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ALMOST AUTOMORPHIC FUNCTIONS AND TOTALLY 
BOUNDED GROUPS 

P A U L M I L N E S * 

Introduction. S. Bochner introduced the concept of an almost auto-
morphic function on the real numbers in [4] and the first extensive 
study of such functions on a topological group G was made by Veech 
[23, 24, 25]. More recently, Terras [21, 22] and Reich [19], among 
others, have also made contributions. One of the most interesting 
theorems about almost automorphic functions asserts that they are 
just the bounded Bohr continuous functions. Since one can dispense 
with some of the continuity hypotheses involved in the term topological 
group and still make sense out of the terms almost periodic junction 
and hence Bohr topology, one might expect that the theory of almost 
automorphic functions could be developed in a more general setting, 
that of semitopological groups. (One can not hope to dispense with 
the operation of inversion in the group, which can be done without 
affecting the development of the theory of the almost periodic func­
tions, since the definition of an almost automorphic function involves 
inverse elements.) Terras obviously agreed that the theory of almost 
automorphic functions should be workable in some setting more 
general than that of topological groups; in [21], he proved the theorem 
mentioned above for semitopological groups with continuous inver­
sion. In this paper, we go all the way and prove this theorem for 
general semitopological groups. In fact, in this setting we establish 
most of the known theory of almost automorphic functions and prove 
some results that are new even for topological groups. 

The chief theorem in part I, which contains mainly preliminaries, is 
a theorem about representing continuous functions on topological 
groups as functions on metrizable quotient groups. This theorem is 
essential in proving some of the characterization and approximation 
theorems in part II, where, for example, we determine that a continu­
ous function / o n a semitopological group G is almost automorphic 
if and only if it satisfies the following condition: given any sequence 
n' = {ni'} C G, 3 a subsequence n = {n*} of n' 3 the joint limit 
limijf(ninj~lt) = f(t), Vf G G. (We believe this result is new 
even for topological groups.) Veech's approximation theorem for 
almost automorphic functions [24, Theorem 7.1] also follows with 
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little difficulty, as does the assertion that a continuous function / is 
almost automorphic if and only if it satisfies the condition: given 
e > 0 and t G G, 3 a left relatively dense subset EdG3 E~lEG 
{s G G | \f(ts) — f(t)\ < €}. This last condition is simpler (and 
weaker) than the one used by Reich [ 19]. 

In part III we discuss a number of topics relating to almost auto­
morphic functions. In § 1 we discuss at length the existence of almost 
automorphic functions that are not almost periodic, making full use 
of the results of Comfort and Ross [5] concerning pseudocompact 
groups. Among other things, we prove that such functions fail to exist 
if and only if the canonical image of the group in its almost periodic 
compactification is pseudo-compact. And, if this is the case, every 
Bohr continuous function is also almost periodic, i.e., there are no un­
bounded Bohr continuous functions. 

In III, § 2, we give examples of groups with subgroups on which 
there exist almost automorphic functions that cannot be extended to 
functions almost automorphic on the whole group. Perhaps the most 
startling example is of a locally compact group G with a closed, 
normal, abelian subgroup H such that the only almost automorphic 
functions on H that extend to functions almost automorphic on G are 
the constant functions. 

The final section of the paper is centered around the question, 
whose answer we do not know: Do the almost automorphic functions 
always admit an invariant mean? 

Part I. 

1. Almost automorphic functions. A topological space G that is 
also a group is called a semitopological group if the maps s—>st and 
s—» ts from G into G are continuous V£ G G, i.e., multiplication is 
separately continuous. G is called a topological group if the map 
(s, £)—» s£ - 1 from G X G into G is continuous. Specific reference to 
the topology of a topological or semitopological group is generally 
omitted. Later we will want to discuss more than one topology on a 
given group space and will use the notation (G, O) to indicate that 
the topology U is the one being discussed. We let C(G) denote the 
C*-algebra of all continuous, bounded, complex-valued functions on 
G and indicate the supremum norm by || ||. The left (right) translate 
fs(j) of fEC(G) by s £ G is defined at t G G by /,(*) = 
f(st) fs(t) = f(ts)) and a subspace X of C(S) is called transla­
tion invariant if fs, f G X whenever / E X , s G G. We often use 
the following compact notation which was first used by Bochner [4] : 
a net (sequence) in G is written as a single symbol with subscripts 
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used to designate members of the net (sequence), for example, a = 
{<Xi}iei is a net (n = {ni}iGN is a sequence); also, if / is a function 
defined on G and a is a net in G such that the net {fai} of left 
translates o f / converges pointwise on G to a function g, we indicate 
this fact by writing T^ = g. It follows from TychonofFs theorem 
that if / is a bounded function on G and a ' is a net in G, then 3 a 
subnet a of a ' and a function g on G D T ^ = g. The n'g/if uniformly 
continuous subspace RUC( G) C C(G) is defined to be {/G 
C(G) | H/"1— f || —* 0 whenever a is a net in G converging to 
s G G}. (The left uniformly continuous subspace is defined analogous­
ly using left translates.) In case G is a topological group, the assertion 
that / G R U C ( G ) is equivalent to saying / 6 C ( G ) and Me > 0, 
3 a neighbourhood V = V(e) of the identity e E G B \f(s) — 
f(t)\ < e whenever s~ lt G V. 

DEFINITION. (BOCHNER, VEECH). A continuous complex-valued func­
tion / on a semitopological group G is called left almost automorphic 
if every net a' C G has a subnet a 3 T0f= g and 7^-ig = / (Here 
a~l = {of-1}.) Let LAA(G) denote the family of all left almost auto­
morphic functions on G. / is called right almost automorphic 
if it satisfies the analogous condition involving right translates. 

