}_q .

PROPOSITION. Let $B \subset (\mathcal{O}_q, T_i)$ be bounded. Then there exists $p \in N$ such that $B \subset W^pL_q$.

PROOF. Assume that $B \setminus W^p L_q \neq \emptyset$ for every $p \in N$. Then there exist sequences $p_1 < p_2 < \cdots$ and $\{f_k\}_{k \in N} \subset B$ such that $f_k \in W^{p_k}L_q \setminus W^{p_{k-1}}L_q$. Choose a closed bounded convex neighborhood V_1 of 0 in $W^{p_1}L_q$ such that $f_1 \notin V_1$. When $V_1, V_2, \cdots, V_{k-1}$ are chosen, we choose, according to Lemma 1, a closed bounded convex neighborhood V_k of 0 in $W^{p_k}L_q$ so that $V_{k-1} \subset V_k$ and $s^{-1}f_s \notin V_k$ for all $s = 1, 2, \cdots, k$. Then $\bigcup_{k \in N} V_k$ is a convex neighborhood of 0 in \mathcal{O}_q which does not absorb the bounded set $\{f_k\}_{k \in N}$, which is a contradiction.

THEOREM. Let $B \subseteq (O_q, T_i)$ be bounded. Then there exists $p \in N$ such that B is bounded in W^pL_q .

PROOF. There exists $p \in N$ such that $B \subset W^p L_q$. Assume that B is not bounded in any $W^s L_q$, $s \ge p$. Put $V_p = \{x \in W^p L_q : \|W^{-p}x\|_q \le 1\}$ and take $f_p \in B \setminus pV_p$. For the induction, assume that $V_p \subset V_{p+1} \subset \cdots \subset V_{k-1}$ and $f_p, f_{p+1}, \cdots, f_{k-1}$, are chosen. Since $\sup\{\|W^{-s}f\|_q : f \in B\} = +\infty$ for any $s \ge p$, there exists $f_k \in B$

such that $f_k \notin kV_{k-1}$. By Lemma 1 there exists a closed bounded convex neighborhood V_k of 0 in W^kL_q such that $V_{k-1} \subset V_k$ and $f_s \notin sV_k$ for $s = p, p + 1, \dots, k$. Therefore $\bigcup_{k \in N} V_k$ is a convex neighborhood of 0 in \mathcal{O}_q which does not absorb the bounded set $\{f_k\}_{k \geq p} \subset B$, which is a contradiction.

MISECLLANEA. \mathcal{O}_q is a reflexive, complete, bornological space.

PROOF. The Fréchet space $F = \bigcap_{p \in N} W^{-p} L_{-q}$ is barreled. By [5], IV, 5.8, it is semi-reflexive. Hence, by [5], IV, 5.6, it is reflexive. Finally, the strong dual \mathcal{O}_q of a reflexive Fréchet space F is reflexive, complete, and bornological.

 \mathcal{S} is dense in \mathcal{O}'_q .

PROOF. Since \mathcal{O}_q is reflexive, the strong topology on \mathcal{O}'_q is the Mackey topology of the duality $\langle \mathcal{O}'_q, \mathcal{O}_q \rangle$. Hence convex subsets of \mathcal{O}'_q have the same closures in both the weak* and norm topologies, see [5], IV, 3.3. Thus, we need only to show that \mathcal{S} is weakly dense in \mathcal{O}'_q .

If $g \in \mathcal{O}_q$, $g \neq 0$, there exists $f \in \mathcal{S}$ such that $\langle f, g \rangle = \int f \overline{g} \, d\mu \neq 0$, where μ is the Lebesgue measure on \mathbb{R}^n , i.e., \mathcal{S} separates points of \mathcal{O}_q with respect to the duality and by [5], IV, 1.3, \mathcal{S} is weakly dense in \mathcal{O}'_q .

