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WEIGHTED TRANSLATION SEMIGROUPS 
MARY R. EMBRY AND ALAN LAMBERT ( 1 ) 

1. Introduction. The semigroup of translations on L2(R+) is in 
many ways a continuous analogue of the unilateral shift on£+2. In this 
article we examine a class of semigroups which to a great extent carry 
this analogy to weighted unilateral shifts. In section 2 we establish the 
notation used throughout the paper and study some of the basic struc
ture of the semigroups under investigation. In particular, we show 
precisely when two such semigroups are unitarily equivalent and 
when such a semigroup is strongly continuous. 

In section 3 we are concerned with special classes of semigroups, 
e.g., hyponormal and subnormal semigroups. We characterize which 
of the semigroups under investigation are hyponormal in terms of 
their generators and in terms of the symbols used in defining the semi
groups. We then offer an example of a hyponormal, nonsubnormal 
semigroup. 

2. Preliminaries. Let R+ be the set of nonnegative real numbers 
and let L2 = L2(R+) be the Hilbert space of (equivalence classes of) 
square integrable (Lebesgue) measurable functions from R+ into C. 
Set B(L2) equal to the algebra of all (bound, linear) operators from 
L2 into L2. A family {St : t G R+} in B(L2) is a semigroup if S0 = I, 
the identity operator, and for all t and s in R+, StSs = St+S. {St} is a 
strongly continuous semigroup if {St} is a semigroup and for each / 
in L2 the mapping £—>> Stf is continuous from R+ into L2. It is 
well known that {St} is strongly continuous on R+ if and only if 
{St} is strongly continuous at t = 0. Perhaps the most widely studied 
semigroup in B(L2) is the translation semigroup {Ut} defined by 
(Utf)(x) = f(x — t) for x ^ f and 0 otherwise. More generally, 
suppose <f> is a measurable, almost everywhere non-zero function from 
R+ into C such that for each fixed t the function <f>t defined by 

<k(x) = \<t>{x - t) ' 
0 : X< t 
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is essentially bounded. Define St on L2 by Stf(x) = <f>t(x)(Utf)(x). 
One may verify without difficulty that {St} is a semigroup in B(L2). 
For simplicity throughout this article, we shall assume that <f> is con
tinuous on R+. Also, in order to avoid notational millstones, we shall 
assume that all expressions involving a symbol such as g(x — t) are 
0 for x < t 

LEMMA 2.1. With <f> and St as above, {St} is strongly continuous if 
and only if there exist numbers M and w in R so that for each t in 

(!) ess sup * x ^ Mewt. 
xGR+ I <*>(*) ! 

PROOF. It follows from [3; p. 619] that if {St} is strongly continuous 
then there exist M and w so that (1) holds. To prove the converse sup
pose first that (1) holds with w = 0, i.e., {<£t : £ E R+} is uniformly 
bounded in L00. As a simple calculation verifies, ||St|| = ||< |̂|«> so 
{St} is uniformly bounded. Thus in order to prove that {S(} is strongly 
continuous it suffices to show that limt_+0Stf = f for all f in a dense 
subset of L2. For this dense subset we choose the set of continuous 
functions of compact support. L e t / b e such a function. Then 

2 

IV-/I— j ; | ^j/(«-«)-/w i * 
Now for any x and t \<f>(x)l<f>(x - t) f(x - t) - / ( x ) | 2 ^ (M + l ) 2 

11/11J and for each fixed x lim,_^|0(x)/0(x - t) f(x - t) - /(x')| 
= Ò. Thus by the bounded convergence theorem linv*o||St/— / | | = 0. 

In general, suppose (1) holds for some M and w in R. Define 
p on R+ by p(x) = e-wx<f>(x). Then for all t and x ̂  t, 

I p(*) I _ I e-wx<f>(x) I 
I p(x - t) I I e - ^ - ' W * - *) I 

0(* - t) I 

Moreover, if Tt = e_M;%, then 

p(x-t)JK 
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Thus {Tt} and hence {St = ewtTt} are strongly continuous. This com
pletes the proof of the lemma. 

Often the translation semigroup {Ut} is viewed as a continuous 
analogue of the discrete semigroup {Un : n = 0, 1, • • •} where U is 
the unilateral shift. We shall show that the semigroups {St} defined 
above are in many ways a continuous analogue of unilateral weighted 
shifts. For general information about weighted shifts the reader is 
directed to [4] and [7]. We shall refer to the type of semigroups 
appearing in Lemma 2.1 as weighted translation semigroups with 
symbol <f>. 