A function / G C(G) is called almost periodic if {/ | s G G} is 
relatively compact in C(G), and the family of such functions is denoted 
by AP(G). It follows from the fact that the functions in AP(G) can be 
represented on the almost periodic compactification Ga of G, which 
is a compact topological group (see [6, Theorem 4.6] and [18, 
Corollary 2] , for example), that AP(G) C LAA(G). Also, whenever 
the pointwise limit TJ exists for a C G a n d / G AP(G), it actually 
exists uniformly on G. 

The following assertions are easy to prove directly from the defini­
tion above. Proofs have been given by Veech [23]. 

THEOREM 1. LAA(G) is a translation invariant C*-subalgebra of 
C(G). 

LEMMA 2. If / G LAA(G) and a is a net in G B T Q / = g, then 

Ta-ig=f. 

The next lemma also has an easy direct proof (as in [22, Proposi­
tion 2.9] ). 

LEMMA 3. If Gi and G2 are semitopological groups and ifß is a con­
tinuous homomorphism of Gx into G2, then the transpose map i/f* 
maps LAA(G2) into LAA(GX). 
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REMARK. Example 4 of III, §2, shows how far i//* can be from map­
ping LAA(G2) onto L A A ^ ) , even if \ft is also a homeomorphism. (If 
H = Gx, G = G2 and I/J is the identity injection, then I / J*(LAA(G 2 ) ) 

consists only of constant functions.) 

Terras [22, p. 760] has remarked that, for / G L A A ( G ) , the 
pointwise limit TJ = g can fail to be continuous. If G is a Haus-
dorff topological group that is complete in a left invariant metric or 
locally compact and / £ C(G), it follows from Theorem 3.1 of [15] 
and §5(d) and Theorem 7 of [16] that 3 a net a C G for which 
T„f is discontinuous if and only if f (£ RUC(G). Hence 
LAA(G)/RUC(G) is not always void. In fact many of the interesting 
examples of left almost automorphic functions, namely the ones that 
are not almost periodic, are also not uniformly continuous (see the 
example following Theorem 17 and III, § 1, ahead). 

2. Totally bounded topological groups. 

DEFINITION. A topological group G is called totally bounded if, 
given any non-void neighbourhood V C G, 3 a finite number of 
elements {sk$=l C G 9 G = U f skV. 

Terras [21, Lemma 3.2.2] and Landstad [12, Lemma 1] have 
proved that the left and right uniformities of a totally bounded topo­
logical group are equal. This can also be proved using the facts that 
every continuous homorphism of topological groups is left (and right) 
uniformly continuous and that the left and right uniformities of a 
compact Hausdorff topological group are equal, and the following two 
theorems which we will need again later. 

THEOREM 4 (WEIL [26]). Every Hausdorff totally bounded 
topological group G is isomorphic and homeomorphic to a dense 
subgroup of a compact topological group G. G may be regarded as 
the completion of G with respect to the left (or right) uniformity. 

THEOREM 5 (LOOMIS [13, p. 112]). A topological group G has a 
smallest closed normal subgroup, and hence a largest quotient group 
that is a Hausdorff space. 

We note that Loomis's proof of Theorem 5 can be applied in the 
following more general setting to prove a weaker result (see also 
Remark (e) following Corollary 15). 

THEOREM 6. A semitopological group G with continuous inversion 
has a smallest closed normal subgroup, and hence a largest quotient 
group that is a T^space. 
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An example of a semitopological group with continuous inversion 
that is a Tx-space but not a T2-space, i.e., not a Hausdorff space, is 
the additive reals with the topology for which complements of finite 
subsets are the only open sets. We pose the 

QUESTION. IS Theorem 6 true for general semitopological groups? 

We have one more result about totally bounded topological groups, 
which provides an interesting example concerning open mappings. 
We note first that any continuous homomorphism ifß of one compact 
Hausdorff topological group Gx onto another such group G2 is open; 
this is because $ factors through the quotient group Gl{s Œ Gx | i/r(s) 
= e E G2}, and because the quotient map is open and a 1-1 continuous 
map of one compact Hausdorff space onto another is a homeomor-
phism. (For another setting in which homomorphisms are open, see 
Theorem 5.29 of [9].) In the next theorem we require G to be a 
locally compact abelian group under each of two topologies TY and 
r2 such that rx is strictly weaker than T2; then G has characters that 
are continuous with respect to r2, but are not continuous with respect 
to Tp Let GJ be the almost periodic compactification of (G, r*) and let 
di : G—> GJbe the canonical continuous homomorphism, i = 1 , 2 . Since 
the identity map of (G, T2) onto (G^T^ is continuous, the universal 
mapping property of the almost periodic compactification [6; 
Theorem 6.2] gives a continuous homomorphism \fr of Ga

2 onto Ga
l 

such that <Jr ° a2(s) = ax{s) for all s G G. 

THEOREM 7. Let G, rÌ9 r2 and ifs : Ga
2 —» Ga

l be as above. Then \\ß is 
open but not 1-1 and its restriction to a2(G) is 1-1 but not open. 

PROOF. That \\i is open has been established; if it were 1-1 it would 
be a homeomorphism, which would contradict the existence of charac­
ters continuous with respect to T2 and not continuous with respect 
to T\. The restriction of ^ to a2(G) is 1-1, since the characters of any 
Hausdorff locally compact abelian topological group separate the 
points of the group, and cannot be open; for, this would imply that 
Ga

2 was homeomorphic to Ga
l, which would follow from the uniqueness 

of the completion of a Hausdorff totally bounded topological group 
(Theorem 5). 

3. The Bohr topology. Various authors have given various charac­
terizations of the Bohr topology B o n a topological group G [2, 12]. 
One due to Alfsen and Holm [2] asserts that !B is the topology of 
the finest uniform structure ^U on G whose topology makes G a totally 
bounded topological group and is coarser than the intiial topology of 
G. (The conditions for ^U just stated are a little less stringent than 
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those used by Alfsen and Holm, but the next sentence makes it clear 
that they are equivalent to Alfsen and Holm's conditions.) If we let 
a be the canonical continuous homomorphism from G into Ga, the 
almost periodic compactification of G, which we regard as the spec­
trum of the almost periodic functions AP(G), then it follows from the 
universal mapping property of Ga [6, Theorem 6.2] and Theorems 
4 and 5 that Alfsen and Holm's conditions for !E are equivalent to either 
of the following (obviously equivalent) conditions, the first of which 
we take to be the definition of!B. 

