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p-VALENT CLASSES RELATED TO FUNCTIONS OF 
BOUNDED BOUNDARY ROTATION 

E. M . SILVIA 

ABSTRACT. Let f(z) = zq + Xn=Q + ifl«zn ^ e analytic in U:{z : |z| 
< 1}. We say / belongs to the class Vk

K(p, q) (k ^ 2, |X| < TT/2, 
p=q) i f /has (p — 1) critical points in U and for r sufficiently close 

iriT(,+T$?)>i lim 

^ fcp7T cos X. 

For k = 2, we have the class of p-valent functions/for which zf ' is 
X-spiral-like in U. We obtain representation theorems for these 
classes which lead to distortion and rotation theorems. For Vk

k(p, p) 
bounds for |flp+1| and |ap+2l a r e determined. These results are sharp. 

1. Preliminaries. Let \ (</ = 1) denote the class of functions 
flz) = zq + $) ; = q + 1 f l / which are analytic inU:{z:\z\< 1}. 

F o r / G Ag, we say that /belongs to the class Vk
x(p, q)(k iÉ 2, |X| < 

TT/2, p an integer, p = 9) if for r sufficiently close to 1, 

and 

-1- J° I { \ f'(rete) ) \\de 

â kprr cos X. 

Condition (1) implies that / h a s (p — 1) critical points in U. From 
(2) with k = 2, we can show that V2

x(p, q) is the class of p-valent 
functions satisfying 

toW1+ / if ) } > 0 (^v)-
i.e., the class of functions / for which z / ' is X-spiral-like in U. For p = 1, 
this class was introduced by Robertson [ 11]. 
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From Vk
k(p, q), many other interesting subclasses can be obtained. 

For p = q = 1, A = 0, Vfc°(l, 1) is the class of functions of bounded 
boundary rotation that was introduced by Löwner [7] and Paatero 
[10]. For p = q = 1, Vy(l,l) is the class of functions investigated by 
Moulis [8]. The class Vk°(p, q) was recently studied by Leach [5]. 

Although the functions in the class Vk
x(p, q) need no longer have 

bounded boundary rotation, they have other interesting properties. In 
this paper, we initiate the investigation of some of these properties. 
We begin our study by obtaining representation theorems for the 
class Vk

K(p, q). Then we define a larger class, <ï>fc
x(p, q) which enables 

us to obtain distortion and rotation theorems. 

2. Representation Theorems for Vk
k(p, q). We will need to use the 

functions 

( 3 ) £ ( * , o j ) = [ ( 1 - Zla,)(l - OjZ)] e - ^ o s A 

For A = 0, z_1f(z, ctj) are the functions used by Bender [1], Goluzin 
[2] and Hummel [4]. 

LEMMA 1. Let f(z) = zq + ]? Z=q+lanz
n G Vk

k(p, q) have non-zero 
critical points ai9 • • -, ctp-q, counting multiplicities. If 

(4) F '(z) = (Plq)f'(z)zr>-«YÌ [«*, <%•)] -1 , 
.7 = 1 

then F (z) ŒVk
k(p,p). 

PROOF. Logarithmic differentiation of (4) leads to 

.=1 , oj + ^ - ( l + | o j | 2 ) z 

(5) J 

P-1 I n, — n,7.2 

COSX è \ a, + ö,.z2-(l+UpwA 

For z = eie, 0 ^ 6 < %r, we have 
ç,i2» 

(6) R w r «i- °<ie i = 0 
K ' t r ç + ajë™ - ( 1 + |rç|2)er«J 

From (5) and (6), it follows that 

-M 1 + f i ) }=-{- ( -? i f )} <'*'->• 
Therefore, given e > 0 there exists r0, 0 < r0 < 1 such that for r0 < 
r < 1, |z| = r, 
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iri-w i +T$)}i* 

From (2), it follows that 

f̂  I r / zF"(z) \ -\ I 
lim J o I R e { ^ ( l + --jj^j. )j\ dO^phrcosk + e. 

Since e was arbitrary, this proves the lemma. 
As a straightforward application of Lemma 1, we have the following 

Representation Theorem. 

THEOREM 1. Let f(z) = zq + ^Z=q+ianz
n £ Vfc

x(p, 9) nm;e non
zero critical points ai9 • • •, Op_Q counting multiplicities. Then 

(7) /'(*) = (<^)F '(*)*«-* fffe a») 
i = i 

where F(z) G Vk
x(p, p). 

Theorem 1 suggests that a closer examination of the classes Vk
K(p, p) 

would supply more information about Vk
x(p, q) (p > q). 

Our next goal is to obtain a representation theorem for the elements 
of Vk

k(p, p) (p § 1) in terms of functions of bounded variation. 

