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1. Introduction. In this paper, we are concerned with the question 
of existence of solutions to two-point boundary value problems for 
second order systems 

(1) x" = f(t,x,x'). 

The basic technique employed in obtaining existence results consists 
of the definition of a function between Euclidean spaces for which the 
zeroes yield solutions of the boundary value problem and the calcula­
tion of the Brouwer degree of this function relative to zero. We present 
a series of conditions on / which make this technique applicable and 
obtain thereby a variety of existence theorems. The last theorem pre­
sented generalizes some results appearing in recent papers. 

During the last fifteen years, there have been a number of papers 
written on the subject of two-point boundary value problems for sys­
tems. These papers have used either the method of modified functions 
or various function space methods in attacking the problem. The first 
method was introduced for this subject in [3] and has been used 
successfully in numerous subsequent papers (see, for example, [9] ). 
More recently, Leray-Schauder degree theory and other notions of 
topological degree in function spaces have proven to be powerful tools 
for obtaining existence results in this area (see [10], [11] ). 

The method presented in this paper avoids the use of both modified 
functions and function spaces and is quite intuitive since it relies on 
the analysis of solution trajectories. It is well-known that similar tech­
niques are effective for scalar equations (see [5], [6], [7]), although 
the scalar case is more elementary since continuity arguments suffice 
without the use of Brouwer degree. 

2. The basic technique. We denote d-dimensional Euclidean space 
by Rd and let the components o f x £ R d b e x ' ( i = 1, • • -, d). Also, 
x - y is the Euclidean inner product for x and y in Rd, while \\x\\ (x G 
Rd) represents an arbitrary norm on Rd. 

For the sake of simplicity, we begin by considering the second order 
system 
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(1) x" = / (* ,x ,x ' ) , 

where / : [0, b] X R d X R d ^ H d is continuous, b > 0, together 
with the homogeneous boundary conditions 

(2) x(0) = x(b) = 0. 

All solutions of (1) mentioned below will be assumed defined on their 
maximal intervals of existence. 

Let D be an open set in the topology of [0, b] X Rd with boun­
dary dD in that topology. A point (t0, x0) G dD is said to be an 
"egress point" of D relative to (1) if there exists a solution x(t) of (1) 
and a y > 0 so that x(t0) = x0, and (t, x(t), x'(t)) exists and (t, x(t)) G D 
for t0 — y < t < t0, and x(t) is said to "egress" from D at (t0, x0). An 
egress point (t0, x0) will be called "strict" if either t0= b or, for every 
x(t) which egresses from D at (t0, x0), there exists a 8 > 0 such that 
(t,x(t)) $:Dfort0<t<t0 + 8. 

For the moment, we assume that all egress points of D relative to 
(1) are strict and that D contains the segment {(t, 0) G [0, b] X Rd}. 
We also suppose that initial value problems for (1) have unique solu­
tions and that the following hypothesis is satisfied: 

(HI) There exists a number /A ' > 0 such that if x(t) is a solu­
tion of (1) with x(0) = 0 and ||x '(0)|| ^ /* ', then there is 
a t0 > 0 so that (t, x(t), x'(t)) exists for 0 ^ t ^ t0, and 
t0 = b or (t0, x(t0)) G dD. 

We now define a mapping T from the set SM» = {y G Rd : \\y\\ ^ /u,'} 
into Rd. Let P G SMf and let x(t) be the unique solution of (1) with 
x(0) = 0 and x '(0) = P. If (f, *(*)) intersects dD, let *0 be the f-coordi-
nate of the first intersection point. Otherwise, take t0 = b. Define 
T(P) = x(t0). 

First, we show that T is continuous. Let P G S^ and let {Pn} *= 1 be 
a sequence in SM, such that P n -» P as n—>> <» . Let x(t) and xn(t) be the 
solutions of (1) with x(0) = xn(0) = 0, x'(0) = P and xn '(o) = Pn (n = 
1,2, • • • ) • 

Suppose the trajectory (t, x(t)) G D for 0 â £ ^ b. By the standard 
convergence theorem, (t, xn(t)) G D for 0 ^ £ ^ b if n is sufficiently 
large. Since xn(b)->x(b) as n-> oo? T(Pn)^> T(P) as n-^oo in this 
case. 