(i) S = {a-l(U) | U C Ga is open}. 
(ii) !B is the weak topology induced on G by AP(G); i.e., a subbase 

for S-neighbourhoods of s €E G consists of sets of the form {t £ 
G | \f(s) - f(t)\ < €}, w h e r e / G AP(G) and e > 0. 

DEFINITION. A function f defined on a topological group G is 
called Bohr continuous if it is continuous for the Bohr topology S . 

Arguments as in Loomis [13, p. 112] show that / is Bohr con­
tinuous if and only if it is of the form a*g where g is a function con­
tinuous on fl(g), the image of G in G0. 

Now suppose G is a semitopological group. We wish to assert that 
the definitions and characterizations of Bohr topology and Bohr con­
tinuous function given above for a topological group go over without 
change for G. (To see this it helps to recall that Ga is always a 
topological group [18].) 

We state the following two theorems. The proof of one part of the 
first one is trivial, the other part follows by contradiction. We omit 
the details. 

THEOREM 8. Let G be a topological group. Then G is totally 
bounded if and only if every continuous complex-valued function on 
G is Bohr continuous. 

THEOREM 9. The weak topology induced on G by the Bohr continu­
ous functions is the same as the Bohr topology. 

4. Reduction to metrizable groups. In this section we prove a 
theorem (whose full generality we do not need) that generalizes a 
number of theorems in the literature. The first (chronologically) 
theorem of this type was proved by Kakutani and Kodaira [11]. 
Other theorems of this type were proved by Ross and Stromberg [20] 
and Comfort and Ross [5]. We present a complete proof here for 
several reasons, among others because our proof is quite short and 
self-contained (as compared with that of Comfort and Ross whose 
theorem is closest to ours). Also, in neither of [9, 17] is this 
theorem (or related theorems) proved in even the generality in which 
Kakutani and Kodaira first proved it. 



ALMOST AUTOMORPHIC FUNCTIONS 237 

THEOREM 10. Suppose G is a Hausdorff topological group that has 
totally bounded neighbourhood V of the identity e, suppose 3 a 
sequence {rm}°i C G 3 G = U ? r m V ' , and let {/„}" be a se­
quence of continuous functions on G Then 3 a closed normal sub­
group N of G 3 for each n, fn is constant on the cosets of N and GIN 
is metrizable. 

PROOF. The hypotheses are designed to ensure that G can be 
homeomorphically and isomorphically embedded as a dense sub­
group of a locally compact, a-compact, topological group G [26], 
G=\J°lVk where each Vk is compact and may be taken to be equal 
to U î TmV (closure in G). For the moment, we deal with one func­
tion/!. 

Let C0 be a countable dense subset of the complex numbers. Given 
x G C0 and an integer n > 0, 3 an open U(x, n) C G 3 U(x, n) fi G 
= {s G G | \f(s) — x\ < lin}. Since G is a-compact, 3 an increas­
ing sequence of compact sets {Kjxn}

0O
j=l3 Kj^CZ U(x,n) V; and 

U °L Kjxn is dense in U(x, n). It follows that, for each j , 3 a neighbour­
hood Uj(x, n) of e 3 Uj(x, n)Kjm C U(x, n) [10, p. 70]. Thus we get 
a countable family of neighbourhoods of e, {Uj(x, n)\ x E. C0, j , n = 
1, 2, 3, • • •}, which we relabel as a single sequence {Wm}°j\ A vari­
ant of a standard argument [9, p. 71; 17, p. 58] shows that H " Wm 

contains a compact normal Gô subgroup of G. We let Wl ' be a rela­
tively compact symmetric neighbourhood of e G G 3 xWx 'x~l C 
WlC\ Wj~l y/x G Vi. (Such a neighbourhood exists [17, p. 55]. 
Recall G = U l Vfc and each Vk is compact.) If WY\ W2', • • -, 
W^_! have been chosen, choose W m ' , a symmetric neighbourhood of 
eGG,3 (W m ' ) 2 C Wm_x n W^x and xWm'x^ C Wm_! Vx G Vm. 
It is easy to check that f i * Wm ' = Nx is a compact normal Gs sub­
group of G, from which it follows that GINX is first countable, i.e., the 
topology of GINi has a countable basis for open sets at each point, and 
hence GlNl is metrizable [17, p. 34]. Also, NiKixn C U(x, n) V/, n = 
1, 2, 3, • • • and Vx G C0; and A ^ U l - i K/xn) = NxU(x, n) = U&~n) 
Vn = 1, 2, 3, • • • and Vx G C0, since Nx is compact and U " = i KjXn 

is dense in U(x> n). 

We now show that, if s, t G G and st~l G NÌ9 then f(s) = f(t). 
Since / is continuous, it is sufficient to show that s G U(x9 n ) when­
ever t G U(x, n), and this follows immediately; for, if t G U(x, n), s G 
N 1 fCN 1 [ / (x ,n)CC7(x,n) . 

F o r / ! we have the compact Gô subgroup Nx. We can get such a sub­
group Nn for each fn. The desired subgroup then is 2V = Pi * Nn> 

which is a Gs, so G/iV is metrizable. 

The following corollary is obviously proved by taking one more 
intersection of a countable number of G8 subgroups. 
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COROLLARY 11. The statement of Theorem 10 is still true if the 
functions {/n}~ are merely required to be pointwise limits of 
sequences of continuous functions. 

We state another corollary. 

COROLLARY 12. Let G be a group as in the theorem and let X be a 
norm-separable subset of C(G). Then 3 a closed normal subgroup 
N of G 3 each / £ X is constant on the cosets of N and GIN is 
metrizable. 