DEFINITION. For an integer fc,i§2, let Mk denote the class of real-
valued functions m of bounded variation on [0,2rr] which satisfy 
Sir dm(t) = 2 and St \dm(t)\ g k. 

The class Mk was used by Paatero [ 10] to characterize the elements 
of Vfc°(l, 1). Namely, he proved: 

LEMMA A. If g Ë Vfc°(l,l), then we can write 

g'{z) = exp( - J ^ log(l - e-*z) dm(t) ) 

for some m G Mk. 

The result of Lemma A was extended by Moulis [8] to the class 
V^( l , l )byuseof : 

LEMMA B. The function h G Vk
k(l, 1) if and only if there exists 

g E Vfc°(l, 1) such that 

h'(z)= [g'(%)p- iAcos\ 
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The final result necessary for our characterization of the elements of 
Vk

K(p, p) in terms of elements of Mk is: 

LEMMA 2. The junction fG Vk
x(p, p), p = 1, if and only if f'(z) = 

pzv-l[h'(z)] * for some h G Vk
k(l, 1). 

PROOF. L e t / ' ( z ) = pz^-l[h'(z)Y for h(z) = z + ^^=2bnz
n,zG U. 

By direct computation, we obtain 

n - H - ^ ) } i -
- j r i*w + T$)}i * 

and the result follows from (2). 

THEOREM 2. Iff G Vk
x(p, p) (p= 1), t/ien we can write 

(8) / ' ( z ) = p z ^ e x p | - pe-iKcosk [*" log(l - i H ' z ) dm(£) } 

for some m G Mfc. 

PROOF. F o r / G Vfc*(p, p) let h G Vfc*(l, 1), g G Vfc°(l,l) and m G Mk 

be the functions given by Lemma 2, Lemma B and Lemma A, re
spectively. The result follows upon direct substitution. 

An immediate application of Lemma 2, is: 

LEMMA 3. The function f G Vk
x(p,p) (p= 1) if and only if there 

are two starlike functions sx and s2 normalized by Sj(0) = 0, ̂ ' (0) = 
1 (j = 1, 2) such that 

(9) r<z)==PZ^{[Sl{z)lz](k+2m\e'lXcosK 

} {Z) PZ l [s2(z)lz]*-w J 

PROOF. It is known [8], that h G Vk
x(l, 1) if and only if 

f [81(Z)/Z] <^2)/4 y - c o s X 
W I r»-(a)/«l <*-2"4 J 

The result follows from Lemma 2. 

A consequence of Theorems 1, 2, and Lemma 3 is the following 
representation theorem for Vk

K(p, q). 
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THEOREM 3. Let f(z) = & + £ Z=q+ianz
n G Vfc*(p> 9), (p > 9), 

/iat>e non-zero critical points a1? • • • ,a p _ Q counting multiplicities. 
Then 

(i) /or some m G M*, we can tarife 

(10) i _ 1 

• exp -J — pe~ixcosX log(l ~~ e~uz) dm(t) \,and 

(ii) there are two starlike functions sY and s2 normalized by Sj(0) = 
0, s/(0) = 1 (j=l,2) such that 

pe ~~ix cos A 

V ' ^ W V J_i ^' I [*2(z)/z] <fc-2)/4 J 
PROOF. From Theorem 1, we may write 

(12) / ' ( z ) = {qlp)F'(z)z«-r> f[c(z,a,)9 

where F G Vfc
A(p, p). Applying Theorem 2 to F G Vk

k(p, p), there 
exists an m G Mk such that 

(13) r p* 1 
F '(z) = p z ^ e x p X -pe~ikcos\ log(l - e~uz) dm(t) l . 

We obtain (9) by substituting (13) into (12). Equation (11) follows 
from (12) and (9). 

The determination of the coefficient bounds for the class Vk
k(p, q) is 

an open problem. However, we can obtain the bounds on the modulus 
of the second and third coefficients for functions in Vk

K(p, p). To do 
this, we recall that for f(z) = z + 2 l=2an*n £ Vk

K(l, 1), it is known 
[12] that \a2\ = (k/2) cosX. Further, by a slight modification of an 
argument used by Lehto [6] we can show that \a3] = 
(1/6) {(k2 + 4)cos2X + fc|sinX|cosX}. 

THEOREM 4. Iff(z) = z* + ]£ £= p + 1anzn G Vk
k(p, p), then 

(p + l ) | a p + i | ^p2k cos X, 

(p + 2)|ap+2 | ^ ((l/2)pfc2 + 2)p2cos2X + (fc/2)p2|sinX| cosX. 

These results are sharp with equality for ff(z) = pz p - 1 [ F '(z)] p, where 
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(1 + ez)*'2-1 

«I = 1. 