Otherwise (£, x(£)) intersects dD, and there is a first intersection 
point (t0, *o)- Suppose t0 < b. Let 8 > 0 be a number such that (t, x(t)) 
^ D for t0 < t ^ t0 + 8, and fix X G (0, 8). Define a metric p on 
R1 X R<* by p((*i,yi), (s2,t/2)) = lsi ~ s2l + ||yi " î/2|| for *i,*2 G 
R1 and j /^ t^GR 0 * . Then the distance between tìie compact set 



TWO POINT BOUNDARY PROBLEMS 253 

{(t, x(t)) : t G [0, t0 ~ X] U [t0 + X, t0 + S] } and dD is some positive 
number e(X). For n sufficiently large, \\xn(t) — x(t)\ < e(X)/2 for 0 g £ 
S tQ + 8, so the distance between {(t, xn(i)) :t G [0,t0 — k] U [t0 + 
X, ̂ o + 5] } and dD exceeds €(X)/2, and hence (£, xn(i)) intersects dD 
first in the region {(t, x) : t0 - k < t < i0 + k, \\x - x(t)\\ < e(X)/2}. 
Since x(t) is continuous and e(X)—>0 as X—»0, the diameter of this 
region approaches 0 as X-» 0. Thus T(Pn)-» T(P) a s n ^ < » . 

Finally, in case t0 = b above, it is easy to modify the above argu­
ment to conclude again that limn_ooT(Fn) = T(P). Thus T is continu­
ous on SMf. In order to calculate the Brouwer degree of T, we add an­
other hypothesis: 

(H2) There exists a number /x G (0, /LI'] so that ifx(t) satis­
fies (1),*(0) = 0, ||x'(0)|| = fi, (*, x(t)) GDfor0^t< 
t0 and either t0 = b or (t0, x(t0))G dD, then x(t0) (£ 
{ - X x ' ( 0 ) : X > 0 } . 

Note that (H2) implies T(x'(0)) f^ -Xx'(0) for every X > 0 whenever 
x(t) satisfies (1), x(0) = 0 and ||x'(0)|| = p. 

Let S„ = {y GRd: \\y\\ ê //,} and let S°M be its interior. If the 
boundary value problem (1), (2) does not have a solution x(t) with 
||*'(°)|| = M a n d (t> *(*)) GDforO^t^b, then T does not vanish on 
dS^. Thus the Brouwer degree d[T, S^O] is defined (see [2]). 
Furthermore, by (H2) the mappings aT + (1 — a)/ , where / is the 
identity and 0 ê a = 1, do not vanish on dSß. Since Brouwer degree 
is invariant under homotopies, we have d[T, S0 ,̂ 0] = d[I, S0^ 0] = 
1. Thus there exists a i / Ê S ; so that T(y) = 0. It follows that (1), (2) 
has a solution x(t) with ||x'(0)|| ^ /x and (t,x(t)) G D for 0 ^ t g fo. 
We have proven the following theorem. 

THEOREM 1. Let D be a relatively open set in [0, b] X Rd contain­
ing {(t, 0) G [0, fo] X Rd}, önd suppose all egress points of D relative 
to (1) are strict. Assume initial value problems for (1) have unique 
solutions and that hypotheses (HI) and (H2) are satisfied. Then the 
boundary value problem (1), (2) has a solution x(t) with ||x'(0)|| S /ut 
and (t, x(t)) G Dfor O^t^b. 

We note that another existence theorem similar to Theorem 1 can 
be proved by "shooting" from the boundary point dXt—b back toward 
t = 0 if the notion of "egress" is replaced by a suitable one of "ingress" 
and obvious adjustments are made in (HI) and (H2). 

3. Concerning (HI) and (H2). There are two main questions to be 
resolved concerning the application of Theorem 1. First, what condi­
tions on / are sufficient to ensure that hypotheses (HI) and (H2) are 
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satisfied? Second, how does one find a region D for which egress 
points relative to (1) are strict? We present a series of lemmas in this 
section which give some answers to the first question and consider the 
second question in § 4. Implicit in the statements of these lemmas are 
the assumptions that initial value problems for (1) have unique solu­
tions and that there is a set D for (1) having the properties listed in 
Theorem 1. 

LEMMA 1. If f is bounded on D X Rd, then (HI) and (H2) are 
satisfied. 

PROOF. Let K be a bound for | |/ | | on D X Rd and take /*,' = 
ix = Kb/2. Then (HI) is true by the standard extension theorem for 
ordinary differential equations. 

