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PRODUCT INTEGRALS AND CONTINUITY 
J. A. CHATFIELD 

ABSTRACT. Suppose R is the set of real numbers and G is 
a function from R X R to R. 

One type of continuity for G is to require that f%G2 = 0 
for G to be continuous on [a, b]. Jon C. Helton, the author, 
and others have investigated product integrals and sum inte
grals of interval functions and their relationship to this type of 
continuity. This paper examines interval functions which may 
not have this type of continuity. In an earlier paper [2] it is 
shown that if G has this type of continuity and /*JG exists, 
then u à (1 + G) exists and is exp(J^G). Using several 
conditions on G including the condition that / £ G exists but 
not the condition that / £ G = 0, the main theorem (Theorem 
5) of this paper shows that Yla (1 + G) exists and gives an 
evaluation of ü a U + G). A stronger continuity require
ment is to require u à (1 + G2) = 1 a n ( l m Theorems 3 and 
4 a relationship between these two types of continuity is estab
lished. 

1. Definitions, Notations, and Basic Theorems. All functions are 
from RX R to R, where R denotes the set of real numbers and all 
integrals are of the subdivision-refinement type, [a, b] and (a, b) will 
be used to denote the set to which p belongs if and only if a â p = b 
or a < p < b, respectively. D = fa} f=0 is a subdivision of [a, b] means 
(1) D is a finite subset of [a, b] and (2) a = x0 < xx < x2 < ' ' ' < xn 

= b. D' is a refinement of the subdivision D of [a, b] means (1) D' is 
a subdivision of [a, b] and (2) D is a subset of D '. 

If D ' = {Xi} "=0 is a refinement of the subdivision D = {pj } JL0 of [ a, b] 
and G is a function from RX R to R then the following nota
tions will be used when no misinterpretation is likely: 

(l) S Q = i G(*i-i,*i) 
D' i = l 

D' 

and fi (1+Q)= Il [l + Gft.!,*)]; 
D' i = l 
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32 J. A. CHATFIELD 

(2) S G - 2GK**-i.**) 
D [Pj-l.Pj] Q 

and [ I (1 + Q) = n [1 + G(xk_lf xk)], 
D'-bj-LPji ^ 

where Q = {xk}l=0 denotes the subdivision of [pj-i, pj\ for some 0 < j 
^ m consisting of the numbers of D' in -[pj^^pj], 

(3) G(p,p+)= lim G(p,x) 

and G(p~, p) = limG(x, p). 
x-+p~ 

Gis: 
(a) bounded on [a, b] means there is a subdivision D of [a, b] and 

a number M such that if D ' = {£t}?=o is a refinement of D and 
0 < i ^ n, then iGfo.x, x<)| < M. 

(b) product bounded on [a, b] means there is a number M and a 
subdivision D of [a, b] such that if D ' = {̂ t}T=o *s a refinement of D 
andO < p < 9 ^ n, then J I?-p (1 + Q) | < M. 

(c) of bounded variation on [a, b] means there is a number M and 
a subdivision D of [a, b] such that if D ' is a refinement of D, then 
2 D ' I Q I < M . 

It should be noted that the set of functions having property (c) consti
tute a proper subset of the set of functions having property (b). 

The sum integral of G exists on [a, b] means there is a number A 
such that if c > 0 then there is a subdivision D of [a, b] such that if 
D ' = {Xj}t

n
=0 is a refinement of D, then ££D, G* — A| < c. A will be 

denoted by Sì G. 
The product integral of G exists on [a, b] means there is a number 

A such that if c > 0 then there is a subdivision D of [a, b] such that if 
D' = {*i}r=o is a refinement of D, then \Y\D' [1 + Q] — A| < c. 
A will be denoted by f ]a (1 + G). 

Definitions of words, phrases, or symbols used, but not defined, may 
be found in [3]. 

The following theorems are used later and are stated here for con
venience. 