Let {St} be a weighted translation semigroup (henceforth w.t.s.) 
with symbol <f>. For each t â 0 and each nonnegative integer n let 
Xn

{t) be the characteristic function of the interval [nt, (n + l)f\. Set 
Mt equal to the closed linear span of {<£ • Xn

(t) : n ^ 0}. Let kn
(t) = 

LEMMA 2.2. For each t, Mt is invariant under St9 and At, the restric
tion of St to Mt, is a weighted shift with weight sequence {\0

(t\ 

Ai^/WWW 0 , • • • } . 
PROOF. Fix ^ 0 . For each nonnegative integer n and each x 

inR + , 

= <l>(x)X«U(x). 

Thus Mt is invariant for St. Moreover, note that {en
(t) = (llkn

(t)) 
<f>Xn

{t)} is an orthonormal basis for Mt and 

Qe (t) - ^a±L en+l. 

This completes the proof. 

If {St} is a w.t.s. with symbol <f> and A is any operator on L2 then for 
each ti= 0 and each nonnegative integer j there is a sequence of mea
surable functions {fi1)} so that 

(2) A » X / > = s /£,Xi((>. 

We offer next a result which both in statement and proof is related to 
[7, p. 5] . 
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LEMMA 2.3. Suppose {St} and {Tt} are w.t.s. with symbols <f> and 
p respectively. Let A be in B(L2) and let {fW} be defined by (2). 
If AS, = TtAfor all t then 

i<j 
(3) ^ * VpUjt(llpfflj0); i*j. 

PROOF. Suppose ASt= TtA for each t. Then 

= 2 /u + i * < 0 

t=0 

and 

(T,Atf>X/>)(*) = 2 (TtfflWWx) 
i=0 

-,?.Ä/s'(-')w-,) 

• ( i k f/!? 1 xS, )«). 
x i=0 L P J / 

Thus/0<*>i+1 = Oand 

r (t) _ ( j 1 r it) \ 

A simple (and omitted) inductive argument completes the proof. 

COROLLARY 2.4. Zf {St}, {Tt} and A are as in Lemma 2.3 then for 
every a ^ 0 L2( [a, oo )) is invariant under A. 

PROOF. The linear span of {(f>Xn
{t) : nt^ a} is dense in L2([a, oo )). 

Since A^X/ ) = X°i=n[p^(( l /p) / f -no)] ' *i(f) is a member of 
L2( [a, oo )), the assertion is proved. 

We are now able to classify weighted translation semigroups up to 
unitary equivalence. 

THEOREM 2.5. Let {St} and {Tt} be weighted translation semi
groups with symbols <f> and p respectively. Then {St} is unitarily 
equivalent to {Tt} if and only if the function \<f>lp\ is constant on R+. 
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PROOF. Suppose first that |$/p| = c for some constant c. Define W 
on L2 by (Wf)(x) = c(p(x)l<f>(x))f(x). It is clear that W is a 
unitary operator. Moreover, 

and 

, c -ü<?> 
4(x - t) / ( * - *)• 

Thus for every t, WS, = TtW. 
Conversely, suppose that there is a unitary operator W so that 

WSt = TtW for all f ^ O . By applying Corollary 2.4 and then revers
ing the roles of St and Tt and replacing W by W~* in Corollary 2.4 
one sees that for every finite interval (a, b), L2(a, b) is invariant for W. 
It follows immediately that L2(E) is invariant under W for every open 
set E. Let F be any measurable set and suppose / is an L2 function 
with support in F. There is a decreasing sequence {En} of open sets 
such that the measure of En — F is no greater than 1/n and each 
£ n D F. But then / is supported in En and so 

||W/||«= f |(W/)(x)|*<fe 

= f |(W/)(*)|»dr+ f |(W/)(x)|2«fe. 

Hence JR+ |(W/)(x)|2 rfx = JF |(W/)(x)|2dx so that W/"= 0 
a.e. off F. Now, the lattice of invariant subspaces for the maximal 
abelian von Neumann algebra of multiplications by L °° functions is 
precisely {L2(F) : F measurable}. Since every von Neumann algebra 
is generated by its projections, we see that there is an L00 function w 
(of modulus one a.e.) so that Wf = w • / for all / in L2. Now, for each 
/ in L2, each t s= 0, and almost every x = t, 

w(x)^t)f(x-t)=(WStf)(x) 

= (TtWf)(x) 
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Thus \p(x)lp(x — t)\ = \<t>(x)l(f>(x — t)\ for each £ =̂  0 and for almost 
every x == t. But since p and <j> are continuous we have the last equality 
above holding for all t and for all x == t Thus for every x =t 0 
\p(x)l<l>(x)\ = |p(0)/<£(0)|, completing the proof. 