Suppose there were a solution x(t) of (1) with x(0) = 0, ||*'(0)|| = JA, 
(t, x(t)) G D for 0 ^ t < p (p ^ b) and x(p) = - A X ' ( 0 ) (X > 0). By 

Taylor's Theorem, 

x(p) - x(0) = px'(0) + | P (p - s)xn(s) ds, 

so 

(X + p ) | | * ' (0 ) | | ^ r (p - s)\\x"(s)\\ ds, 
J 0 

and it follows that 

^ Kp2 ^ Kb2 Kb 
M = = 2(A + p ) = 2(k + b)< 2 ' 

a contradiction. Thus (H2) is satisfied. Q.E.D. 

By choosing D = [0, b] X Rd in Lemma 1, we obtain from 
Theorem 1 the classical existence theorem for bounded / t h a t is usually 
proven by an application of the Schauder Fixed Point Theorem (see 
[4, p. 424] ). In this case, the assumption that initial value problems 
for (1) have unique solutions is easily removed by the standard approxi­
mation argument. 

LEMMA 2. Suppose there are nonnegative constants Li9 L2 and L3 

such that 

(3) l l / ^ x . ^ l l ^ ^ + LaH + Lallyll 

for (t9 x) Ë D , y G Rd. Then (HI) and (H2) are satisfied if b is suf­
ficiently small. 
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PROOF. If L2= L3 = 0, the result follows from Lemma 1. Suppose 
either L2 ^ 0 or L3 / 0, and define C = (L3 + (L3

2 + 4L2)
1/2)/2. 

For a given /JL > 0, let x(t) be a solution of (1) with x(0) = 0, ||x'(0)|| 
= /x and (t, x(t)) G D for 0 ^ t < p ^ b. From the theory of differen­
tial inequalities (see [ 12, Chapter 2] ), we have for 0 ^ t < p, 

D-(LX + L2||x|| + C | | x ' | | ) g L2 | |x'| | + CiL, + L2||x|| + L3||*'||) 

= C(Ll + L2\\x\\ + C\\x'\\) 

since C2 — CL3 — L2 = 0 and (3) is satisfied, so 

(4) L, + L2||x(*)|| + C||x'(t)|| =g (Lx + CM ) e« 

for 0 ^ t < p. Thus (HI) is satisfied for any value of fi ' > 0. 
Now suppose moreover that x(p) = —\x'(0) (\ > 0). By Taylor's 

Theorem, 

x(p) - x(0) = px'(0) + jP(p - s)x"(s) ds, 

(A + p ) M ^ jP
o (p-s)\\f(s,x,x')\\ds 

^ \[(P- *)[Li + L2||x(S)|| + L3||x'(S)||] ds 

g [P (p - s)(Li + C ix)eCs ds (using (4)) 
J 0 

so 

so 

fiC ^ecv - Cp- 1 ec*> - Cp - 1 

Li + C / x = C(X + p) Cp 

Choose fc small enough that ecb — 2Cb — 1 < 0. Then the function 
eCs - 2Cs - 1 is negative for 0 < s g b, so eCp - 2Cp - K 0 . Thus 
1 > (eCp — Cp — 1)1 Cp, so for \i sufficiently large we have, 

IxC ecr> - Cp- 1 
Lx + C/ut Cp 

a contradiction. Thus if e c b — 2Cfe — 1 < 0, (H2) is satisfied for /x 
sufficiently large. Q.E.D. 
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The next two lemmas apply to bounded regions D where f satisfies 
some type of "Nagumo condition." 

LEMMA 3. Assume D is bounded. For i = 1, 2, • • -, d, suppose fa 
is a positive, non-decreasing, continuous function on [0, oo) such that 
Iaosdslfa(s) = « and \f(t, x, t/)|^<fc(|t/1) far (t,x)£D and all 
y G Rd. Then (HI) and (H2) are satisfied. 

PROOF. It follows from Lemma 5.1 of [4, p. 428] that any solution 
x(t) of (1) is extensible as long as (t,x(t)) E D , so (HI) is satisfied for 
any \k ' > 0. 