Part II. 
1. Equivalent conditions. We recall that a subset £ of a group G 

is called left relatively dense if 3 a finite subset {sm}^=lGG3 

Uf smE = a 
THEOREM 13. Suppose G is a semitopological group and f EL C(G). 

Then each of the following conditions on f is equivalent to any of 
the others. 

1 (2). / is left {right) almost automorphic. 
3. / is continuous in the Bohr topology. 
4. Given e > 0 and finite N G G, 3 a left relatively dense sub-

set E G G3 E~lE G {s E G\ supr>tGN \f(rst) - f(rt)\ < c}. 
5 (6). Given e > 0 and t G G, 3 a left relatively dense subset E G 

G3ElEG {sGG\ \f(ts)- f(t)\ <€}(E-lEG { s £ G | \f(st)-

7. Every net a G G has a subnet a 3 the joint limit 
iimijfisaiOf-H) = f(st) Ms, t G G. 

8 (9). Every net a' G G has a subnet a 3 the joint limit' 
l i m ^ o r ç - 1 * ) = i W (limuflfaj-1*) = /(*)) Vt G G. 

10. Every sequence n' G G has a subsequence n 3 the joint limit 
11 (12). Every sequence n ' has a subsequence n 3 the joint limit 

imu J(ninj-H) = f(t) (lu*jfitnj-^) = /(*)) Vt G G. 

PROOF. It is obvious that 4 implies 5 and 6, 7 implies 8 and 9 and 
10 implies 11 and 12. The proofs that 3 implies 4-12 inclusive (and 
1 and 2 as well) are easy exercises once we know we can do the work 
on a metrizable totally bounded topological group (Theorems 5 and 
10) which has a Weil compactiflcation (Theorem 4). 

Bearing in mind the symmetry of 3, we can consider ourselves done 
when we show each of 5,6, 8 and 11 implies 1 and 1 implies 3. 

8 implies 1. If / does not satisfy 1, 3 a net a G G and t GG3 

(A) TJ = g, Ta_ lg=h and f(t) fi h(t). 

If a' is a subnet of a, the equations (A) still hold with a replaced by 
a ' and it follows from the double limit theorem of general topology 
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that the double limit \\mitjf(ai'(<%')'H) is equal to h(t) and hence 
not to f(t), if it exists at all. Thus, / does not satisfy 8. 

11 implies 1. Continuing in the same setting, we choose a se­
quence inductively using the fact that limj, l i m ^ o ^ - ^ ) = 
limbec-1*) = h(t) with \h(t) - f(t)\ = € > 0, say. Choose ix 3 i 
^ ii implies \g(oti~lt) — h(t)\ < e/4. Having chosen ii < i2 < i3 < 
• • • < ik9 choose ik+i> ik3 iz=m ik+i implies \f(oia~ik

lt) — 
g(ark

lt)\ < el4. Then Vfc ̂  m, \f(t) - fi^arj t)\^ \f(t) - h(t)\ 
- \h(t) - g(arj t)\ - |g(a-i t) - fioatti t)\ ^ e/2. Thus / does not 
satisfy 11. 

5(6) implies 1. Suppose / satisfies 5(6), a ' is a net in G 3 Ta,f 
= g, T{al)-ig = h and t G G. We must show f(i) — h(t). Suppose 
€ > 0 is given. By assumption, 3 a left relatively dense subset Ed G 
B ElEd {sGG\ \f(ts) - f(s)\ <€}. Since G = U f smE we 
can write (a* ' ) - 1 = sm{ifi'. (a*' = sn(i)Vi') where T / G E (v{

f G E) for 
each i, and conclude that there is a subnet a of a ' 3 a*-1 = S^T* 
(«t ==: n̂ô i) f° r e a c n *> a n d w*o(no) is independent of i. Of course 
TJ= g a n d ^«"'g == ^ still> a n d it follows that 

IMO - / ( O l = I I™ l i m / ( ^ - ^ ) - f{t)\ 
j i 

= I l i m l i m / ( r r
1 < S m o r / ) - / ( 0 | S e 

(IM*) - f(t)\ = I Hm l i m / t o - V * ) - f(t)\ 
j i 

= | l i m l i m / ( ^ - ^ ) - / ( 0 l ^ 6 ) , 
j i 

since rrWj G E~lE {vf^G E~lE) and hence | / ( r r V ) ~/(*)l 
< € ( | / ( ^ - 1 ^ ) - / W I < € ) , V f , < / . 

1 implies 3. Let C7 denote the topology induced on G by the left 
almost automorphic functions. Thus sets of the form {t G G | |/(£) — 
f(s)\ < e} where 5 G G, € > 0 and / is left almost automorphic 
form a subbase for U. Of course, the left almost automorphic func­
tions are ^-continuous. Once we prove that (G, U) is a totally 
bounded topological group, we will be done, by Theorem 8. 

It follows immediately from the translation invariance of the left 
almost automorphic functions that (G, O) is a semitopological group 
and we complete the proof that (G, O) is a topological group by con­
tradiction; we assume a and ß are nets in G ^-converging to e G G 
and suppose 3 € > 0 and left almost automorphic / such that the fol­
lowing statement holds: Vi0> jo 3* = *o> j f = Jo 3 \f(<Xißj~l) ~~ 
/(e) | = €, i.e., the product net {o^jS,--1} does not *J-converge 
jointly to e. 