REMARK 1. It follows immediately from Theorem 2.5 that the 
weighted translation semigroups with symbols <f> and \<f>\ are unitarily 
equivalent. For this reason we shall assume throughout the remainder 
of this paper that all w.t.s. symbols are positive valued. 

3. Hyponormal and Subnormal Weighted Translation Semigroups. 
In this section we restrict our attention to weighted translation semi
groups with symbol <j> which satisfy special operator theoretic condi
tions. A semigroup {S(} is paranormal, hyponormal, subnormal, quasi-
normal or normal if each Sf has the given property. (An operator A 
is paranormal if | | A / | | 2 ^ ||A^f|| | |/ | | for a l l / , hyponormal if ||A*f|| 
=i || Af || for all / , subnormal if A is the restriction of a normal 
operator to an invariant subspace, quasinormal if A commutes with 
A* A; and normal if A commutes with A*.) Each of these properties 
is preserved under unitary equivalence and thus by Theorem 2.5 we 
may assume <f> to be positive. 

Throughout the section we assume that {St} is a semigroup with con
tinuous symbol <f>. As in section 2 we let Mt be the closed linear span of 
the functions <f>Xn

u) where Xn
(t) is the characteristic function of the 

interval [nt, (n 4- l)t]. By Lemma 2.2 we know that Mt is an invariant 
subspace for St and that StlMt is a weighted shift. Consideration of 
these weighted shifts gives us criteria by which {St} is judged to be 
subnormal or hyponormal. 

THEOREM 3.1. {St} is subnormal if and only if {St/Mt} is subnormal. 

PROOF. Obviously SJMt is subnormal when St is subnormal. 
Assume that each SJMt is subnormal. By the Halmos-Bram criterion 
[2] to show that S( is subnormal we need only show that ^1 j=o 
(Stfp Sjfi) ^ 0 for each finite collection f0, • • -,fn. Since {St} is con
tinuous we may assume that t is rational. We further simplify our 
argument by assuming the f to be continuous of compact support. 
There exist step functions Vj{r\ j = 0 , • • -, n constant on the intervals 
(rar, (ra + l)r), ra = 0, 1, • • • and r rational which uniformly approxi
mate fifa 7 = 0, • • -, n. Let u^r) = </>t>/r)and note that the functions 
Uj{r) uniformly approximate f, j = 0, • • -, n on the intervals 
(rar, (ra + l)r), ra = 0, 1, • • •. Thus we need only show that 
2 lj=0 (SfajW, SM(r)) = 0 for each such collection {u/r)}. 
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To this end we choose a positive integer k such that k(tlr) is 
integral and define p(i) = ik(tlr). Also define üp(i) = Wj(r) and um = 0 
if m je p(i), i = 0, • • -, n. Note that üm G Mr/k for each m and thus 
since SrlkIMr,k is subnormal, then 0 ^ J m ^ o ( S ^ M „ Ss

r,küm). But 
now we are through because 

£ (S&Û,, SS*«») = S (Sftty'K S#V>) 
m,s20 i,j=0 

THEOREM 3.2. {St} is hyponormal if and only if {StIMt} is hypo-
normal 

PROOF. The implication in one direction is obvious. Therefore we 
assume that each SjMt is hyponormal. To show that St is hyponormal 
we need only show that ]£ <j=o (ßt% S'tfi) = 0 for all pairs f0, fx (a 
moderately well-known but apparently unpublished fact about hypo-
normal operators). We imitate the proof of Theorem 3.3 down to the 
point where we consider 2m,*èo (Smriküs, S*/fcwm). We need to show 
this sum to be nonnegative. As previously observed it equals^] lj=o 
(SffiUjW, SffiUi(r)) which is nonnegative because Sffi is a power 
of a hyponormal weighted shift and hyponormal shifts enjoy the 
property that their powers are also hyponormal. 

The second characterization of hyponormal semigroups {St} is given 
by a geometric restriction on the symbol </>. We show that {St} is 
hyponormal only in case log$ is convex. This gives us an extremely 
simple way in which to construct hyponormal {St}: choose any con
tinuous convex i/f on R+; set (f> = exp \\t and construct the related 
semigroup {St}. To insure that {St} is continuous we further require 
that ifß(x + t) — \fß(x) ê wt for all x and t in R+ and some w (Lemma 
2.1). 

LEMMA 3.3. {St} is hyponormal if and only if'log $ is convex. 