Let R be a number so that \xl\ = R (i = 1, * * % d) whenever (t, x) G 
D. Choose /I large enough so that if v G Rd and ||Ü|| = fi, then some 
component v* of v satisfies J0

tl sdsl<j>i(s) > R. Let x(t) satisfy (1), 
x(0) = 0 and \\x '(0)|| = fi, and let xv(0) be the component of x '(0) such 
that jyw sdsl<t>i(s) > R. Suppose xv(0) > 0 and that there is a 
p > 0 so that (t, x(t)) G D and xv(t) > 0 for 0 ^ t < p and xv(p) = 0. 
Then 

I (P xi!(t)xin(t) . I ^ cv ... , . _ „ 
I Jo fa(x*{t)) I Jo w 

But if we let s = **'(£), then also 

I CP xv(t)xin(t) I _ fxi((0) sds 

I Jo fa(x%t)) M " Jo 0,(5) > ' 

a contradiction. Thus in case xi!(0) > 0, ^(f0) is nonnegative as long 
as (t, x(t)) G D (for 0 é t < t0). In a similar way, one can show that, 
if ocir(0) < 0, then x*(̂ 0) is nonpositive as long as (t, x(t)) G D for 0 ^ £ 
< t0. Thus (H2) is satisfied. Q.E.D. 

LEMMA 4. Assume D is bounded. Suppose <f> is a positive, non-
decreasing, continuous function on (0, co ) such that s2l<f>(s) —» oo as 
s-> oo and \\f(t, x, y)\\ ^ <f>(\\y\\) for (t,x)GD and all y G Rd. 
77ien (HI) and (H2) are satisfied. 

PROOF. Let R be a number such that ||x|| = R whenever (t, x) G D. 
Choose Ç so that s2l<f>(s) > 4R for s > Q. Now if one inspects the 
proof of Lemma 2.1 in [11], one finds that the result is true for any 
interval [0, p], and if x(t) is a solution of (1) with (t,x(t)) G D for 
0 ë i S p, then a bound for \\x '(t)\\ on [0, p] is max{Q, 8Rlp}. Thus 
(HI) holds for any /A' > 0. 

Let e = inf{||x|| : (t,x) G 3D}, and choose Q'^ Q so that s2l<f>(s) 
^ 32R2/e for s^ Q'. We will show that (H2) is satisfied for /LL > 
max{Ç' ,SRlb}. 
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Let x(t) satisfy (1), x(0) = 0, ||x'(0)|| = fi and (t,x(t)) GDforO^t 
< p. By our choice of /x and the above comments, p < b. Suppose 
that (p, x(p)) G dD and x(p) = - A X ' ( 0 ) . Note that A = ||x(p)||/||x'(0)|| 
â elfi. By Taylor's Theorem, 

x(p) - x(0) = px'(0) + j " (p- s)x"(s) ds, 

so 

(k + p)fi^ jP
o (p - s)\\x"(s)\\ ds 

g jP
o (p-sM||x'(*)||)<fe 

S ^ m a x { | | x ' ( * ) | | : 0 S , S p } ) . 

For 0 g s g p, ||x '(s)|| g max{Ç), 8fl/p}. Since ||x '(0)|| = fi, we have 
8Rip^ fi^Q'^Q, so 

(À + p)„fi|U(f ) 
^ p 2 €(8fl/p)2

 = 

~~ 2 32R2 €* 

so 

^ X + p € ^ 

a contradiction. Thus (H2) is satisfied. Q.E.D. 

The next theorem now follows immediately from Theorem 1 and the 
lemmas. 

THEOREM 2. Let D be a relatively open set in [0, b] X Rd contain­
ing {(t, 0) G: [0, b] X Rd}, and suppose all egress points ofD relative 
to (1) are strict. Assume initial value problems for (1) have unique 
solutions and that the hypotheses of Lemma 1, 2, 3 or 4 are satisfied. 
Then (1), (2) has a solution x(t) with (t, x(t)) G D for 0 ^ t ^ b, where 
b must be sufficiently small if the hypotheses of Lemma 2 are assumed. 

Now we generalize Theorem 2 by extending it to include the non-
homogeneous boundary conditions 



258 W.G.KELLEY 

(5) x(0)= A, x(b)= B, 

where A, B G Rd. 