A. [8, p. 151]. Ifnis an integer greater than 1 and each of {ai}
T\=l 

and {bi}f=1 is a sequence of numbers, then 
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n «.- ri bt= t (iibj\ai-bi)( n * ) . 
where 

ri **- ft * - i . 
j= l fc=n+l 

B. [3, Theorem 4.1]. Suppose G is a function from R X R to R, 
fa

bG exists, and for each a^x< t/ = &, H(x,t/) = |G(x,y) — Sy
xG\. 

Then, lh
a H exists and is 0. 

C. [2, Theorem 3] . If G is a function from RX R to R and 
Sa

bG2 = 0 then the following two statements are equivalent: 
(1) /S G exists and 
(2) I la (1 + G) exists and is not zero. 

Furthermore, if either (1) or (2) is true, then S^G= l n j | a ( l + G). 

D. If f i g (1 + G) exists and \\b (1 + G) existe, tfien []a (1 + G) 
existe and i s l ]a (1 + G) • ufo (1 + G)-

The following theorem follows directly from Theorem B. 

E. If G is a function from RX Rto R, f^G exists and e > 0, then 
there is a subdivision D of [a, b] such that ifD'= {a*}T=o ^s a refine
ment ofD,0<i^n, and D{ = {pj} JL0 is a subdivision of [Xj_i, Xi], 
then |5)D. Q ~~ G(xi_1, x*)| < e. 

F. [3, Theorem 4.2]. If Gis a junction from RX Rto R such that 
Y\a (1 + G) existe and for each x < y 

H ( x , y ) = | [ l + G ( x , y ) ] - tf (1 + G)L 

f/ien /J H exists and is 0. 

2. Theorems. Theorems 1-4 establish relationships between sum 
integrals and product integrals using the two similar continuity 
conditions]}« (1 + G2) = 1 and J£ G2 = 0. 

THEOREM 1. / / Y[a (1 + G2) = 1 and e > 0, ffoen f/iere is a sub
division Dof[a, b] such that ifD'= {**} "=0 is a refinement ofD then 
for each 0 < i § n , ^ ( x ^ , Xj)| < €. 

PROOF. Since IJS (1 + G2) = 1 and €2 > 0 there is a subdivision 
Dof [a, b] such that if D ' = {x{} "=0 is a refinement of D, then 
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e* > n (1 + G2) - 1 
D' 

= n a + da) - n M 
I D' D> » 

= 1 s r f i i 1 [i+G,2-i] r n (i+Q2)i I 

= E G,2 ( n a + Q2) ) 
^ 2 IGI2-

D' 

Hence for 0 < i ^ n , € 2 > | Q 2 | a n d € > |Q| . 

THEOREM 2. If f ]£ (1 + G2) = 1 and Il£ (1 + G) existe then if 
e > 0 £here is a subdivision D of [a, b] such that if D' = {Xj}"=0 is a 
refinement ofD, then O ^ - i (1 + ^ ) ~~ M < €for eac^ ® < i = n-

PROOF. Suppose theorem is false. Then there is an e > 0 such that 
if D is a subdivision of [a, b] there is a refinement D ' = {Xi}?=0 of D 
such that 0 4 - ! (1 + G) - 1| ^ € for some 0 < i ^ n. From Theorem 
1 and Theorem F there is a subdivision D of [a, b] such that if D ' = 
{*i}[*=() is a refinement of D and 0 < i ^§ n, then |G(xi_1, Xi)| < e/2 
and j n t i (1 + G) - [1 + Gfa-i , x*)] | < e/2. 

There is a refinement D ' of D and an X; in D ' such that 

I f l ( l + G ) - l | ^ 6 . 
* t - l 

Therefore, 

«= I ft (1 + G ) - [l + G(*i-i,*i)] + [ I + G^XJ.LX,)] - l l 
I xi-\ ' 

S I ft (1 + G)- [l + Gfo.!,*)] I 

+ {[l + GiXi^xt)] - 1 | 

<-*- + -*-
2 2 ' 
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and € < € so that the assumption is false and the theorem is true. 