PROOF. 

* ( * ) 2 

Il W " ||s,*/ll2= / ; ^ r ^ W « - *)l2^ 
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- /: *s$!w* 
it \ (f>(x)2 <f>(x- t)2 /UK n 

Thus St is hyponormal if and only if <f>(x)2 ^ <j>(x + t)if>(x — t) for all 
x. This last inequality holds for all x and t if and only if log <f>(x) ^ 
(1/2) [log <j>(x + t) + log <f>(x — t)], or equivalently log <f> is convex. 

THEOREM 3.1. and Lemma 3.3 enable us to construct an example of 
a hyponormal weighted translation semigroup which is not subnormal. 

EXAMPLE 3.4. {St} is hyponormal but not subnormal. Define 

'e-3x+5 9 O ^ X ^ l 

4>(x)= { e~2x+4 . l g x ^ 2 

1 , 2^x . 

Compute 

V = £ <*,2=±(e10-e4) 

Xn
2 = fn +V = 1 forn^ 2. 

This computation shows that the weights {c^} associated with S!/!^! 
are such that ax < a2 < «3 = a4 = * ' * . Thus by a theorem of 
Stampfli [8], SJMi is not subnormal and thus by Theorem 3.1 
{St} is not subnormal. On the other hand it is trivial to show that 
log <f> is convex and thus by Lemma 3.3 {St} is hyponormal. 

A brief reconsideration of the proof of Lemma 3.3 shows that none 
of the weighted translation semigroups can be normal. This follows 
from the fact that if St is hyponormal and ||S,/| | = ||St*f||, then 
Jj (<£(* + t)2l<l>(x)2) \f(x)\2dx = 0. Therefore since 0 ^ 0 , f(x) = 0 
a.e. on [0, t] ; that is / = 0 is the only function satisfying | |S / | | = 
|| St*f || foralU. 

On the other hand there do exist quasinormal semigroups. They are 
characterized by the symbols <f>(x) = a ebx, a, b constant, a ^ 0. We 
argue as follows: if {St} is quasinormal, then ||S ty|| = ||S t*S t/|| for all 
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/ and St is hyponormal. Thus from the proof of Lemma 3.3, 
J l I M * + *)2/<K*)2) - (*(*)2/*(* - *)2)l \Stf(x)\2dx = 0 for all / . 
Equivalently <£(x 4- 2t)l<f>(x + £) = <f>(x + OAJK*) f° r a ^ * a n ^ t, which 
implies that log<£ is linear. Therefore if {St} is quasinormal, <f>(x) = 
aebx, a f£ 0. The converse follows from a straightforward application 
of the définitions. 

In the other direction we might hope for a more general class of 
semigroups by assuming only that {St} is paranormal. We note that 
every hyponormal operator is paranormal, but the converse is not 
true in general. However we can show that every paranormal semi
group {S,} with symbol <f> is hyponormal. To do this we invoke a 
theorem of Ando [ 1] : A is paranormal if and only if A*2A2 — 2X A*A 
+ X 2 » 0 for all X > 0. Applied to our semigroup this results 
in the relation / S [(4>(x + 2t)2l<f>(x)) - 2X(<f>(* + t)2l<f>(x)2) + X2] 
\f(x)\2dx ^ 0 for all / in L2 and X > 0. Consequently for all X > 0 
and x and ^ in R + , (<f>(x + 2t)2l<f>(x)2) - 2X (<f>(x + t)2l<f>(x)2) + X2 

è 0. This occurs only if (0(x + t)4l<l>(x)4) g (<f>(x + 2t)2l<f>(x)2); that 
is, log 0 is convex and {St} is hyponormal. 

The preceding remarks give us strong evidence that the weighted 
translation semigroups have peculiar properties. If {St} is an arbitrary 
hyponormal semigroup, then its infinitesimal generator G is hypo-
normal in the sense that | |G/|| i= 
(Indeed, | |G/|| = l i m ^ 0 | | S t f - / j 

G*/|| for all / in D(G) (1 D(G*). 
| | / ^ l i m ^ | | S , * / - / | | / f = | | G * / | | . ) 

It is not reasonable to assume that the converse is true because 
there are many examples of hyponormal operators for which certain 
algebraic combinations are not hyponormal. However, we shall 
show in Theorem 3.6 that a weighted translation semigroup with 
a C1 symbol 0 is hyponormal in case its generator is hyponormal. 

