A CLASS OF MODELS FOR OPERATORS

M. L. HOWARD

ABSTRACT. A class of Hilbert space operators is defined and each member of the class is shown to be a model for a large class of operators.

1. The purpose of this paper is to introduce a class of operator models. The symbols \mathcal{H} , \mathcal{K} , and \mathcal{G} will be reserved for Hilbert spaces and $\mathcal{B}(\mathcal{H}, \mathcal{K})$ will denote the Banach space of (bounded linear) operators from \mathcal{H} into \mathcal{K} . An operator S in \mathcal{K} is called a model (see [1]) for an operator A in \mathcal{H} provided there is a bicontinuous member ϕ of $\mathcal{B}(\mathcal{H}, \mathcal{K})$ such that $\phi A \phi^{-1} = S \mid \phi(\mathcal{H})$. In this case Lat A, the lattice of invariant subspaces of A, is isomorphic to Lat $S \mid \phi(\mathcal{H})$, and if A and S are invertible then $\phi A^{-1} \phi^{-1} = S^{-1} \mid \phi(\mathcal{H})$, i.e., S^{-1} is a model for A^{-1} . It is clear that if S is a model for A and V is a bicontinuous operator mapping \mathcal{K} onto \mathcal{G} then VSV^{-1} is also a model for A.

2. Let $|\cdot|$ denote the norm on $\mathcal{B}(\mathcal{H})$ and let \mathcal{K} be the product space $\times \underline{\tilde{\mathcal{I}}}_{\infty} \mathcal{H}$. If c is a nonnegative real number define the member S_c of $\mathcal{B}(\mathcal{K})$ as follows: if $0 \leq c \leq 1$ let

$$\left[S_{c}\left\{x_{p}\right\}_{-\infty}^{\infty}\right]_{n} = \begin{cases} x_{n+1} & \text{if } n \geq 0\\ cx_{n+1} & \text{if } n < 0 \end{cases},$$

and if $1 \leq c$ let

$$\left[S_{c}\left\{x_{p}\right\}_{-\infty}^{\infty}\right]_{n} = \begin{cases} cx_{n+1} & \text{if } n \ge 0\\ \\ x_{n+1} & \text{if } n < 0 \end{cases}$$

Let $\mathcal{O}_0 = \{A : A \text{ belongs to } \mathcal{B}(\mathcal{H}) \text{ and } |A| < 1\}$, if 0 < c < 1 let $\mathcal{O}_c = \{A : A \text{ belongs to } \mathcal{O}_0, A \text{ is invertible, and } |A^{-1}| < c^{-1}\}$ and if c > 1 let $\mathcal{O}_c = \{A^{-1} : A \text{ belongs to } \mathcal{O}_{c^{-1}}\}$. Rota has proven in [1] that S_0 is a model for each member of \mathcal{O}_0 . The following theorems indicate that the operators S_c , 0 < c < 1 or 1 < c, may be considered in place of S_0 as an approach to the invariant subspace problem.

THEOREM 1. If 0 < c < 1, then

- (a) S_c is a model for each member of \mathcal{O}_c , and
- (b) S_c^{-1} is a model for each member of $\mathcal{O}_{c^{-1}}$.

Copyright © 1977 Rocky Mountain Mathematics Consortium

Received by the editors on November 12, 1975, and in revised form on March 8, 1976.

AMS (MOS) subject classifications (1970). Primary 47A45, 47A15.

M. L. HOWARD

PROOF. Conslusion (b) follows from (a). To prove (a), suppose A belongs to \mathcal{O}_c and define ϕ from \mathcal{A} into \mathcal{K} by

$$[\phi u]_n = \begin{cases} A^n u & \text{if } n \ge 0 \\ c^{-n} A^n u & \text{if } n < 0 \end{cases}$$

The function ϕ is linear, $|cA^{-1}|^2/(1 - |cA^{-1}|^2) + 1/(1 - |A|^2)$ is a bound for ϕ , and since $[\phi u]_0 = u$, 1 is a bound for ϕ^{-1} ; hence ϕ is a bicontinuous operator. A simple computation shows that $[\phi Au]_n = [S_c \phi u]_n$, i.e., $\phi A \phi^{-1} = S_c | \phi(\mathcal{A})$.

THEOREM 2. If 1 < c, then (a) and (b) of theorem 1 hold true.

PROOF. Define the unitary operator U in \mathcal{K} by the formula $[Ux]_n = x_{-n}$. A straightforward computation shows that $[US_cx]_n = [S_{c-1}^{-1}Ux]_{n}$; thus $S_c = US_{c-1}^{-1}U$. Part (a) now follows from theorem 1, and (a) implies (b).

THEOREM 3. Suppose A belongs to $\mathcal{B}(\mathcal{A})$. Then

(a) there is a number c, 0 < c < 1, and a member C of \mathcal{O}_c such that Lat A = Lat C, and

(b) there is a number d, 1 < d, and a member D of O_d such that Lat A = Lat D.

PROOF. We shall prove (a) only. If A = 0 let c = 1/3 and C = 1/2 otherwise let $C = (1/2)|1 - (1/2)|A|^{-1}A|^{-1}[1 - (1/2|A|^{-1}A]]$ and let $c = (1/2)|C^{-1}|^{-1}$, and (a) follows.

The lattices Lat S_c , $c \neq 0$, may prove more approachable than Lat S_0 . It is well known that S_0^2 is unitarily equivalent to S_0 ; a similar relationship fails to hold for S_c if $c \neq 0$ or 1.

References

1. G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.

MACDONNELL DOUGLAS TECHNICAL SERVICES COMPANY, HOUSTON, TEXAS 77062

370