THEOREM 3. The following two statements are equivalent: 
(1) Y\ì (1 + G2) exists and is 1, and 
(2) lh

a G
2 exists and is 0 and G2 is product bounded on [a, b]. 

PROOF. 

A. Suppose (1) is true and € > 0. Then there is a subdivision D of 
[a, b] such that if D ' = {x»}r=o i s a refinement of D, then 

€ > | n (i + Q2) -11 

= I n a + G*) - n 11 
• D' D' • 

= I E [ f f i i t i + G^-i] r n (i + G,2)] | 

i= S Gf
2 

D' 

Thus ß G2 = 0. 
Also note that if 0 < p < q ^ n t h e n f ] ? ^ (1 + G2)^HD,(1 + G2) 

< 1 + €, so that G2 is product bounded on [a, b]. 
B. Suppose (2) is true and € > 0. Then there is a subdivison D of 

[a, b] and a number M such that if D ' = {Xi}"=0 is a refinement of D, 
then 

(1) if 0 < p < q ^ n, then f i (1 + G2) < M, 

and 

(2) X G2<^-. 

Let D ' = {*i}"=o be a refinement of D, then 

i n (i + Q2) - 1 1 = 
D' 

n (i + G 2 ) - n i 1= E f n i l [i + Gi2-i] 

[ n (i + G2)] 
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< M S Q2 
D' 

< € . 

HenceIJ£(1 + G2) exists and is 1. 

Theorem 4 establishes a relationship between the equivalence of 
sum integrals and the equivalence of product integrals for functions 
from R X R to R. 

THEOREM 4. If each of F and G is a function from RX R to R then 
the following two statements are equivalent: 

(1) J Ì G = /S Fand ß G2 = ß F2 = 0,and 

( 2 ) n S ( l + G ) = n S a + ^ / O and ü ^ (l + F 2 ) = n S ( l + 
G2) = 1. 

PROOF. 

A. Suppose (1) is true. From Theorem C, |"J£ (1 + F) exists, 
I l e a + G) exists, and In £ [£ (1 + F) = ß F = J* G = In n S ( l 
+ G). Hence, U S (1 + F) = H S (1 + G). 

Since J* F2 = J* G2 = 0, /J F 4 = J J G 4 = 0 so that we have, 
again from Theorem C, that f [ g ( l + F2) exists, f [ 2 ( l + G 2) ex i s t s> 
and 

In J ] (1 + F2) = \h F2 = 0 = f b G2 = In J ] (1 + G2)-
a Ja Ja 

Hence ,nS (1 + F2) = Ü * (1 + G2) = 1. 
Therefore if (1) is true then (2) is true. 
B. Suppose (2) is true. Since [ ]S (1 + F2) = [ ] a ( l + G2) = 1, 

from Theorem 3, ft G2 = pa F
2 = 0. Since JJ G2 = 0 and 

I!« (1 + G) j4 0, from Theorem C, H £ ( l + G) exists and is 
exp(/S G), and similarly, f]S (1 + F) = exp(/S F). Since f [è ( l + 
G ) = n S ( l + F ) , t h e n ß G = ß F. 

The following example is of a function G having the property that 
J.1! G exists and J!1! G2 is non-zero. Thus, Theorem 3 of [2] can 
not be used to determine the value of J\-i 0- + G) nor can it be 
used to determine whether or notfjix (1 + G) even exists. 