We define two sequences {sn} and {tn} by induction. Choose iiy 
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j i 3 \f(<*ifil\) - f(e)\ = € a n d put «i = atl, h = ßf,1- Having 
chosen sx, s2, • • -, sn and tu t2, • • -, tn> choose i0, j 0 3 Vt 
^<o , j^jo L / W H S sk)tm)-f((ïl£sk)tm)\ g l/2»+i and 
\f(ßj(YUsk)tm) - / ( ( U > * ) U ^ l/2"+1, m = 1, 2, • • - , n. 
(Here J j ^ sfc = snSn-isn-2 • * * sm for ra ^ n.) Then pick in + 1 ̂  i0 and 
j n + i = J o 3 | / ( a i l i + 1 ^ - / n + 1 ) - /(^)l = € and put sn+l = ain+l, tn+l 
= ßjn+l> Now define a new sequence {rn}, rn = *ü+i (111 sk)-
Note that, if n > m, W » " 1 = t~nlx (Jlm+i *k)*m+i- Hence, if n > m, 

l / (Vm _ 1) -/(*m+l*m+l)l 

^|/( ^i(n^)wi)-/ ((rU)wi)| 
m+1 m +1 

+ Ï |/((ff<pV+i)-/((nO'»+i)| 
fc=m+l ' X N m + 1 ' ' N X m + 1 ' ' ' 

g £ 1/2* < l/2m + 1. 
m + 2 

For m so large that l/2m + 1 < c/2, we have Vn> m \f(e) — 

f(rnrm-l)\^\f(e)-f(sm+itm+i)\ - |/(sm+i*m+i) " / (Wn" 1 ) ! 
§ e — e/2 = e/2. Hence for no subnet y of the sequence {rn} can 
(Ty-iTyf)(e) = f(e), which implies f is not left almost automorphic, 
the desired contradiction. 

If (G, ^ ) is not totally bounded, then 3 a basic ^-neighbourhood 
C7= {*GG| | / f c ( t e ) - / f c (« ) |<€ , k=l, 2, ••• , p } = { f ' G G | 
l/fc(^) ~~ fk(s)\ < €,k = 1,2, - • -,p}s~l and a sequence n = {nj} j=i 3 

(A) Y/,n i+1 ^ 0 Unm. 
m = l 

Let y be a subnet of n 3 Tyfk = gk, say, and Ty-\gk = fk, k = 1, 2, • • -, 
p. Hence, 3i0 3 

(B) | g * ( ^ '*) - fk(s)\ < €/2, fe = 1,2, • • -, p. 

Since y is a subnet of n, y^ = njo for some j 0 and iil 3 

(C) y i t = n ^ w i t h j ^ j o 

and \Myiy-ils) - gfc(yli*)l = l Ü K ^ i « ) - gfc(y"ij*)l < 
c/2. This last assertion, along with (B), implies n^n^l G U. (C) 
then contradicts (A). 

The diagonalization process can be used, along with conditions 
10-12 of Theorem 13, to prove the following corollaries. 

file:///Myiy-ils
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COROLLARY 14. Let A C C(G) be a countable family of functions 
each member of which satisfies one (hence all) of the conditions of 
Theorem 13. Then 

10'. Every sequence n' C G has a subsequence n such that the 
joint limit \imifjf(sninj~H) = f(st) Vs, t G G and Vf G A. 

11 ' (12'). Every sequence n ' C G has a subsequence n such that 
the joint limit \inii jffanj'H) = f(i) ( l im^^n, - - 1 ^) = /(£)), 
W G G a n d V / G A . 

COROLLARY 15. The assertions of Corollary 14 remain true if A is 
a norm-separable subset ofC(G), instead of just a sequence. 

DEFINITION. We call a function in C(G) satisfying one, hence all, 
of the conditions of Theorem 13 almost automorphic and denote the 
class of such functions by AA(G). (Thus AA(G) = LAA(G); we drop 
this latter notation.) 

REMARKS, (a) We believe that, even for topological groups, the 
equivalence of conditions 1 and 10-12 of Theorem 13 is new (Reich 
proved the equivalence of 1 and 10 for a special case in [ 19] ). The 
conditions 5 and 6 are simpler (and weaker) forms of conditions used 
by Reich [ 19], who calls functions Levitan almost periodic that 
satisfy condition 4, which is formally a little weaker than the condi­
tions used by Veech [23, 24] to define Bohr almost automorphy. 

(b) In 119], Reich proved the equivalence of conditions 1-4, 7 
in the setting of topological groups. The proofs given above are 
different from Reich's, except for the proof that 5(6) implies 1, the 
germ of which appears in Reich's Hilfssatz 1 [ 19]. The key idea 
in the only really tricky part of the proof, namely the proof that 1 
implies 3, is due to Veech [23] ; our proof that 1 implies 3 is an 
adaptation of proofs by Terras in [21, 22]. The method of our 
proof that 11 implies 1 is also taken from [22]. 

(c) We find it interesting that the "left" conditions, 1, 5, 8, and 
11 are equivalent to their companion "right" conditions, 2, 6, 9, and 
12, respectively. AP(G) and the weakly almost periodic subspace of 
C(G) WAP(G) each have equivalent "left" and "right" conditions 
that can be used to define them. For example, if ßG is the spectrum 
of C(G), which is just the Stone-Cech compactification of G if G is 
completely regular, then WAP(S) = { / G C(G) \{fs\ s G G} is 
relatively a(C(G), 0G)-compact} = { /G C(G) \ {f \ s G G} 
is relatively <r(C(G), ßG)-compact}. However, {/G C(G) \ {fs\ s 
Œ G} is relatively compact for the topology of pointwise conver­
gence on G} and {/G C(G) \ {fi \ s G G} is relatively compact 
for the topology of pointwise convergence on G} are equal to the right 
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and left uniformly continuous subspaces RUC(G) and LUC(G) of 
C(G), respectively, for many groups G, including locally compact 
groups [ 16], and hence do not always define the same subspace of 
C(G). 

(d) Veech [24, Theorem 6.1] knew that an almost automorphic 
function could be represented on a totally bounded metrizable group. 