THEOREM 3. Le£ D be a relatively open set in [0, b] X Rd contain­
ing {(t, g(t)) : 0 ^ t â b } , where g is of class C2 on [0, b] and satisfies 
(5), and suppose all egress points ofD relative to (1) are strict. Assume 
initial value problems for (1) have unique solutions and that the hypo­
theses of Lemma 1, 2, 3, or 4 are satisfied. Then (1), (5) has a solution 
x(i) with (t, x(t)) G Dfor 0 ^ t ^ fo, where b must be sufficiently small 
if the hypotheses of Lemma 2 ore assumed. 

PROOF. Make the change of variable z = x — g(t) for (t, x) G 
[0, b] X Rd. Then D is transformed into a relatively open set D* 
containing {(t, 0) G [0, b] X Rd}. The boundary value problem (1), 
(3) becomes 

(6) * " = / ( t , z + g , 2 ' + g ' ) - g " ( t ) , 

(7) z(0) = z(b) = 0. 

Egress points of D* relative to (6) are strict, and initial value problems 
for (6) have unique solutions. 

The hypotheses of Lemmas 1 and 2 are satisfied for (6) relative to 
D* if they are satisfied for (1). Suppose the hypotheses of Lemma 3 are 
satisfied for (1). For i = 1, • • -, d, define ifi^s) = <f>i(s + N{1) + Ni2 

(s G [0, oo )), where N{j = max{|g^>(t)| : t G [0, b]} (J = 1, 2). Then 

\f(t,z + g,z' + g') - g'\t)\^UW + g"l) + #« 

Since each J00 sdsl<f>i(s) = °°, by the limit comparison test for im­
proper integrals (see [1, p. 140]) we have each J00 sdsl\jji(s) = oo. 
Then the hypotheses of Lemma 3 hold for (6) with </>* replaced by ifo 
for i = 1, • • -, d. Finally, if the hypotheses of Lemma 4 hold for (1), 
then they also hold for (6) when D is replaced by D* and <f>(s) by 
ift(s) = <f>(s+ NJ + N2, where Nj = max{||g<•>>(*)|| .O^t^b} 
(/=M). 

By Theorem 2, (6), (7) has a solution z(t) with (*, z(f)) G D* for 
0 ^ * ^ b, so (1), (5) has a solution x(f) with (*, x(t)) G D for 0 ^ £ ^ fo. 
Q.E.D. 

4. Egress points. In this section we give some conditions on / 
which yield a region D for which egress points relative to (1) are 
strict. 
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Our first result employs certain auxiliary functions introduced in 
[10]. For i = 1, • • -, N, let r{(t9x) be of class C2 on [0,6] X Rd, 
Ui(t, x) the gradient vector of riy Vi(t,x) the gradient vector of drjdt, 
where the gradients are taken with respect to the components of x 
only in both cases, and let Pi(t, x) be the Hessian of r{ with respect to 
x. Let the first and second derivatives of r{ with respect to (1) be de­
noted by 

/ dri . 

f o r i = 1, • • -,N. 

LEMMA 5. For i = 1, • • -, N, let r{(t, x) be as described above and 

(8) r"if > 0 when r{ = 0 and r{ ' = 0. 

Tften egress pointe of D = {(*, x) G [0, fe] X Rd : ^(f, x) < 0, i = 
1, • • -, IV} relative to (1) are s£nc£. 

PROOF. Suppose (£0, *o) *s a n egress point of D relative to (1) with 
t0 < b. Then there is a solution x(t) of (1) and a y > 0 so that x(t0) = 
x0 and (t, x(t)) E D for t0 — y < £ < tQ. Let i be an integer such that 
n(t09 x0) = o. 

Let s(t) = r^t, x(t)) for all t in the domain of x(t). Then s(£) is of 
class C2 on its domain and s f(t) = r< '(*, x(£)), «"(f) = r" (̂f, x(*)). Since 
s(t) < 0 for t 0 - y<t<t0 and s(f0) = 0, we have s'(to) ^ 0. If 
s'(t0) > 0, then s(t) > 0 on some interval to the right of t0, and it fol­
lows that (t0, x0) is a strict egress point in this case. If s'(t0) = 0, then 
(8) implies that s,f(t0) > 0. Again, s(t) > 0 on some interval to the 
right of t0, and we conclude that (t0, x0) is strict. Q.E.D. 

In our final lemma, we obtain a result very close to Lemma 5 using, 
instead of auxiliary functions, an outer normal condition discussed in 
[ i i ] . 

