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PRODUCT INTEGRALS AND CONTINUITY
J. A. CHATFIELD

ABsTRACT. Suppose R is the set of real numbers and G is
a function from R X Rto R.

One type of continuity for G is to require that Jbcz =0
for G to be continuous on [a, b]. Jon C. Helton, the author,
and others have investigated product integrals and sum inte-
grals of interval functions and their relationship to this type of
continuity. This paper examines interval functions which may
not have this type of continuity. In an earlier paper [2] it is
shown that if G has this type of continuity and [bG exists,
then H,’,’ (1 + G) exists and is exp( I} ,’,’ G). Using several
conditions on G including the condition that [? G exists but
not the condition that f2 G = 0, the main theorem (Theorem
5) of this paper shows that HE (1 + G) exists and gives an
evaluation of J]2 (1 + G). A stronger continuity require-
ment is to require [[2 (1 + G?) = 1 and in Theorems 3 and
4 a relationship between these two types of continuity is estab-
lished.

1. Definitions, Notations, and Basic Theorems. All functions are
from R X R to R, where R denotes the set of real numbers and all
integrals are of the subdivision-refinement type. [a, b] and (g, b) will
be used to denote the set to which p belongs if and only ifa=p=1b
ora < p < b, respectively. D = {x;}_ is a subdivision of [a, b] means
(1) D is a finite subset of [a,b] and (2)a=x) < x; <x, < -+ - <1,
= b. D' is a refinement of the subdivision D of [a, b] means (1) D' is
a subdivision of [a, b] and (2) D is a subset of D".

IfD' = {x;}{_oisarefinementofthesubdivisionD = {p;} ;,of[a, b]
and G is a function from R X R to R then the following nota-
tions will be used when no misinterpretation is likely:

1) 2 G = i G(x;_1, x;)
D! i=1
DI
and [MIa+aG)= ﬁ [1+ Glxioy, )]
D! i=1
DI
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@) s = 3 Gy %)
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x

D' [pj-1.)] 0

D"[Pj—l'Pj

and [I a+a)= ]‘[ [1+ Gy, %))
!

where Q = {x; }—o denotes the subdivision of [p;_,, p;] for some 0 < j
= m consisting of the numbers of D' in [p;_,, pj],

) G(p,p*) = lim G(p,x)
—pt
and G(p-, p) = limG(x, p).
x—-)p_
Gis:

(a) bounded on [a, b] means there is a subdivision D of [a, b] and
a number M such that if D' = {x}}_, is a refinement of D and
0 < i = n,then|G(x;_;,x;)| < M.

(b) product bounded on [a, b] means there is a number M and a
subdivision D of [a, b] such that if D' = {x;}]_, is a refinement of D
and0<p<g=nthen[[L, 01+ G)| <M

(c) of bounded variation on [a, b] means there is a number M and
a subdivision D of [a, b] such that if D' is a refinement of D, then
21)1 lG,l < M.

It should be noted that the set of functions having property (c) consti-
tute a proper subset of the set of functions having property (b).

The sum integral of G exists on [a, b] means there is a number A

such that if ¢ > 0 then there is a subdivision D of [a, b] such that if
= {x;}i-o is a refinement of D, then |Yp G, — A| < c¢. A will be
denoted by [% G.

The product integral of G exists on [a, b] means there is a number
A such that if ¢ > 0 then there is a subdivision D of [a, b] such that if
D' = {x;}[_ is a refinement of D, then |[[p [1+ G] — Al <c.
A will be denoted by [[4 (1 + G).

Definitions of words, phrases, or symbols used, but not defined, may
be found in [3].

The following theorems are used later and are stated here for con-
venience.

A. [8, p. 151]. If n is an integer greater than 1 and each of {a;}}_,
and {b;}_, is a sequence of numbers, then



PRODUCT INTEGRALS AND CONTINUITY 33

He-Tb=3 (a)e-w( I «)

i=1 i=1 = k=i+1

0 n
I1 =11 a=
j=1 k=n+

B [3, Theorem 4.1]. Suppose Gisa functzon from RX R to R,
JEG exists, and for each a=x<y=b, H(x,y) = |G(x,y) — JL G|
Then, b H exists and st

C. [2, Theorem 3]. If G is a function from RX R to R and
J2G? = 0 then the following two statements are equivalent:
(1) S G exists and
(2) [1%2 (1 + G) exists and is not zero.
Furthermore, if either (1) or (2) is true, then [5G = 1nH 1+ G).
D. If [[2 (1 + G) exists and l_[,, (1 + G) exists, then [[5(1 + G)
existsand is[[2 (1 + G) -[[;(1 + G).

