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ON STRONG RIESZ AND STRONG GENERALIZED 
CESÀRO SUMMABILITY 

F. P. CASS, 1 E. H. CHANG, AND D. C. RUSSELL1 

1. Introduction. We suppose throughtout that A = {An} is a given 
sequence satisfying 

(1) 0 = \ 0 < X ! < - • . < x n - * o o . 

For K = 0, ix > 0, p = 0,1,2, • • *, and a given (real or complex) num­
ber s, we define the following means of an infinite (real or complex) 
series ^ #n (here, and throughout, ^ means ^ Q unless otherwise 
specified). The (R, A, #c)-mean: 

(2) R " ( T ) = 2 ( 1 - A » " * ( T > 0 ) ; 
\V<T 

the [R, A,K + lj^-mean: 

(3) F* + 1(o>) = Û)-1 J" |R"(T) - * M T (CO > 0); 

the (C, X, p)-mean: 

(4) 

*»p = Ê (l - *A>+i) • • • ( ! - \ /x n + PK (n = 0, l, • • •); 

the [C,k,p + l]^-mean: 

(5) <r,/ + 1 = Sö.m. lV-*! ' 1 (m = 0 , l , - - 0 , 

where amn = (A„+p+1 - Xn) £//£m^ + 1 ( O ^ n g m),amn = 0 (m > n), 
and Enr> = Xn+i • • • Xn+P (with En° defined as 1). 

Ordinary and strong Riesz summability (of real order) and ordinary, 
absolute, and strong generalized Cesàro summability (of integer 
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order) are now defined respectively as follows. 

^an=s ( R , X , K ) means R K ( T ) - » S 

as r —> oo ; 

^ f l n = s [R,X,#c + 1]M means FK + 1(^) = o(l) 
as a) —» oo ; 

5] an = 5 (C, X, p) means £n
p -» s 

as n —» oo ; 

2) an = s |C, X, p | means £„p —» 5 
a n d S I V - « _ ! ! < » ; 

5 > n = * [C, X, p + 1]M means anJ
) + 1 = o(l) 

as m —> oo . 

This definition of strong Riesz summability is due to P. Srivastava 
[10] and (independently, with slightly different notation) to Glat-
feld [6]; earlier, Richert [8] had applied strong Riesz summability 
(with Xn = log(n 4-1), fi = 2) to Dirichlet series, while Boyd and 
Hyslop [5] had examined the relation between strong Cesàro and 
strong Riesz summability with Xn = n. Generalized Cesàro sum­
mability has been studied by a number of authors, and in Bosanquet 
and Russell [4] (where a comprehensive bibliography may be 
found), a definition of (C, X, K) summability is given, which is 
equivalent to (R, X, #c) summability for all sequences X satisfying (1) 
and for all K = 0. In the present paper (where [C, X, p 4- l]ß sum­
mability appears for the first time) we consider only the case where 
K is a non-negative integer, and our purpose is to prove some inclusion 
and equivalence relations between [C, X, p 4- 1]M summability and the 
other summability methods defined above. For Xn = n, the definition 
of [ C, n, p 4- 1] M is equivalent to the usual definition of strong Cesàro 
summability [C, p 4- 1]M; see Borwein and Cass [2, p. 98]. For some 
general properties of strong summability see also Borwein [1] and 
Borwein and Cass [ 3] . 

For any two summability methods P, Q, we write P •=> Q if every 
series which is F-summable is also Q-summable to the same sum. P 
is regular if it sums every convergent series to its ordinary sum; F 
and Q are equivalent, written F <=> Ç, if both F => Q and Q => P. A 
few of the known relations between the methods defined above are as 
follows, all of them (except for (9)) with no restriction on X other than 

(D-
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(6) [10, Theorem 2] ( R , X , K ) => [R,k,K + 1]M 

( /Lt>0,K^0). 

(7) [ 10, Theorems 1,7] [ R, \ , K + 1]„ => (R, X, K + 1) 

( j L l a l , K ^ 0 ) . 

(8) [10, Th. 4] , [6, Th. 1] [fì, X, K + 1]MI => [R,X, K + 1 ] ^ 

( p i 1 > / X 2 > 0 , K ^ 0 ) . 

(9) [5, Theorem] [R, n, K + 1]„ => [C, * + 1]„ 

( / t ^ l . K ^ O ) . 

(10) [7, Theorem] (R, X, p) => (C, X, p) 

(p = 0 , l , 2 , • • • ) • 

(11) [9, Theorem 4] (C, X, p) => (R, X, p) 

(p = 0 , l , 2 , • • • ) • 

There are also a number of counter-examples, particularly in [6]. 

2. Elementary properties of [ C, X, p + 1]M summability. 

THEOREM 1. 