(e) One might wonder whether the difficult part of the proof that 
1 implies 3, namely the proof that (G, ^ ) is a topological group, 
could be proved in a different way, by proving that every totally 
bounded Hausdorff semitopological group is a topological group. 
This statement is true if "totally bounded" is replaced by "compact" 
(and is a special case of a theorem of Ellis [6, appendix, 10] ), but 
is false in general: the real numbers (modulo 1) [0,1) with the to­
pology for which sets of the form [ f l , î ? ) , 0 § û â b ^ l , form a base 
is a totally bounded Hausdorff semitopological group with discon­
tinuous inversion and jointly continuous multiplication (which is 
addition here). However, inversion in (G, U) is readily seen to be 
continuous [22, Lemma 2.1] and one might hope to show that 
every totally bounded Hausdorff semitopological group with con­
tinuous inversion is a topological group. This hope is also ill-founded 
as the following example shows. The real numbers (modulo 1) [0,1) 
with the topology for which sets of the form V = lf\Ui, where U is 
an ordinary open subset of [0,1) and 17 x is countable, form a base is 
a Hausdorff semitopological group with inversion continuous but 
multiplication only separately continuous. That the topology is 
totally bounded can be shown by reducing to the case where the open 
set U in question is dense in [0,1) and observing that a linear inde­
pendence argument then shows that [0,1) can be covered by two 
translates of 17. 

In connection with Remark (e) and the examples given there, it is 
interesting that a case more special than the one mentioned above 
of a theorem of Ellis can now be quickly proved. 

THEOREM 16. A compact Hausdorff semitopological group G with 
continuous inversion is a topological group. 

PROOF. If fŒ. C(G) and a ' is a net in G, then 3 a subnet a of a ' 
converging to s G G. Then a - 1 converges to s~l and it follows 
immediately that TJ = fs and Ta _ x (fs ) = (fs \_l = f. Thus 
C(G) = AA(G) and the original topology of G is equal to (J. But 
(G, Ü) is a topological group. 
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It has been observed that an almost automorphic function must be 
uniformly bounded. However, if a function f defined on G is merely 
continuous and not necessarily bounded, and satisfies one of the 
conditions 3-12 of Theorem 13, then its truncation, fk, (k a positive 
integer), defined by 

fP) if \f(s)\^k 

[fcf(*y|/(*)|if|/(*)|>fc, 
also satisfies that condition and is a member of C(G). Hence each 
fk satisfies all the conditions of Theorem 13; and we state 

THEOREM 17. Iff is a continuous function on G, then each of the 
conditions 3-12 of Theorem 13 on f is equivalent to any other of 
these conditions. 

If a continuous, complex-valued function f on G is called sequen­
tially almost automorphic provided it satisfies the condition that 
every sequence nf C G has a subsequence n 3 Tnf = g and 
Tn-ig = f one might expect (this author did) that one would have 
here one more condition to add to the equivalent conditions of 
Theorem 13. This possibility seems all the more attractive when one 
bears in mind that some of the conditions of Theorem 13 are phrased 
in terms of sequences. However, the following example of Terras 
[22, p. 771] (who does prove that every sequentially almost auto­
morphic function is a member of AA(G)), which was communicated 
to him as an example of a function that is almost automorphic and 
not almost periodic, shows that not e v e r y / £ AA(G) is sequentially 
almost automorphic. We present this example here because we be­
lieve Terras' formulae in [22] are wrong, although his verbal 
description makes his intent clear, and also we want to apply the 
sequential condition 11 of Theorem 13 to show the function con­
structed is almost automorphic. (We note that it is also easy to show 
that this function is Bohr continuous.) 

EXAMPLE. Write the additive reals R as the disjoint union 
U ï - i Vfc, where Vk = U £ — . ([0,1) + sk + 2*ro), sk = 
( ( - 2 ) * - 1 - l)/3, and define / £ C ( f l ) by f(t) = sin2k7rt on Vk, 
k = 1, 2, • • \ Suppose n' = {n /} is a sequence in R. For each i, 
write ni = n{' (modi) + b" = n/' + b", say, where b" is an 
integer. Without loss, we may assume that n" = {n/'} converges. 
Also, since every sequence of integers b" has, for a given positive 
integer k> a subsequence b ' 3 2k divides b{ '

 _ &/ Vi, f we can use 
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the diagonal process to get a subsequence b of b" such that, for every 
positive integer k, 2k divides b{ — bj V large enough i, j . Let n = 
{ri*} be the corresponding subsequence of n'. It follows that the joint 
limit limijffa — nj + t) = f(t) Mt G R. Hence / is almost 
automorphic. However, if one considers the sequence of translates 
{fsk} o f / restricted to the interval [0,1] , one has the sequence 
of functions {£—» sin2k7rt}, no subsequence of which is going to con­
verge pointwise on [0,1] . Terras [22] has given a proof of this 
as a special case of the theorem one naturally arrives at if one 
attempts to write out the details of the proof. 

The local compactness of R is essential for this example; for, the 
restriction off to the rationals is sequentially almost automorphic on 
the rationals. This is because every f EL AA(G) is sequentially almost 
automorphic if G is countable [22]. 

2. The approximation theorems. In this section we quickly derive 
Veech's theorem [24, Theorem 7.1] concerning the approximation 
of almost automorphic functions by almost periodic functions and a 
related theorem. 

Suppose / G AA(G). Then, by Theorems 10 and 13 and § 3 of I, 
/ can be represented as a continuous function on a totally bounded 
metrizable group. To be specific, 3 a metrizable quotient group K of 
a(G) and a function g G C(K) 3 f = a0*g, where a0 is the canoni­
cal continuous homomorphism of G onto K Suppose / , hence g, is 
real valued as well and that {Uk}%=l is a basis for neighbourhoods 
of the identity e G K, the Weil compactification of K. We modify an 
idea of Veech [24, p. 128] and observe that g can be extended to 
K (we are regarding K as a subset of K) in such a way that the 
extension g* (g*) is upper (lower) semicontinuous and hence measur­
able. By definition, g*(s) = lwciks\iptGsUknK;g(t) and g*(«) = 
lim* inffGsf7ifcn je g(*)- Clearly, g*(s) = g*(s) = g(s) Ms G K, since 
g G C(K). Mk, let hk = XVk ln(Uk), where yx is Haar measure on K. 
Then, for example, {hk*g*} C C(K) and (hk*g*)(s) -> g(s) Vs G K. 
Since fl0*(C(K)) D AP(G), and a0*(/ifc*g*)^ a0*g = / p o i n t w i s e on 
G, we are able to state the following theorems. Theorem 18 was first 
proved by Veech [24, p. 133] ; Theorem 19 is a variant. 