The following theorem follows directly from Theorem B.

E. If G is a function from R X R to R, 4 G exists and € > 0, then
there is a subdivision D of [a, b] such that if D' = {x;}, is a refine-
ment of D, 0 < i = n, and D; = {p;} 2, is a subdivision of [x;_,, x;],
then |3, p, Gy — G(xi_, x;)| < €.

F. [3, Theorem 4.2]. If G is a function from R X R to R such that
12 + G) exists and for each x < y

Hey) = |11+ Gyl = TT (L + el

x

then [t H exists and is 0.

2. Theorems. Theorems 1-4 establish relationships between sum
integrals and product integrals using the two similar continuity
conditions[J2(1 + G?) = land J5 G2 = 0.

Tueorem 1. If[[2(1 + G?) =1 and € > 0, then there is a sub-
division D of [a, b] such that if D' = {x;} [, is a refinement of D then
foreach0 < i=n, |G(x;_;, x;)| <e.

Proor. Since [[5(1 + G?) =1 and €2> 0 there is a subdivision
Dof [a, b] suchthatif D' = {x;} [, is a refinement of D, then
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e> | ] a+a%—1|
DI

= Ha+q%—ﬂ1|
D'

n

= Z[Dp]u+w—u[[]a+qﬂ|

j=i+1

§<y< 11 a+cﬂ)

i—i

= Y |G|~
D'

Hence for 0 < i = n,e2 > |G;?| and € > |G;|.

Tueorem 2. If [[6(1+ G®) =1 and N (1 + G) exists then if
€ > 0 there is a subdivision D of [a, b] such that if D' = {x;}]_, isa
refinement of D, then [[.._, (1 + G) — 1| < e foreach0 < i = n.

Proor. Suppose theorem is false. Then there is an € > 0 such that
if D is a subdivision of [a, b] there is a refinement D’ = {x;};_o of D
such that [1-[ (1 + G) — 1| Z € for some 0 < i = n. From Theorem
1 and Theorem F there is a subdivision D of [a, b] such thatif D' =
{x; },_0 is a refinement of D and 0 <i=n, then |G(x;_,, x;)| < €/2
and[l_l s (1+ G) = [1+ Gxiy, x)] | < €/2.

There is a refinement D' of D and an x; in D’ such that

|ﬁ(y+@—1 =

Therefore,

X

e§|[]u+@—u+qxbn+u+qxﬁn

Xi—1

X

| T 1+6 = [1+ Gz

Xi—1

A

+ |[1 + G(x,-_l,x,-)] - 1|

< %'*' |Gxi—1, %)

€ €
<<+5
2 2
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and € < € so that the assumption is false and the theorem is true.

TrEOREM 3. The following two statements are equivalent:
1) [I: (1 + G? existsand is 1, and
(2) Jb G2 exists and is 0 and G2 is product bounded on [a, b] .

Proor.
A. Suppose (1) is true and € > 0. Then there is a subdivision D of
[a, b] suchthatif D' = {x;}]_, is a refinement of D, then

e> | T1 (1+G,.2)—1|

D!

= |11 a+cy- 1’11|
D'

D'

=3 [El][1+62——1] [ 10 « a+c2] |

D! j=i+1
> b
=z 3G

'

Thus J G2 = 0. ,

Also note that if 0 < p < g = nthen[[{_, 1 + G) =[]p(1 + G?
< 1 + ¢, so that G2 is product bounded on [a, b].

B. Suppose (2) is true and € > 0. Then there is a subdivison D of
[a, b] and a number M such that if D' = {x;}", is a refinement of D,
then ‘

q

1) fo<p<qg=n,then [[ 1+ G)< M,
and =

2 2< £

@ S ey

Let D' = {x;};_, be a refinement of D, then

| IMma+cey-1|=
D'

i—1

|l a+ey-T1 |=3 [

i=1

[ ,!11 1+ c2)]

1] [1+ G2—1]



36 J. A. CHATFIELD
<MY G2
DV

< €.
Hence[]4(1 + G?) exists and is 1.