EXAMPLE. Suppose g is defined by 
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g(*) = 1 

if 0 < x ^ land x is in 

r 1 n + 3 I 
L n + 1 ' (n + l)(n + 2) J ' 

for some positive integer n, 

r n + 3 -1 
L* ( n + l)(n + 2)J ' 

(n + l)(n + 2) 
2 

I 0, 
and G is defined by 

G(x,t/) = 

n + 3 

(n + l)(n + 2) 

if 0 < x ~ 1 and x is in 

r n + 3 l l 

L(n + l ) (n+2) ' nJ ' 

for some positive integer n, 

i f x = 0 

g(y) - g(x), if 0 g x < y < 1 

7TX 

sm 4 ' if 0 < x < t/ = 1 

0, i f - l ^ x < t / g 0 

Then (1) J^ G exists and is V2 4- 1/V2, since 

= 0 + £ G i 

— 

= 

—> 

D- {%„) 

g(*n-l) -

(2K3)r 
2 L 

V2+ 1 

+ G(xn 

g(0) + 

n - 1 ~~ 

asxn_i 

- 1 ? x n ) 

sm 
4 

— 1 
(2)(3)J 

-1 

+ sin 
7 T X n _ 1 

4 
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(2) X! i G 2 is notO, and 
(3) G is not of bounded variation on [ — 1,1]. 
Hence the hypothesis of Theorem 3 in [2] is not satisfied. How

ever, the hypothesis of Theorem 5 of the present paper is satisfied and 
hence f j i i (1 + G) exists and is€/V2. 

Furthermore, if J£ G2 is required to be 0 and ft G exists, then 
G may still fail to be of bounded variation on [a, b]. So the necessity 
of (2) and (4) in Theorem 5 can be seen. 

THEOREM 5. Suppose G is a junction from fix R to R defined on 
[a, b] such that 

(1) ft G exists, 

(2) there is a subdivision D = fa}"=0 °f [a> b] such that if [p, q] 
is a subset of (xi_l,xi) for some 0 < i ^ n, then 
IP

qG* = 0, 

G(x, y), ifx jL xi9 i = 0 ,1 , • • • n, 

y ^ Xi, i = 1,2, • • -,n 

(3) H(x, y) = G(y-, y), ifx=xh i = 0 ,1 , • • n - 1. 

G(x, x+), if y = Xi, i = 1, 2, • • • n. 
and (4) for each x{, i = 0 ,1 , • • • n,in D, there is a segment (ci9 di) con

taining Xi such that G is of bounded variation on [cif d{]. 

Then,Y\% (1 + G) exists and is 

{exp ( \b
a H ) } { n [1 + G(xr, Xi)] J {"n [1 + G(Xi, xt+)] } . 

It should be noted that if for some 0 < i ^ n, JXi_l G
2 = 0, then 

G(Xi~, Xi) = 0 and G(xi_l, x+
i_1 ) = 0. 

In order to establish Theorem 5 we need the following seven lemmas. 

LEMMA 1. Suppose (1), (2), and (4) of the hypothesis of Theorem 5 
are satisfied, € > 0, and 0 < i ^ n, then there is an x in ( x ^ , x{) 
and a y in (*i_i, x{) such that ifXi_Y < p < q=iX and y^r<s<xi9 

then (A) \G(p, q)\<€ and (B) \G(r, s)\<e. 

PROOF. Suppose the conclusion is false, then for each x in (aCi_i, x{) 
there is a p and a q such that x{_x < p < q ^ x and \G(p, q) | ̂  e. 

Since G is of bounded variation on [Cj_1? d{_i], there is a number M 
and a subdivision Dx = {ri}z

i=0 of [x{_lydi\ such that if D ' = {pi}™=0 

is a refinement of Di9 then ]£D, |G(pi_l9 pi)\ < M. Let Q be a positive 
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integer such that Q > 2M/e. Let {[«(, ft] }f=l denote a sequence of 
intervals such that for each 0 < i ê Q, 

(1) xi_1<ai<ßi^di, 

(2) ft+1 < ai, 

and (3) |G(o»,A)|£ | . 