PROOF. By Lemma 2, there exists an h(z) = z + ^ n=2^n2;n 

Vfc
x(l,l) such that 

/ ' ( z ) = pz*-1 + 2 na nz n-! 

(14) 
n=p + l 

[ oo 

n=2 J 

Expanding the right hand side of (14), we obtain 

(15) f'(z) = pz*-1 + 2p2b2zv + p(Spb3 + 2p(p - 1)&2
2)*P+1 + • • •. 

Equating coefHcients from (14) and (15), we have 

(p + l)flp+1 = 2p2fo2, 

(p + 2)ap+2 = p(3pb3 + 2p(p - l)b22). 

The result follows from the known bounds on \b2\ and |fo3|. 

3. The Classes <&fcx(p, q)- The importance of the class M*. to 
f̂cx(p> 9) (P = </)> demonstrated by Theorems 2 and 3, motivates the 

following: 

DEFINITION. We say <p(z) = zq + ^ n=q+ibn*
n ^®kK(p, q) if <p' n a s 

a representation in £7 given by 

pzp-lexip< —pe~ikcos\ l°g(l "" e~uz) dm(t) >, 

for p = q, 

p-q r 
qzq~l J\ £(z, o,-)exp << —pe~iKcosk 

<p'(z) = 

log(l — e - l tz) dm(t) I , for p > q, 

where 0 < |a,| < 1, <p '(aj) = 0, j = 1, 2, • • -, (p — 9) and m G Mfc. 

To summarize the relationship between V*x(p, q) and <J>fcx(p, 9), we 
have 
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THEOREM 5. The classes Vk
x(p, p) and 4>fc

x(p, p) are equivalent for all 
positive integers p. Further, Vk

k(p, q) C 4>fc
x(p, q), and iff(=.&k

k(p, q), 
thenf(z) has (p — 1) critical points in \z\ < 1 andf(z) is the limit of a 
sequence of functions from Vk

k(p, q) where the convergence is uniform 
on the interior ofU. 

PROOF. In view of Theorems 2 and 3, only the final statement re
mains to be proved. Suppose/ G 4>*x(p, q) satisfies 

f'(z) = qzq~l Yl C(z9otj)exp < — pe~ i xcos\ 
i=i L 

• p log(l - e-H) dm(t) \ 

for m G Mk. Let 

(16) F '(z) = pzp-lexp f-pe^cosX [ log(l - e~uz) dm(t) \ . 

Consider the sequence of functions {fn} defined by 

/„'(*) = (qlp)F ' (z/t)*-* U fa a,) (t = 1 + 1/n), 

where Ft(z) = F(zlt) is given by (16). For sufficiently large n, 
Ft G Vk

k(p, p) and/> G Vk
k(p, q). Since fn converges uniformly in the 

interior of U to / , it follows [9, p. 146] tha t /has (p — 1) critical points. 

REMARK. The containment in Theorem 5 is proper. Consider 
m G Mfc, a piecewise constant function having t distinct jumps equal 
to l / fa t Oj G [0,2TT]. Let 

<pt'(z) = qz«-1 I Ï Ci*,**) I l 0- "" e - ^ ) - ( P e " i À c o s ^ 
i=i i=i 

where p > q == 1 and 0 < |c^| < 1. The functions <pt(z) (t = 1,2, • • •) 
are in the class 4>fc

x(p, 9) but are not in V/tx(p, q) for carefully selected 
cç and Op] = 1,2, • • • t. 

The main advantage afforded to us by the class &k
k(p, q) is that its 

elements have explicit representations in terms of analytic functions 
that contain a Stieltjes integral of the form 
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(17) Fg(z,t)dm(t), 
Jo 

where m G Mk. It has been shown [3] that extremal problems for 
classes having representations (17) with m G M 2 may be solved by 
determining the m corresponding to the extremum. In a previous 
paper, the author [ 12] used Goluzin's variation technique on the class 
V*x(l, 1) to obtain 

LEMMA C. Let £ / 0 be a given point in U, and let F(xx, x2, ' m ', 
xn+i) be analytic in a neighborhood of each point F(/'(£), ' ' *>/"(£)> 
{), / e < M l > 1). The Junctional J(f') = Re F(/ ' ({) , • • •,/>({), Ö at-
tains its maximum (minimum) in <IV(1> 1) o r % for a function of the 
form 