THEOREM 18. Let G be a semitopological group. A function 
/ G C(G) is almost automorphic if and only if 3 a uniformly bounded 
sequence {fk} C AP(G) such that the following statement holds-, 
given e > 0 and s G G, 3 a Bohr neighbourhood V of s and k0 such 
that k^k0 implies \fk(t) - f(t)\ < e, Mt G V. 
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THEOREM 19. Let G be a semitopological group. A function 
fGC(G) is almost automorphic if and only if for each positive 
integer m 3 an increasing sequence {AmJfc

x
=1 of subsets of G and 3 

functions {fnk}l = l C AP(G) 3 
(i) the functions {fnk \ m, k = 1, 2, 3, • • •} are uniformly 

bounded. 
(ii) for each m and each s G G, 3fc0 = k0(m,s) such that k^ k0 

implies that Amk is a Bohr neighbourhood of s. (This implies that 
U fc=i Amk = G for each m.) 

(iii) \fmk(t)-f(t)\<llm,\ltGAmk. 
REMARKS. 

(a) For both theorems the backward implication is the obvious one. 
(b) Veech [23] calls the form of convergence in Theorem 18 

jointly almost automorphic convergence. 
(c) Both theorems can be rephrased to yield approximation 

theorems for Bohr continuous (not necessarily bounded) functions. 
Specifically, the theorems remain true if / is required to be merely 
Bohr continuous (rather than almost automorphic) and the approxi­
mating almost periodic functions are not required to be uniformly 
bounded. 

In order to show that the functions g* and g* used in this section 
can be quite different, for a given g, we present an example for which 
we thank Dr. David Borwein. We have a dense subgroup K of a com­
pact group K and, given e > 0, we find a function g G C(K) 3 \\g\\ = 
1 and /Li(g* — g#) > 2 — €. (fi is normalized Haar measure on K) 

EXAMPLE. Let K be the rationals modulo 1; then K is the reals 
modulo 1. Let {sk} %=l be an enumeration of the members of K and 
put V = U ! Vk where V*C K, Vk = (sk - e/2*+3, sk + e/2k+3) 
(mod 1). Then V is open in K and is a union of a countable number 
of pairwise disjoint open intervals, V = U * (rk, tk). Also /i( V) S 
e/8 and KG V. Define a function g ' on V by g ' = ^ " g * ' where 
gfc'(s) = sin((s - rk)~

l(s - tk)~
l it s G (rfc, tk), gk'(s) = 0 if s $ 

(rk, tk). Then the restriction g of g ' to K is the desired function. 
Clearly ||g|| = 1 and the set F = {rk, tk \ k = 1, 2, 3, • • •} is dense 
in the complement in K of V. This complement has measure not less 
than 1 — e/8 and on it g* = 1, g* = — 1 since every open set con­
taining a member of K\ V contains a neighborhood of a member of F. 
Hence /ut(g* - g») S 2(1 - c/8) - 2(c/8) > 2 - e. 

Part III. 

1. The existence of almost automorphic functions that are not 
almost periodic. For this section a definition and a theorem which is 
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due to Comfort and Ross [5] are of prime importance. 

DEFINITION. A topological group G is called pseudocompact if 
every continuous complex-valued function on G is bounded. 

THEOREM 20. Let G be a totally bounded Hausdorff topological 
group and let G be its Weil compactification. Then the following asser­
tions are equivalent: 

(a) G is pseudocompact. 
(b) each nonempty G8 subset of G meets G. 
(c) each continuous real-valued function on G admits a continuous 

extension to G. 
(d) every continuous real-valued function on G is uniformly con­

tinuous. 

It is not hard to prove that pseudocompact groups are totally 
bounded; that compact groups are pseudocompact is trivial. The 
examples of pseudocompact non-compact groups that have been given 
are certain subgroups of uncountable products of compact metric 
groups (see [5] for a discussion and further references). In particular, 
if G0 = X a e / Ga, then H = {x = {xa} G G0 | xa is the identity of Ga for 
all but countably many a} is pseudocompact and not compact. This 
is not hard to prove using Theorem 10 and the equivalence of (a) and 
(c) of Theorem 20, once it has been observed that every metrizable 
quotient group of H must be compact. A particular case of a result of 
Hewitt [ 8; p. 67] now follows without difficulty. 

THEOREM 21. A Hausdorff topological group G is pseudocompact 
if and only if every real-valued / £ C(G) has closed range. 

Using the fact that a compact group can be written as a subgroup 
of a product of compact metric groups (see [ 17, § 2.7], for example), 
one can prove the following theorem which shows that all pseudo-
compact groups are similar in form to the example above. 

THEOREM 22. Every pseudocompact group G can be written as a 
subgroup of a product of compact metric goups X a G7 Ga in such a 
way that the canonical projection of G onto Ga is onto for each a and 
the canonical projection of G onto X a GB Gafor any countable subset B 
of I has closed range. Another way of saying this last assertion is to 
say that every metrizable quotient group of G is compact. 

The connection between the existence of functions that are almost 
automorphic but not almost periodic and pseudocompact groups is 
obvious. The second assertion of the following theorem follows from 
Theorem 20. 
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THEOREM 23. Let G be a semitopological group. Then AP(G) = 
AA(G) if and only if a(G), the canonical image of G in its almost 
periodic compactification, is pseudocompact. In this case every Bohr 
continuous function on G is also almost periodic. 