Let D ' - D j + S i i i {«i} + 2.9=i { f t }={p«}Eo denote a sub
division of [*j_i,dj] which is a refinement of Di. Then, 

M > S |G(P i_1 ) P j) | 
D' 

Q 

^ S |G(afcA)| 

Q 

2 V 

e _2M 
2 ' e 

= M, which is a contradiction. 

Hence (A) is true. 
A similar argument may be used to show (B) is true. 

The following lemma is stated for convenience. 

LEMMA 2. If \A - B\ < e and \c - D\ < e, then \Ac - BD\ < 
€ [ | c | + | B Q . 

LEMMA 3. Suppose (1), (2), and (4) of the hypothesis of Theorem 5 
are satisfied and 0 < i ^ n, then Qxj. i , xt_1) and Gfo", **) exisf. 

PROOF. Let € > 0, then from Lemma 1 there is an x > Xi_Y such that 
if Xj_! < p < q ^k x, then \G(p, q)\ < e/2 and from Theorem E there 
is a subdivision DY of [xi_l, xj such that if D ' = {Pj}jl0 is a refine
ment of Dj and D, — {yk}k=o *s a subdivision of [pj-i, Pj], for some 
0 < j ^ m, then |]TD. Gfc - G ^ , Vj)\ < eß. 

Let x̂ _x < z < x and x^i < z < px and let s and £ be numbers such 
that x{_x < s < z and x^i < t < z. Hence Dl + {z} is a refinement 
of DY and {x^^ s, t, px} is a subdivision of [p0, z] so that 
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iGfa.!, s) + G(s, t) - G ^ . i , t)\< €/2 

and \GiXi_u s) - Q x ^ , t)\ < e/2 + |G(s, *)| < €. 
Therefore lims_>x._1+ G(Xi_i, s) = G(xi_l, x ^ ^ ) exists. A similar 

argument shows that G(Xf", x») exists. 

LEMMA 4. /f fhe hypothesis of Theorem 5 is satisfied then lh
a H

2 

= 0. 

PROOF. Let 1 > € > 0 and 0 < i ^ n. 

Since G is of bounded variation on [ci? di], and on [Cj_x, di_x], Xi is 
in (e», di), and Xi_L is in (ci_l, dj_i), there is a number M, a subdivision 
D2 of [x^x, d^x] , and a subdivision D3 of [cif x{] such that if D' = 
{Pi}ïï=o is a refinement of D2 or D3 then ^ D r I G ^ ^ , p») | < M. 

From Lemma 1 there is an x in (Xi_b d»_i) and a t/ in (ciy x{) such 
that if x{_x < p < q^x and t/ < r < s ^ x̂  then |G(p, q)\ < e/4M, 
|G(r ,s) |<€/4M, |G(p, </) |<e/3, and |G(r, s)| < c/3. Since [x,y] 
is a subset of (*<_!, x»), /^ G2 = 0, and since H(p,q) = G(p,q) for 
each p in [x, (/], q in [x, t/], then $y

x JF/2 = 0. 
Since f% H2 = 0 there is a subdivision DY of [x, t/] such that if 

D ' = {pt}Ilo i s a refinement of D1? then [£Df [H(pi_l9pi)]2\ < e/4. 
Let D4 = Dl + D2 4- D3 and D ' = {p^^o be a refinement of D4. 
Then 

E D » [ H ( P Ì - I . P Ì ) ] 2 I 

= I [H(Pi-l,Pi)]2 + S [^(Pi-l,Pi)]2 + 
D'-[xi-i,x] D'-[xty] 

X [H(p<-i,p<)]2 

= [H(po,Pi)]2 

< [H(po,pù]2 

+ S [tf(pi-i,Pi)]2 

D'[Pi,Jt] 

+ S [n(pi-i,Pi)]2 

D'[x,y] 

+ S [ » ( P i - b P O l ^ l H ^ - L p J ] 2 

+ S [H(p*-i>Pi)]2+f 
D'[p„x] 4 

+ S [«(Pi-l>P()]2 

D'-[»J»m-ll 

+ [H(Pm-l,pm)]2 
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- |G(pr , P l ) | 2 + S \G(Pi-i,Pi)\2+ f 
D'-[p„*] * 

+ S \G(Pi-i,Pi)\2+\G(pm-i,pÙ-i)\2 

D ' [ y . p m - i J 

+ - . , L , I G < P ' - ' " " , I + ^ 

< € . 