LEMMA 6. Let fl be an open set in Rd such that for each x G dO, 
there exists an n(x) G Rdfor which 

(9) (IC {yGRd: n(x) • (y - x) g 0}. 

Let D = [0, b] X fì, and suppose that 

(10) n(x) • /(*, x, y) > 0 when xGdil, n(x) • y = 0. 

77ien egress points ofD relative to (I) are strict. 
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PROOF. Suppose x(i) is a solution of (1) with x(i) G fi for t0 — y < 
t < t0< b, where y > 0, and x(t0) G dû. By (9) we have n(x(t0)) 
• (x(t) - x(*o))/(t - «o) ̂  0 for *0 - y < t < t0, so n(x(t0)) • * '(*0) ^ 0. 
If n(x(£0)) • xr(t0) > 0, then for t — t0 sufficently small but 
positive, n(x(t0)) • (x(t) - x(t0)) > 0, so x(t) $ fi by (9). Thus 
(t0, x(t0)) is a strict egress point of D in this case. 

If n(x(t0)) • x'(*o) = 0, then (10) implies that n(x(t0)) • x"(t0) > 0. 
There is a tx > £0 so that 

0 < n(*(«o)) • (x'(t) - x'(t0)) = n(x(t0)) -x'(t), 

for t0< t^ t1. Integrating, we have for t0 < t= tu 

0 < F n(*(*o)) •x'(s)ds= n(x(t0)) • (x(t) - x(t0)), 
J to 

and (9) implies that (t0, x(t0)) is a strict egress point of D. Q.E.D. 

Putting together Theorem 3 with Lemmas 5 and 6, we have the next 
theorem. 

THEOREM 4. Suppose that the hypotheses of Lemma 5 or 6 are 
satisfied and that D contains {(t, g(t)) : 0 ^ t^ b}, where g is of class 
C2 on [0, b] and satisfies (5). Assume initial value problems for (1) 
have unique solutions and that the hypotheses of Lemma 1, 2, 3 or 4 
are satisfied. Then (1), (5) has a solution x(t) with (t, x(t)) G D 
for 0 ^ t ^ b, where b must be sufficiently small if the hypotheses of 
Lemma 2 are assumed. 

The assumptions that initial value problems have unique solutions 
and that the inequalities in (8) and (10) are strict can be removed, 
although in some cases additional hypotheses are needed. Rather 
than attempting to state and prove the most general result possible, 
we give one special result which indicates what can be done in the 
other cases. 

THEOREM 5. Suppose that the hypotheses of Lemma 5 are satisfied, 
except that (8) is replaced by 

(11) r " / = ° when ri = 0 and r i ' = 0> 

and that D contains {(t, g(t)) : 0 ^ t ^ b), where g is of class C2 on 
[0, b] and satisfies (5). For each i = 1, • • -, N, assume u{ j£ 0 when 
r{ = 0 and that one of the following is true-. 

(a) drjdt(t,x) = 0jbr(t,x) G [0,fe] X Rd, 
(b) Vi(t, x) = 0 for (t, x) G [0, b] X Rd and P^t, x) is nonnegative 

definite when r^t, x) = 0, 
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(c) Pi(t, x) is uniformly positive definite for r^t, x) = 0, | | j / | | = 1. 
If the hypotheses of Lemma 4 are satisfied, then (1), (5) has a solution 
x(t) with {t, x{t)) G Dfor O g f g f e , 

PROOF. We begin by assuming that (8) holds for each ri? i = 1, • • -, 
N. Suppose that for some r{ we have drjdt (ty x) = 0 for (t, x) G 
[0, b] X_Rd. We will show in this case that y?i(tyx) - y ^ O when 
(t, x) G D, ri(t, x) = 0 and Ui(t, x) • y = 0. 

Suppose on the contrary that there exists a (t, x) G D with r^t, x) = 
0 and a y G Rd with ||t/|| = 1, u{(t, x) • y = 0 and yP<(f, x) • y < 0. 
For all constants c, ri

f(t,x,cy) = ui
tcy = 0, so by (8) we have 

(12) ctyPiit, x) • t/ + u,(t, x) • /(*, x, cy) > 0. 