It is known [5] that if {St} is subnormal in the sense that each St 

is subnormal, then {St} is subnormal in the seemingly stronger sense 
that there exists a normal semigroup {Nt} defined on a Hilbert space 
Y, containing X, such that NJX = St. It follows easily now that {St} 
is subnormal if and only if its generator G is subnormal. Therefore we 
learn nothing new along these lines by assuming that {St} is a 
weighted translation semigroup. 

By Lemma 3.3 we know that log<£ is convex if {St} is hyponormal. 
Thus log<f> is continuous and differentiable almost everywhere [9; 
p. 134]. Consequently <f> is differentiable almost everywhere. More
over, since {St} is continuous, <f>(x + t)l<l>(x) ^ ewt for all x and t and 
some w. This implies that <f>'(x)l<f>(x) ä= w whenever <f>'(x) exists. The 
hypotheses in the next lemma and theorem are a slight strengthening 
of these conditions. 
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LEMMA 3.5. Assume that <j> is a C1 function on (0, oo ) and <J>7<£ G 
L00. Then the infinitesimal generators G of {St} and G* of {St*} are 
given by 

(i) D(G) = {f.fŒL2, f absolutely continuous, / ' G 
L2 ,/(0) = 0 } a n d G / = - / ' + (</>'/</>)/; 

(ii) D(G*) = {f.fGL2, f absolutely continuous, / ' 
GL?}andGf=f' + (4>'kl>)f. 

PROOF. By definition D(G) is the set of / in L2 for which 
\imt^oStf — fit exists in the L2 norm and in this case Gf is the 
limit. For such / , the pointwise limit exists for a subsequence of 
t—> 0 and thus we have for x > 0 

G/W - a . W"- /W 
t-*0 

- ! 5 7 ( Ä *-«-*>)• 
By elementary techniques this last limit equals —/'(x) + 0 ' (x)/0(ac) 
/(x). For X sufficiently large we have 

D ( G ) = range (X - G)"1 

= {jV^gd*:gGL2}. 

Thus D(G) consists precisely of functions of the form 

Hence, since <£ is in C'(R+), / is absolutely continuous and /(0) = 0. 
Moreover, since f = -Gf- ( $70 ) / and (4>7</>)L2 C L2, / ' is in L2. 
We have shown that D(G) C { / : / £ L2, / absolutely continuous, 
/ ' G L2, /(0) = 0} and for / i n D(G), Gf = - / ' + ( 0 ' # ) / . Let K = 
— D + M ̂ '/^ where D is the differentiation operator on the described 
set. K is an infinitesimal generator since K is the perturbation of the 
generator — D by the bounded ($7$ GL0 0) operator M^/^([6; p. 
495] ). Since infinitesimal generators are maximal, G = K as desired. 
Since M4>'/0 is bounded and self adjoint, G* = K* = —D* + M , 
and so D(G*) = D(D*) = { / : / G L2, / absolutely continuous, / ' G 
L2}. 
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THEOREM 3.6. Assume that <f>is a C1 function and <f> 'l<j> GL00. Then 
{St} is hyponormal if and only if its infinitesimal generator G is hypo-
normal 

PROOF. In the remarks preceding Lemma 3.5 we proved the neces
sity of the condition. Assume then that G is hyponormal. By Lemma 
3.5 for all / in D(G) we have 

0S\\Gf\\>-\\G*f\\* 

= / | - / # + (<*>'W/|2 - / \f + (07<W? 
= - 2 J (*'/*) Re/'/. 

That is, / (</> 70) Re / 7 = 0 for all / in D(G). If we can show that this 
condition implies that log <f> is convex, then by Lemma 3.3 {St} is 
hyponormal. LetO ^§ a < b. Define / b y 

/(*) = \ 

T h e n / G D ( G ) a n d 

j ^ R e / ' J = (b - a ) log* ( i (a + b) ) - £ log*. 

Therefore on each interval [a, h] 

(&- f l)log*(|-(a+b))gJ* log*. 

Equivalently log <f> is convex; the proof is complete. 

Answers to the following questions would be of value in the investi
gation of the structure of weighted translation semigroups. 

1. What conditions on <f> insure the subnormality of {St}? 
2. If {St} and {Tt} are weighted translation semigroups with 

symbols </> and p respectively, and if {St} is similar to {Tt} (i.e., there 
is an invertible operator A such that ASt = TtA for all t), does it 
necessarily follow that |p/#| is bounded above and below? (This 
boundedness condition does imply similarity.). 

3. Can the hypotheses regarding 0 be weakened in Theorem 3.6? 

0 

x — a 

b-x 

0 

if x ^ a 

if a g x g (l/2)(a + b) 

if(U2)(a + b)^x^b 

iffegx. 
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