Theorem 4 establishes a relationship between the equivalence of
sum integrals and the equivalence of product integrals for functions
from R X Rto R.

TueEOREM 4. If each of F and G is a function from R X R to R then
the following two statements are equivalent:

(1) JeG= [t Fand [6G2= JbF2=0,and

@Ilza+ 6 =[]t A+ F)#0 and [[2 A+ F) =T[5+
G =1

Proor.

A. Suppose (1) is true. From Theorem C, Hf,’ (1 + F) exists,
[[:2(1 + G) exists, and 1n Hf;(l +F)= [t F= [5G=1n []i1
+ G). Hence, [[6(1+ F)=]]21 + G).

Since [t F2= [6G2=0, [bF‘= [6G4=0 so that we have,
again from Theorem C, that []4(1 + F?) exists, [[5(1 + G?) exists,
and

b b
][ (1+F2)=_jb FP=0= j”c2=1n1'[ 1+ G2).

Hence,[[5(1+ F2)=]]3(1 + G) =1

Therefore if (1) is true then (2) is true.

B. Suppose (2) is true. Since [[6(1+ F2) =21+ G> =1,
from Theorem 3, [¢G2= [bF2=0. Since J:G? =0 and
[I21+ G)#0, from Theorem C, [][2(1 + G) exists and is
exp(/2 G), and similarly, []J5(1 + F) = exp(J2 F). Since []4(1 +
C)=Hf,’(1 + F),then [5G = [bF.

The following example is of a function G having the property that
J2, G exists and [1, G2 is non-zero. Thus, Theorem 3 of [2] can
not be used to determine the value of []!, (1 + G) nor can it be
used to determine whether or not[[!; (1 + G) even exists.

ExampLE. Suppose g is defined by
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n+3
Al Fres v atd B

if 0 < x= landxisin

[ni 1’ (n +n1;n3+ 2)] ’

for some positive integer n,

gx) =) (—"+—1)2(ﬂ2—)[ —(TJF—"I;%?)] ,
if0<x=1landxisin
[ n + 3 1]
(n+ 1n+2)°
for some positive integer n,
Lo, ifx =0
and G is defined by
gly) — g(x), f0=x<y<l1
Glx,y) = sin%x, fo<x<y=1
0, f-1=x<y=0

Then (1) J!; G exists and is V2 + 1/V2, since
1 0 1
[[e=] e+ c
=0+ Y G
D

= 2 Gi + Gxn_1, %)

D— {xa}

= g(xn_1) — g(0) + sin ﬂx;'l
G - 4 in Tn=1
) [""-l (2)(3)] *+sin

v+l o )
\/2 n—1 >

37
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(2) 1 G2isnot0, and

(3) Gis not of bounded variationon [—1,1].

Hence the hypothesis of Theorem 3 in [2] is not satisfied. How-
ever, the hypothesis of Theorem 5 of the present paper is satisfied and
hence[]!, (1 + G) exists and is ¢/ V2.

Furthermore, if f% G2 is required to be 0 and [5G exists, then
G may still fail to be of bounded variation on [a, b]. So the necessity
of (2) and (4) in Theorem 5 can be seen.

THEOREM 5. Suppose G is a function from R X R to R defined on
[a, b] such that

(1) JE G exists,

(2) there is a subdivision D = {x;}{_o of [a, b] such that if p, q]
is a subset of (xi_),x;) for some 0<i=n, then

J;G*=0,
Glx,y), ifx# x, i=0,1,--n,
y#x,i=12 - n
(3) H(x,y) = Gly-y), ifx=x, i=0,1,---n—1.
G(x,x"), ify=nx, i=12 --n
and (4) for each x;,i = 0,1, - - - n, in D, there is a segment (c;, d;) con-

taining x; such that G is of bounded variation on [c;, d;].
Then,[[% (1 + G) exists and is

{ew (1) {1 00+ e J{IT 11+ Gmnon }

It should be noted that if for some 0 < i=n, [ ,:‘_l G2 =0, then
G(x;~, x;) = 0and G(x;_,,x*_;) = 0.
In order to establish Theorem 5 we need the following seven lemmas.