M N 

f'(z) = J ] (1 - €jZ)yje'tXcmkl[ (1 - ep)-*]*-"<*»*, 
i = i i = i 

where M^n,N^n, |c,| = |e,| = 1, 2*5-1*/ = kl2 ~ 1 and 

2 I $ - i f t ^ W 2 + L 

As a direct application of Lemmas 2 and C, we have 

THEOREM 6. Let £ j£ 0 be a point in U and let F(xl5 x2, ' * ', *n+i) be 
analytic in a neighborhood of each point F(<p'(f), <p"(f), * ' *,<pn(f), £), 
tp G4)fc

x(p,p). The functional J(<pf) = ReF(<p'(£), • • -,<pn(C),Ç) attains 
its maximum (minimum) in 4>fc

x(p, p) only for a function of the form 

<P'(Z) = pz*-1 YK1- €jz)yjpe~ikCMkY[ (i - ejzyßjP^cosK, 

where M ^ n , N â n , |€,| = |e,| = 1, 22?=iyJ = fc'2 " X > a n d 2 i S- i& 
^ ft/2 + 1. 

In considering the class 4>fc
x(p, 9), p > 9, we are restricted to the 

subclasses having certain critical points. 

THEOREM 7. Le£ ^ ^ 0 be a given point in U, and let F(xlt x2 • • •, 
*n+i) be analytic in a neighborhood of each point F(<p'(Q, <?"(£), ' ' *, 
<Pn(CÌ£)> <P G**x(p> q)- Then the functional J(<p')= Re F(<p'(f), • • -, 
(pn(Ç), C) attains its maximum (minimum) in the subclass of®k

k(p, q) of 
functions having non-zero critical points ax, • • -, Op_Q counting mul
tiplicities only for a function of the form 
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p—q M 

*'(*) = q*-1 n fa*) n a - w)*i'"-ikcotx 

N 

• n (i - ^ ) - ^ ^ _ i " c o s x ' 
3 = 1 

where p > 9 è 1, £(z, a,) (/ = 1, • • *, p — 9) are git>en fot/ (3), 
M g n, Nên, \€j\ = |e,| = 1, S ^ = i 7 i ^ W2 - 1 and £ V i f t = 

m +1. 
The functional /(<p ' ) = |<p ' | can be used in Theorems 6 and 7 to obtain 

distortion theorems for 4>fc
x(p, q) (p ^ 9). The result for <I>fc

x(p, p) is 
analogous to that obtained in [12], while for <ÏV(p, q)(p > q) the 
result is less explicit but comparable to that stated by Leach [5] for 
Vfc°(p, q). More explicit formulas for the bounds on |arg<p'|, <p G 
4>fc

x(p, q) can be proved and are thus of greater interest to us. 

THEOREM 8. Let <p G 4V(p, q) (p = q) and for p > q, let ax, • • -, 

Op^q be the non-zero critical points counting multiplicités of<p, then 

J (p — 1)| 0| + pk cos \ arcsin r,p = q, 
| a r g ? ' ( r e " ) | ^ 

( 9 - 1)|tfI + cosX S *(f,oj) 

+ pk cos X arcsin r, p > q ^ 1, 

where \fß(r, aj) = arcsin r/|oj| + arcsin|aj|r. 

PROOF. Let/(<p') = Re ± i log^ ' (z) = + arg <p'(z) and taken = l i n 
Theorem 6. Then for <p G <ÎV(p, p), 

!/(*>') = |arg<p'(z)| = |(p - l )argz + p<?-ixcosX 

• {(fc/2 - l)arg(l - ez) - (fc/2 + l)arg(l - ez)}| 

g ( p - 1)|«| + pcosX{(fc/2 - l) |arg(l - cz)\ 

+ ( W 2 + l ) | a r g ( l - « ) | } . 

The result follows from the well-known fact that 

(18) |arg(l - reiö)| ^ arcsin r 

forO< r < 1 , 0 ^ 0 ^ 2TT. 
For p > 9 ^ 1 , the proof follows similarly. Consider J(<p') = 

+ arg <p f(z) and take n = 1 in Theorem 7. Then for a1? • • -, Op_q the 
non-zero critical points counting multiplicities of <p in U, we have 
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|arg*>'(z)| ^ (q - l)\d\ + cosX j f {(|arg(l - z/a,)| + |arg(l - cyz)\] 

+ kp cos A arcsin r 

p-q 

= (q — 1)|0| + COSÀ 2 {arcsin r/|oj| + arcsinlajr} 
j = i 

+ kp cos A. arcsin r 

where the last inequality follows from (18). 
In conclusion we observe that following a procedure similar to that 

used in [12], we may define the class Vk
k(p,q) as consisting of the 

functions / G A, for which /§(/(£)/£) d£ G Vk
k(p, q). For these 

classes, the results analogous to those obtained for Vk
k(p, q) follow 

from this very familiar relationship. 
The author has further been able to solve various extremal problems 

for Vk
x(p, q) using a Vk

k(p, q)-preserving transformation analogous to 
that employed by Moulis [8]. 
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