Choose c large enough that c2/<£(c) > d2||iii(t x)||/|i/Fi(f, x) • t/|, where 
d is a constant such that if ||z||£ is the Euclidean norm of z G Rd

7 

then ||z||£ g d\\z\\ for all z G Rd. Then 

M t , x) • /(*, x, ct/)| g ^| |W i(*, x ) | | | | / a x? c y ) | | 

g ^ ( * , x ) | | < ^ ) 

^c%P<(*,x) -y|, 

a contradiction of (12). 
From the proof of Lemma 4, we know that there is an /Xi > 0 such 

that if x(t) satisfies ||x" || g 0(| |x' ||) and (t, x(t)) G D for t G [0, fc], then 
||x '(f)|| ^ fii on [0, fo]. Also, for i = 1, • • -, N we can choose fi2 so that 
(for all cases (a), (b) and (c)) 

(13) zPi(t,x) - 2 ë |2ü<(t,x) -z | 

when (t, x) G D, r{(t, x) = 0, //(£, x, z) = 0 and ||z|| =̂  /Lt2- Let fju = 
maxf/LtjL, /ut2}. 

Define for all (t, x) G [0, b] X Rd, 
ff(t,x,y), | | î / | |^^ 

F(*,x,y)=H 

i^( '•'•"»)• «»•>*• 
Fix i and (£, x, y) so that (£, x) G D, r{(t, x) = 0 and r{ '{t, x, y) = 0. If 
\\y\\ ^ & then r"iF > 0 since r"if > 0. If \\y\\ > //,, we have 

d2r{ 
riF = 

^L + ki(2v.. JUL) 
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+ Mt(J»Lp ,JSL\ 

+ « •/(*,,§) 

- ** + Vl M 
+ J2LP.J2L + U..f(tx £ä.\ > 0 

NI IMI ' fy"\\y\\) ' 
where we have used (13), ||t/||//x > 1 and r"if> 0. Thus F satisfies (8) 
for each i in all cases (a), (b) and (c). 

Let {Fn}rt=i be a sequence of functions of class C1 on [0, b] XRd 

X Rd which converges uniformly to F on D X Rd. It follows from 
(13) and the compactness of {(t,x) : r{(t,x) = 0} (i = 1, • • -, N) that 
Fn satisfies (8) for n sufficiently large. Also, for n sufficiently large, 
Fn satisfies the hypotheses of Lemma 4 if we replace <f> by \fß(s) = 
<l>(s) + e (e > 0). Since initial value problems for 

(14) x" = Fn( t ,x,x ') 

have unique solutions, we can apply Theorem 4 and conclude that 
(14)n, (5) has a solution xn(i) for n sufficiently large with (£, xn(t)) G D 
on [0, b]. Some subsequence of {xn(£)}£=1 converges to a solution 
x(t) of x" = F(t,x,x') and (5) with (f, x(f)) G D f o r O g ^ f c . Since 
F satisfies ||F(*,x,y)|| ^ <K||î/||) for (t,x) G D and j / G Rd, we have 
||x'(f)|| = M for 0 ^ f ^ b. From the definition of F, x(*) satisfies (1) 
and (5). 

Finally, since u{ ^ 0 when r{ = 0, the proof can be completed by 
assuming (11) and using an approximation argument like the last 
paragraph of Theorem 1.1 in [9]. Q.E.D. 

A familiar special case of Theorem 5 is obtained by putting r^t, x) = 
x* - ß\t), rd+i(t, x) = -x* + câ(t), for i = 1, • • -, d, where câ(t), ßl(t) 
are of class C2 on [0, b], /#(*) > d*(*) for 0 ^ £ ^ fo and d*(0) < A< < 
^(0) , tf(fe) < Bi < £'(&), i = 1, • • -, d. Then each t>< = 0 and P{ = 0 
so that (fo) holds for each i, and condition (11) becomes 

f(t9 x, x ') ^ 0'", when x* = /*>(*) and x* ' = £*'(*), 

/V> x, x ') ^ tf", when x* = câ(t) and x* ' = câ'(t), 

for i = 1, • • -, d. 
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We have used a slightly different type of Nagumo condition than 
that used in [9] and [10], but otherwise the hypotheses of 
Theorem 5 are less restrictive than those of Theorem 1.1 in [9] and 
of Theorem 6.1 in [10]. It is interesting to note that we have had to 
use the method of modified functions only in removing the hypothesis 
that initial value problems have unique solutions. It seems possible 
that the extra hypotheses needed in our proof of Theorem 5 are neces­
sitated by our use of this method rather than being really necessary 
for the validity of the result. 
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