(i) (C,A,p) => [ C , X , p + l ] ^ ( / * > 0 , p = 0,1,2, • • • ) • 

(ii) [ C , X , p + l ] ^ (C,A,p + 1) ( M = l , p = 0 ,2 , l , • • • ) • 

(m) [c,x?p + i ] M 1 ^ [ c , x , p + i u ( / i 1 >/ i 2 >o,p = 0,1,2, •••; 
PROOF. The matrix (amn) in (5) is regular, so that \tn

p — s|M—»0 
implies crm

p + 1 - * 0 , which gives (i). Moreover, tm
p + l — s = ^™=o 

amn(tn
p — s), and (amn) is non-negative with row-sums 1, so that an 

application of Jensen's inequality (with /x ̂  1) then gives (ii). Finally, 
(iii) follows from a simple application of Holder's inequality. 

3. Inclusion theorems between [C, X, p + l]ß and [R, X, p + 1]^. 

LEMMA. Le£ p be a positive integer and b{ (i = 1, 2, • • -, p) and 
d,- (/' = 0 ,1 , • • -, p) foe numbers such that 

(12) | b j g l ( i = l , 2 , - ' , p ) , 141 = 1 ( / = ( U > •••>?) 
and 

(13) |d, - dr| = 1/// > 0 (r, S = 0, 1, • • •, p; r f s). 

Then there are numbers y^ (J = 0, 1, • • -, p) such that, for any num­
ber x, 
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(22) j=° 
2 (K+P+i - KììmOjìì* 

f A-n+p+1 

(2p + 2) \BP{r)YdT. 
J A. n 

Now take dj = (Oj - Xn)l(Xn+p+l - Xn) and b{ = (An+i - Xjl 
(Xn+P + 1 — Xn) in the Lemma, so that {dj} and {bi} satisfy (12) and (13) 
with H = 2p + 2. Consequently, there are numbers tjj = ynj (J = 
0,1, • • -, p) such that (14) and (15) hold. Setting x = (Xn — Xv)IXn+p+l 

— Xn) in (14) we obtain 

(23) n (1-KIK-H)= E ^ l - ^ r , 
i = l j = 0 

where cnj = y^dlJE^. Since, by (15), \yj ^ p\(2p + 2)<1'2>"<" + 1> = 
Hi, we have 

(24) | c j g H1(XB + P + 1AB)P ^ HlC". 

Then, by (23), (24), and definitions (2) and (4), we obtain 

i*«piM= I i cnj i (i - x,/eni)"fl, r 
g K i | f i p (M ' (nGAf2), 

and hence 

M2 

^ KEm» 2 S (*»+P+I - K)M0nj)\». 
M2 i = 0 

Thus, by (22) and hypothesis (17), we now have 

( E ^ + i)-! 2 2 ^ K1(Am+p + 1)-1fm + P + 1 | lP(T)hdr 
(25) ° 

< €, fo rma q'. 

The combination of (21) and (25) yields (18), and the theorem is 
therefore proved. 
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REMARKS, (a) If Xn+1 = 0(Xn), the theorem extends to 0 < //, < 1 
because c can then be chosen so that the set Ml is empty; consequently 
the use of property (7), which was the only feature of the proof which 
needed fi i? 1, is not then required, (b) When p = 0, the theorem 
holds for all /x > 0 without restriction on A. (other than (1)), by (19). 

THEOREM 3. [C, X, p + l]ß => [fl, X, p + 1]M (/x > 0, p = 0, 1, 

2, • • •)• 

PROOF. We may assume without loss of generality that ^ fln = 0[C, 
X> P + !JM> t h a t i s ^ m = o-mp + 1 = o(l). From [9, (34) and thè proof 
of Theorem 4] we have RP(r) = ^=n-P a^(r)f/, where <KP(T)^ 0, 
2?=n- P O^(T) = l , X n < T ^ X B + i , n i p, and so, for all tt > 0, 

(26) |flP(T)|"S 2 | f h ( X B < T ^ X I 1 + 1 , n ^ p ) . 
y =n—p 

Now inverting the summation in (5) (with s = 0) we obtain 

ltt = \z+p + l°l> K&V-l 

(27) W l ^ 

U p 

m - l 

= ft)"1 

X/+P+1 \> 

Suppose o> > X2p + i and choose m so that Xm < <o = Xm+1. Then, 
by (26), 

w- 1 f" \BP(r)^dr 

S ' [Xn+1 |BP(r)hdT+ co-1 [" | » > ( T ) M T 
n=p * /^n JXm 

m—1 n 

^ (I/O S (*»+l - *») E Iti" 
n=p f=n—p 

m 

+ (i-U«) S Itt 

m - p - 1 n 

s (i/o S s (\+P+i-\)k"l' 
n=r:p v =n—p 

(28) 
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+ 2 (1-AAH-I) 2 Iti1 'IM 

n=m—p v=n—p 

- 2 i + Sa-

By (27), we have 

m —p—1 n 

s ^ (i/o 2 E ( \ . + P + I- \K 

n = p v =n—p 

m—p—l n 

+ (i /0 2 2 ( A ^ - \ _ I < ^ - I ) 

n = p ^ =n—p 

m—p—l p 

= (1/Xm) ^ ^ (An_ r+P + 1 — An_r)crn_r 
n=p r=0 

2p + l 

+ (i/o 2 /vm—r 
r=p + l 

P 2p + l 
= S P m - r + S CTm-r? 