Therefore J ' ^ H2 = 0 for 0 < i g n. Hence /J H2 = 0. 

LEMMA 5. Suppose the hypothesis of Theorem 5 is satisfied and 
0 < i ^ n, tften J£| H existe. 

PROOF. Let e > 0, then from Theorem B, there is a subdivision Di 
of [Xi_],xJ such that if D ' = {Pj}JL0 is a refinement of Dl then 

sr-iiCG-Gte-i,»)^«^. 
From Lemma 3, G(xi~, x{) exists, G(xi_l, x+i_l) exists and there is an 

x in [Xi_x, Xi] and a t/ in [x^^xj such that if Xf_x < p^ x and 
y=q<xi9 then 

(1) i G f o ^ . p ) - q ^ x V i J ^ e P 

and (2) \G(qf x,) - G(x r, x«)| < €/7. 

From Lemma 4, /x
x,_ H2 = 0 so that there is a number r in 

(Xi-i,Xi) and a number s in (x^!,x$) such that if xi_l< p^ r and 
5 g <7 < Xi then (//(x^j, p) | < e/7 and |H(qf, xf) | < €/7. 

Let D2 = Dx -h {x} + {y} + {r} + {s} and D ' = { f t } ^ be a 
refinement of D2. Then 

I 2 H, - fXi G - G(x,-, x,) - Gfo-i, * V-i) I 

g |H(po,p1)|+ \H(pm-l9pm)\+ I 2 H, 
D ' - { p 0 } - { P m } 

- /r° i + ir ; , c -<*>-•• * > i 
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+ l ! L G - G ( ^ ^ l 
+ |Gte-i,Pi)-Gfe-i^ti)l 
+ ÌGiptn-itXj-Gix-kXi)] 

7 7 7 7 7 7 7 

Hence, /*' H exists. 
x t - i 

LEMMA 6. Suppose the hypothesis of Theorem 5 is satisfied and 
0 < i § n, and e > 0, then there is an x in (Xi_i, x*) and a y in 
(x*_ i, Xi) such that ifx{_ i < r ^ x and y = s^ xif then 

|[1 + H(Xi_ur)]-l\<€ + land\[l+ H(s,Xi)]~l\<€ + 1. 

PROOF. Lemma 6 follows directly from Lemma 4. 

LEMMA 7. Suppose the hypothesis of Theorem 5 is satisfied and 
0 < i ^ n, £/ien £foere is a number M and a subdivision Dlof[xi_l,xi\ 
such that ifD'= {pJ}

n)=u is a refinement ofDi then 

I n (i + c,) I < M. 
1 D'-{p0}-fpm} • 

PROOF. From Lemmas 4 and 5 and Theorem C, J J £_j (1 + ff) exists. 
Lemma 7 then follows immediately from the definition of H and 
Lemma 6. 

PROOF OF THEOREM 5. Suppose 0 < i ^ n and € > 0. 
From Lemma 3, G(xi_l,x+_r) and G{xcx{) exists and there is a 

subdivision Dx of [Xj_i, x4] and a number M > e such that if D ' = 
{Pj}"Lo *s a refinement of Dj, then, if 0 <j^m, 