LemMma 1. Suppose (1), (2), and (4) of the hypothesis of Theorem 5
are satisfied, € > 0, and 0 < i = n, then there is an x in (x;_,, x;)
and a y in (x;_),x;) such that ifx; |, <p<g=xandy=r<s<ux,
then (A) |G(p, q)| < € and (B) |G(r, s)| < €.

Proor. Suppose the conclusion is false, then for each x in (x;_), x;)
thereisap andagsuchthatx, |, < p < ¢ =xand |G(p,q)|=e.

Since G is of bounded variation on [¢;_}, d;_,], there is a number M
and a subdivision D, = {r;}/_y of [x;_,, d;] such that if D’ = {p;}]",
is a refinement of Dy, then Y b |G(pi_,, pi)| < M. Let Q be a positive
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integer such that Q > 2M/e. Let {[a;, B;] }2, denote a sequence of
intervals such that for each0 < i = Q,

(1) Xi—1 < @ < Bi' = di,

(2) Bi+l < a;,

and (3) |G(as, B;)| =

N m

Let D' = Dl + 2‘21 {at} + Egl {Bﬁ} = {P,},n;o denote a sub-
division of [x;_,, d;] which is a refinement of D,. Then,

M> Y |Gpi_1, i)l
<

v

o
IG(av BI)'

i=1
o
Y1

i=1

Q

v

o |m

v
b M

€  2M
>2 €

= M, which is a contradiction.

Hence (A) is true.
A similar argument may be used to show (B) is true.

The following lemma is stated for convenience.

Lemma 2. If |A— B| <€ and |c — D| <e, then |Ac — BD| <
€[lcl + |B]).

LemMma 3. Suppose (1), (2), and (4) of the hypothesis of Theorem 5
are satisfied and 0 < i = n, then G(x;_),x}_;) and G(x;~, x;) exist.

Proor. Let € > 0, then from Lemma 1 there is an x > x;_; such that
if x;_, <p<q=gx, then |G(p, q)| < €/2 and from Theorem E there
is a subdivision D, of [x;_;, %] such that if D' = {p;}]", is a refine-
ment of D, and D; = {y,}#-o is a subdivision of [p;_,, p;], for some
0 <j= m, then lsz Gr — G(pj—1, pj)| < €l3.

Letx;_; < z<xandx;_, < z< p; and let s and ¢ be numbers such
that x;_; < s<zand x;_; <t <z Hence D, + {z} is a refinement
of D, and {x;_,, s, t, p, } is a subdivision of [p,, z] so that
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|G(xi_1, 8) + G(s, t) — G(xi_1, t)| < €/2

and Ic(xi—l’ S) - G(x'-—b t)' <e€2+ IG(S’ t)l <e.
Therefore lim,.,,, + G(x;i_;, s) = G(x;_,, x;,_;+) exists. A similar
argument shows that G(x;~, x;) exists.

LemMa 4. If the hypothesis of Theorem 5 is satisfied then [5 H?
= 0.

Proor. Letl > € >0and0 < i=n.

Since G is of bounded variation on [¢;, dj], and on [¢;_, d;_1], x; is
in (¢;, d;), and x;_, is in (¢;_, d;_,), there is a number M, a subdivision
D, of [x;_,,d;_,], and a subdivision Dj of [c;, x;] such that if D' =
{pi}i%o is a refinement of D, or D then ¥ p |G(pi_ 1, pi)| < M.

From Lemma 1 there is an x in (x;_;,d;_;) and a y in (c;, x;) such
that if x; | <p<qg==x and y <r<s=x; then |G(p,q)| < e/4M,
IG(r, s)| < €/4M, |G(p, q)|<e€l3, and |G(r,s)|<e/3. Since [x,y]
is a subset of (x;_;,x;), J[{G>=0, and since H(p,q) = G(p, q) for
each pin [x,y], q in [x, y], then [¥ H?2 = 0.