It seems likely that AP(G) ^ AA(G) for most familiar non-compact 
groups. However, non-compact groups for which equality holds are 
not hard to find. For example, AP(G) = AA(G) if G is pseudocom­
pact. An example of quite a different kind (Veech [25] ) is the group 
H of finite permutations of the natural numbers. In this case Ha has 
only two members. Hence, if G is the product of H and a pseudo-
compact infinite group, then G is an example of a non-discrete non-
pseudocompact topological group for which AP(G) = AA(G). 

At this point, one can use the equivalence of (a) and (b) of Theorem 
20 and Theorem 23 to prove the following variant of a theorem of 
Terras [22, Theorem 2.11]. 

THEOREM 24. Let G be a o-compact, completely regular semi­
topological group. Then G is compact if and only ifC(G) = AP(G). 

Now, if G is a semitopological group and a(G) is not pseudocom­
pact, then 3 functions in AA(G)\AP(G). According to Theorem 20, 
they correspond to the functions in C(a(G)) that are not uniformly 
continuous, i.e., / G AA(G)\AP(G) if and only if f is bounded and 
continuous, but not uniformly continuous, with respect to the Bohr 
topology. A common way to construct functions in AA(G)\AP(G) is 
to find an almost periodic function on G with non-closed range and 
then take a bounded continuous, but not uniformly continuous, func­
tion of that function (see [23, 24, 25], for example). On the in­
tegers, the function n ^ 2 + ein + einl^ is almost periodic and never 
assumes the value 0, but has 0 in the closure of its range; hence n —> 
(2 + ein + einlVi)l\2 + ein + einlVl\ is almost automorphic and not 
almost periodic. Hewitt's theorem (Theorem 21) is explicit about why 
this type of construction is impossible if a(G) is pseudocompact. 

I f / G A P ( G ) , then it is obvious that the limit TJ is in AA(G) 
whenever it exists. On the other hand, suppose /G AA(G)\AP(G). If 
we consider f as a function on a(G) C Ga, then 3x G Ga and nets a, 
ß C a(G) converging to x such that lim/(a*) — cl^ c2= lim f(ß/). 
Without loss we may assume TJ exists on a(G). Then TJXe) = 
\imf(cti) == Ci- B11* then the product net {cci~lßj} converges to e 
and we see that lim T^Oi" lßj) = c2, using joint continuity of multi­
plication in a(G). Hence TJ^C(a{G)) and / $ AA(G), and we 
have the following theorem of Veech [23, Theorem 3.3.1]. 
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THEOREM 25. Let G be a semitopological group and let fG AA(G). 
Then f G AP(G) if and only ifTJ^G AA(G) whenever it exists. 

2. Extension properties of almost automorphic functions. A title 
indicating a negative aspect would be more suitable for this section; 
for, what we do here is present four examples, in increasing order (we 
believe) of interest and novelty, of functions almost automorphic on a 
subgroup that do not extend to functions almost automorphic on the 
containing group. 

EXAMPLE 1. Let G be the additive rationals modulo 1. G is a dense 
subgroup of the reals modulo 1 [0,1) and, if E = { s £ G | 1/V5 < s 
< 1/V2}, then XE G AA(G), but does not extend to a function con­
tinuous on [0,1), and, in particular, does not extend to a function in 
AA([0,1)). 

EXAMPLE 2. In a similar vein, a continuous periodic function on the 
rationals that does not extend to a function in C(R), in particular, 
does not extend to a function in AA(R), is easily given. The periodic 
function on the rationals of period V2 3 t / = x f o r 0 ^ x < V2 will 
do. 

Example 3 is due to Terras [22] and Berg [3], A function has 
been constructed on the rationals that is almost automorphic and 
extends to a function continuous but not almost automorphic on R. 
The reader is referred to the papers of Terras and Berg for details. 

In the first three examples, the subgroup was dense but not closed. 
We now give an example of a locally compact group G with a (non-
dense) closed normal abelian subgroup H 9 / G AA(H) extends to 
a function in AA(G) if and only if / is constant. (In [15] we 
showed for this G and H that no non-trivial character on H extends to 
a function that is uniformly continuous on G.) 

EXAMPLE 4. Let G = {(x, y) | x, y G R, x > 0} with the multiplica­
tion (a, b)(x, y) = (ax, ay + b), and let H = {(1, y) | y G R}. Gelfand 
and Naimark [7] have shown that the only finite dimensional ir­
reducible representations of G are one dimensional and of the form 
(x, y) —> xixo for some x0 G R. (It is probably faster and certainly more 
instructive to read about these matters in the context of induced repre­
sentations [ 14] ). It follows that the Bohr topology of G does not 
separate points that have the first coordinate and hence that the only 
functions in AA(H) that extend to functions in AA(G) are the constant 
functions. 
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3. Invariant means. The main purpose of this last section is to ask 
the 

QUESTION. Does AA(G) always admit an invariant mean? (Of course, 
it does if G is amenable.) 

One might think that an invariant mean on AA(G) could be con­
structed using techniques like those used in II, § 2, i.e., that a map 
like / - » /ut(g* + g*)/2 would be an invariant mean. (Notation here 
is as in II, § 2. fx is normalized Haar measure on K.) However, this 
construction fails because the map /—» (g* + g*)/2 can fail to be 
additive. For example, this failure occurs if G is the rationals (mod 1). 

Terras [22] has shown that one can construct an almost automorphic 
function f on the integers for which the limit limN_> ool/(2N + 1) 
2^=+#./(*) does n o t e x i s t - This shows that invariant means on 
almost automorphic functions need not be unique. This is in contrast 
with the weakly almost periodic subspace WAP(G), for which an in­
variant mean always exists and is unique. 

In [1] Alexandroff studied invariant "measures" (which are only 
required to be finitely additive) on totally bounded topological groups 
and found a criterion that singled out a particular invariant measure 
for each such group. There are two problems with this measure: 

(i) It can differ from Haar measure if the group is compact. 
(ii) There can exist continuous bounded functions that are not mea­

surable. 
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