r = 0 r = p + l 
J - P - 1 

where P j = (1/X,) £ ( W + i ~ K)°v 
i=0 

By hypothesis, am_r—> 0 as m—» oo? for each r, and since the trans­
formation from {(Ti} to {pj} is regular for null sequences, it follows 
also thatpm_r—» 0 as ra—» oo y for each r. Thus X\ = o(l). 

Now, by hypothesis, £? = o ( W n - K) Ef>\t?Y = o ( V + 1), and 
selecting only the term i = v on the left, we obtain 

k p k = o ( \ + p + 1 / ( \ , + p + i - \ , ) ) 

= o(kn+ll(kn+l - A«)) (n-> oo,n - p ^ ^ ^ n). 

Hence 

^ \^ Xn+i ~~ An / An+i \ 

n=m-p A n + 1 N A n + 1 *n ' 

= o(l) a s m - ^ oo . 

Thus, from (28), we now have cu"1 J^ |Rp(T)|Mdr = o(l) as w-> oo? 

which is equivalent to the required conclusion. 
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4. Relation between absolute and strong generalized Cesàro sum-
mability. 

THEOREM 4. 

| C , A , p + l | = * [ C , A , p + l h (p = 0 , l , 2 , • • • ) • 

PROOF. Write Tn = 2 ? = o l tp + 1 - ^ - i l and observe that, from the 
definitions in §1, 

%+P (^n+p + l ^n)tnP ~~ (^n+p+1 O V + ^-n(^nP+ * n - l ) » 

Thus 

(29) <7m"+1 - S amn|tn" - «| g Sm + Sm ' , 
n=0 

where 

and 

S m = £ *m»l*»P + 1 " *l 
n=0 

n=0 

= S En-Kr,, - T,,.,). 
n=0 

A partial summation now gives Sm'= Tm — ̂ ™=0 amnTn. Since 
(amn) is regular, and the hypothesis £ ön = s|C, X, p + 1| means that 
tnP + i - s-> 0 and Tn-> s' (say), it follows that Sw-> 0 and Sm ' -> s' 
- s' = 0. Hence, by (29), o V + 1 -> 0, so that £ an = s[C, X, p + 1] lB 

5. Strict inclusion. We conclude with some remarks relating to the 
strictness of the inclusions in Theorem l(i) and (ii). It is a consequence 
of Borwein and Cass [3, Corollary 2] that 

(30) liminf (Xn+P+1/Xn) = 1 

is necessary and sufficient for the existence of a series summable 
[C, k, p + 1]M but not summable (C, X, p). We now show, however, 
that it is possible for (30) to hold with p = 0, and to have [ C, X, 1] i 
<=*(C,X,1). 

L e t p o > 0> Pn = °> ^n = PO + ' • • + Pn, Cn = Pn/^n , a n d for a 

sequence (sn) define un = P n
_ 1 £?=o£U> s o that un - (1 - cn)un_i 
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= cnsn. Now choose c2n = 1 — (n + 1)~2 and c2n+\ = (n + 2)_ 1 , for 
n ^ 1. A routine argument then shows that, with this choice of cn, we 
have i/n—» s if and only if s2n—> s and s2n+i = o(n). It is now easy to 
check that 

p»-1 i: nk - *i = o(i) 
(3D 

n 

« Wn - 5 = F,,"1 2 M* ~- S)= °(1)' 
i / = 0 

If we now define X0
 = 0 a n d Xn = Fn- i f° r n = 1> *hen {An} satisfies 

(1), lim inf(Xn+1/Àn) = lim inf(l — cn)~
l = 1, and (31) becomes 

[C, \ , 1] ! c=> (C, A, 1). On the other hand, using the same A, with 
/^i > M2 > 05

 a n d choosing 52n = 0 , s2n+i = n l / M l > w e have sn-+ 
0[C, X, 1]M2 but {sn} is not summable [C, X, l]Ml . 

Since (C, X, 1) c=> (R, X, 1) and [C, X, 1JM « [B, X, 1]M (/A > 0), the 
above choice of X furnishes an example of a Riesz method which is not 
equivalent to convergence, for which the inclusion [R, X, 1] => 
[R, X, 1]M2 (Mi > M2 > 0) is strict, but for which [R3 X, 1] i ~ 
(R,x, l ) . 

Incidentally, (31) shows that if, in [3, Theorem 12], the condition 
lim pnn = 0 is replaced by lim inf pnn = 0, then the conclusion ofthat 
theorem fails. 
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