Since [y H2= 0 there is a subdivision D; of [x,y] such that if
D' = {p;}I~o is a refinement of Dy, then [¥p [H(p;_, pi)] 3 < el4.
Let D, = D, + D, + D; and D' = {p;}iZ, be a refinement of D,.
Then

o [H(pi—1, pi)] 2
= Y  [Hp—,p)2+ Y [Hp-,p)*+

D' [xi-1-%] D' [x,y]
Z [H(pi—1, pi)] 2
D’ [yxi)
= [H(po, p1)]*> + [2 ] [H(pi—1, pi)] 2
D![p,,x

+ 2 [H(Pi_b Pi)] 2

D' [x,y]
+ > [H(pi—1, pi)] 2+ [HPm-1, pm)] 2
D' [y;pm-1]
< [Hpop)l? + 3 [Hpi,p)2+
D"[p,,x]
+ 2 [H(pt'—l’ Pi)] 2
D' [yPm—1]

+ [H(pm-1, Pm)] ®
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=[Gpip)PE + X G- p) P+ _fl—

D' [px]

+ D |G(pi—1, p) * + |G(pm—1, pr_1)I?

D"[y’pm—l]
< (i> + S IG(pi—1, pi)| + <
3 M 55 om 4
€ € \2
+ 3 IG(pi—1, pi)| + (_)
4M D"[!/)Pm—l] 3
€
<sta M*itmi Mo
< €.

Therefore f,:‘_l H2=0for0<i=n. Hence [b H2= 0.

LemMa 5. Suppose the hypothesis of Theorem 5 is satisfied and
0 < i=n,then [}  H exists.

Proor. Let € > 0, then from Theorem B, there is a subdivision D,
of [x;_ ,,x,] such that if D' = {p;}T_, is a refinement of D, then

E.Iml IIP( 1 G- C(pl 1> pj)'< €l

From Lemma 3, G(x;~, x;) exists, G(x;_,, x%_,) exists and there is an
x in [x;_,, %] and a y in [x;_;,x;] such that if x;_, <p=x and
Y= q < x;, then

(1) 1G(xi—1, p) = Glxizy, x%-1)| < €T
and (2) |G(q, x;) — G(x;~, x;)| < €7.

From Lemma 4, [} ' H2= 0 so that there is a number r in

(x;_;, %) and a number s in (x;_,,x;) such that if x;_, < p=r and
s = q < x;then |[H(x;_,, p)| < €/7 and |H(q, x;)| < €[7.

Let D, = D, + {x} + {y} + {r} + {s} and D' = {p;}]~, be a
refinement of D,. Then

|SH-["  e-cam - cpri)
2

i—1
> H;

D'={po}— {Pm}

- [ |+ |7 e camnp |

= |H(po,p)| + H(pm-1,
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+ |7 e= G s

+ IG(xi—l, pl) - G(xi—l’ x;—.—l )I
+ |G(pm-1, %) — G(x75, %))

€ €
<,7+,_(,+7%-—7 ++7.

Hence, [ H exists.

LemMma 6. Suppose the hypothesis of Theorem 5 is satisfied and
0<i=n, and € > 0, then there is an x in (x;_,, x;) and a y in
(x;_1, x;) such thatifx,_, < r=xandy = s = x;, then

[[1+ H(xi_,,r)] "'|<e+ land |[1 + H(s,x;)] ! <€+ 1.
Proor. Lemma 6 follows directly from Lemma 4.

Lemma 7. Suppose the hypothesis of Theorem 5 is satisfied and
0 < i = n, then there is a number M and a subdivision D, of [xi_,, xi]
such thatif D' = {p,;}m_, is a refinement of D, then

I I (1+G,.)|<M.

D'={po}—{Pm}

Proor. From Lemmas 4 and 5 and Theorem C,[]:._; (1 + H) exists.
Lemma 7 then follows immediately from the definition of H and
Lemma 6.

Proor oF THEOREM 5. Suppose 0 < i = nande > 0.

From Lemma 3, G(x;_;,x%_,) and G(x;, x;) exists and there is a
subdivision D, of [x;_;,%] and a number M > € such that if D' =
{p;}]., is arefinement of D), then, if0 <j=m

(1) 11+ G(po, p1)l < M and |1 + G(pp—1, pm)l < M
@) 11+ Gpn=pm)l <M
(3) 114 Glpo, po*)l <M
4) |G(po, p1) — Glpo, o)l < TI32M?
) 1GPm-1 Prm) = GPm ™, Pm)l < T/32M?2

exp (J:“H>| <M

i—

—

(7) | (1+c,.)|<M.