EXAMPLE. \mathcal{O}_q is neither Montel nor nuclear. Let $\Omega(r) = \{x \in \mathbb{R}^n; \|x\| \leq r\}$. The set $B = \{u \in L_q; \|u\|_q \leq 1 \text{ and supp } u \subset \Omega(1)\}$ is bounded and closed in \mathcal{O}_q . To show that it is not compact, take $u \in B, u \neq 0$, and put $u_k(x) = u(kx), x \in \mathbb{R}^n, v_k = u_k \|u_k\|_q^{-1}, k = 1, 2, \cdots$. Then $v_k \in B$ and for any $\omega \in \mathcal{S}$ we have

0

$$\begin{aligned} |\langle v_k, \omega \rangle| &= \left| \int_{\mathbb{R}^n} v_k \bar{\omega} \, dx \right| \\ &= \left| \int_{\Omega(k^{-1})} v_k \bar{\omega} \, dx \right| \\ &\leq \left(\int_{\Omega(k^{-1})} |v_k \omega|^2 \, dx \right)^{1/2} \\ &\cdot \left(\int_{\Omega(k^{-1})} dx \right)^{1/2} \\ &\leq ||\omega||_{\infty} \cdot ||v_k||_q \cdot \mu(\Omega(k^{-1})) \\ &\leq ||\omega||_{\infty} \cdot \mu(\Omega(1)) \cdot k^{-(1/2)n} \rightarrow \end{aligned}$$

as $k \to \infty$. Since S is dense in \mathcal{O}'_q , $\{v_k\}$ converges weakly to 0 in \mathcal{O}_q .

On the other hand, take $\phi \in \mathcal{S}$ such that $\phi(x) = 1$ for $x \in \Omega(1)$. Then the seminorm $||v_k||_{\phi} = ||\phi v_k||_q = 1$ for any $k = 1, 2, \cdots$. Therefore, neither $\{v_k\}$ nor any of its subsequences converge to 0 in \mathcal{O}_q . Hence \mathcal{O}_q is not Montel.

Since \mathcal{O}_q is complete and *B* is closed in \mathcal{O}_q , *B* is not precompact and \mathcal{O}_q is not nuclear.

PROPOSITION. The inclusion $\mathcal{O}_q \subset \mathcal{L}(\mathcal{S}, L_q)$ holds. The bounded and the pointwise topology of $\mathcal{L}(\mathcal{S}, L_q)$ coincide on \mathcal{O}_q .

PROOF. Since the topology T of \mathcal{O}_q is the pointwise topology, it remains to show that T is stronger than the topology of \mathcal{O}_q relative to $\mathcal{L}_b(\mathcal{S}, L_q)$.

The identity mapping $id: \mathcal{O}_{p,q} \to \mathcal{L}_b(L_p, L_q)$ is continuous. Therefore $id: \mathcal{O}_{p,q} \to \mathcal{L}_b(\mathcal{S}, L_q)$ and $id: (\mathcal{O}_q, T_i) \to \mathcal{L}_b(\mathcal{S}, L_q)$ are continuous too. Since $T = T_i$, the proof is complete.

References

1. J. Kučera, Fourier L_2 -transform of Distributions, Czech. Math. J. 19 (1969), 143-153.

2. —, On Multipliers of Temperate Distributions, Czech. Math. J. 21 (1971), 610-618.

3. J. Kučera, K. McKennon, Certain Topologies on the Space of Temperate Distributions and its Multipliers, Indiana Univ. Math. J. 24 (1975), 773-775.

4. J. Kučera, Extension of the L. Schwartz space \mathcal{O}_M of Multipliers of Temperate Distributions, J. of Math. Analysis and Appl. 56 (1976), 368-372.

5. H. Schaefer, *Topological Vector Spaces*, Graduate Texts in Mathematics, No. 3, 3rd printing, Springer-Verlag, Berlin, New York, 1971.

6. L. Schwartz, *Théorie des distributions*, Nouvelle édition, Hermann, Paris, 1966.

WASHINGTON STATE UNIVERSITY, PULLMAN, WASHINGTON 99163