D'={po}—{pm}
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From Lemma 1, H(x;_;, x%_;) = 0, H(x;~, x;) = 0, and there is a
number x;’ in [x;_;,%;] and a number x;” in [x;_;,x;] such that if
4 <p<qg=x' and x" =r<s<uy then |H(p,q)| < e/8M and
|H(r, s)| < €/8M. From Lemma 4, fx H2=0 and from Lemma 5,
J& | H exists, so that from Theorem C [T%., (1 + H) exists and is
exp( f z#._, H). Hence there is a subdivision D2 of [xi_1, x;] such that
if D' = {p;}]~, is a refinement of D,, then [[[p 1 + H;) —[[5_; (1
+ H)| <e€/8M2 Let D;=D, + {x;"} + {x"} + Dy and let D' =
{p;j}-obe a refinement of D;. Let ko, k,, and W denote numbers
such that

(1) H(xi_y, p1) + ko = H(po, p1) + ko = J(po. po*) = 0,
(2) H(pm—b pm) + km = H(pm—l’ xi) + km = H(pm_, pm) = 0,

@) Ikl < gars- lknl <

16M3’ |ko] < 1, and

9 W=exp([" H)[L+GE~x)][1+ Gyxiy).

i—1
Then
|HD' 1+ G)— w|
| 0+ Gpopar [
—{P} {Pm}

[1 + G(pm-—l’ pm)] -Ww

(1+c,.)]

I[l + G(PO’ pl)] [1 + G(pm—l’ pm)]

[ I 0+ G)] [+ Hpop) + ko
D'~ {pg}— {Pm}

[1+ Hpnoy, ) + kn] = W |

= | 1+ Glpo. POV (1 + Glpm -1, pu)]
[ I A+ G)] [+ Hpopl (L + Hpmors pa)]
= D'—{py}— {Pm}

+ [1+ Gpo, P11 [1 + G(Pm—15 Pm)]

[ 1+ G)] Tkokn]

D'—{po}— {Pm}
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+ [l + G(pO’ pl)] [1 + G(pm-—-l’ pm)]

[ T a+6)] 0+ Hpep) k

D' {po}= P}

+ [1 + G(Po, pl)] [1 + C’(pm-l» Pm)]

[ Il (L+ Gj>] [1+ Hpm-1, pm)] [ko] = w|

D'—[pop—[pm]

< |0+ G pil 1+ Gonorp [TT A+ 1) ] =W |
+ | 1+ Glpo, PO [L + Glpmos, P
[ T a+6)] ek |

D'={po}= {Pm}
+ 2 [1+ G(po, p)] [1 + G(Pm-1, Pm)]

M a+6)] |

D'={po}~ {Pm}

+ 2 |[1 + G(po, p1)] [1 + G(Pm-1,Pm)]

[ T a+6] kil

D'— {Po)- {pm}

+ M3 MR

<|'|+M3'(1)'8M3 8M3 SM>3

=%+ | [1+ G(po, p)] [1 + G(Pm-1, Pm)] [l;l (1"'Hf)] _Wl

Y

=

§ + Il + G(po P1)| |1 + G(pm—-l Pm)'
| @+ H =T 0+ H) |
+ | (1 + Glpo.p} (1 + Glpmsp] [T+ H) = W

3 L oMm2-
<8+M 8M2

+ | 1+ Glpo

(L + G(Pm-1, Pm)] exp ( f " )
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—ep ([ H) [+ G ml [1 + Gl xity)

=—€2—+ I exp ( I::_l H )I 1+ Glxic, p)] [+ Gpm-1, %))

= [14+ G~ x)] [1+ Glxi_y, x5 ,)]

i—1

€ Te
<ot Moo (11 + G(pm—1, %)l
+|1 + G(xi_1,x%_1)|], (Lemma 2)
€ Te
< 2+ M 32M2[M+ M]
< €.

Hence, for 0 < i = n,HZ:_l (1 + G) exists and is

exp( J"i H )[1 + G~ x)] [1 + Gy, x7,)]-
Xi—1
Then, from Theorem D,[[% (1 + G) exists and is

exp (j" H ){li'[1 [1+ G =) } {'f;]: [1+ Gl s }-

Note: Results related to Theorem 5 may be found in [4, Theorem
1.7].
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