(1) |1 + G(p0,Pi)l < M and 11 + G(pm^>Pm)\ < M 

(2) | l + G ( p m - , p m ) | < M 

(3) | l + G(po ,Po + ) l<M 

(4) |G (po ,P i ) -G(p 0 , po + ) l<7 /32M 2 

(5) iGKpm-x, pm) - G(pm-, Pm)\ < 7/32M2 

(6) | exp (}*' H ) | <M 

(7) I n (i + ç ) I < M-
I n'— In \— In \ ' D'-{Po}-{p 
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From Lemma 1, H(xi_1? xVi) = 0, H(xi~, x<) = 0, and there is a 
number x / in [x^^x*] and a number x" in [Xj_1?x*] such that if 
x ^ < p < q g Xi ' and x/' ^ r < s < x{ then \H(p, q)\ < *I8M and 
\H(r,s)\ < €/8M. From Lemma 4, / ^ x JF/2 = 0 and from Lemma 5, 
/•^_1 H exists, so that from Theorem C, YV*i-i (1 "*" ̂ 0 ex^s anc^ is 
exp(/ï.f_1 H). Hence there is a subdivision D2 of [Xi_x, x*] such that 
if D ' = {pi}t1o i s a refinement of D2, then \f[D, (1 + H*) - f l ^ - i (* 
+ H)| < €/8M2. Let D3 = Dx + {*,'} -f {x/'} + D2 and let D ' = 
{Pj}™ =obe a refinement of D3. Let k0, km, and W denote numbers 
such that 

(1) /£(*_!, Pi) + &0 = H(p09 Pl) + fc0 = /(Po, Po+) = 0, 

(2) H(pm-l9 pm) + km = H(pm_l9 Xi) + km = H(pw-, pTO) = 0, 

( 3 ) |fco1 < HHMP' | f c J < 16A^' '*o1 < 1 ' a n d 

(4) W = e x p ( | ^ ff)[l+Gfa- * ) ] [ ! + G ^ x V i ) ] . 

Then 

inD- (i + q.) - w| 

= I [i + apo,pi)] \ n d + q)l 

[l+G(pM-x,pm)] - W | 

= | [ l + G(po,Pi)][l + G(pm_i,pm)] 

[ I l (1 + Q)1 [l + H(po,Pi) + *o] 
D'-{Po>_<Pm} 

[l + tf(pm_1)Pm) + fcm] - W | 

= I [l + G(po,Pi)][l+G(pm_1,pm)] 
F 11 (1 + ^ ) 1 [l + H(Po,Pi)][l + H(pm-!,pm)] 
L D' - {p 0 } - tPm} J 

+ [l + G(po,Pi)][l + G(pm_1>pJ] 

F I I (1 + Gj)] [kokm] 



44 J. A. CHATFIELD 

+ [1 + G(p0,Pi)][l + G(pm^,pm)] 

I l ( l + q ) l [l + H(po,Pl)][fcm] 

+ t 

< |[1 

+ | 

+ 2 

+ 2 

D'-fPoJ-IP™) 

+ G(p0,p1)][l+G(pm_1)pm)] 

u (1 + Gj)] [1 + «(?,,,_„ p j ] [fco] - W 
D'-[poP-[pm] J 

+ G(po,p!)] [1 + G{pm^,pm)] \ u (1 + Hi) 1 - W I 
L D' J ' 

[1 + G(p0,p1)][l+ G(pm_!,pm)] 

n a + Q) ] [*ou | 
D'-{p0}-{pm 

•[l+G(po,Pi)][l + G(P»-i.P»)] 

n (i + G,)] [fcj | 
D'-{P0}-(Pm} 

|[1 + G(po,Pi)] [1 + Gipm-upJ] 

n a + G,)] [fco]I 
D'-{p0}-{Pm} 

< I • I + M3 • (1) • -^— + M3 • —— + M3 • -^— 
1 ' K ' 8M3 8M3 8M3 

= ^ + | [1 + G(po,Pi)] [1 + Gip^pJ] [ I ] (1 + H,)] - w | 

^ + |1 + G(po,p!)| • |1 + G{pm^,pm)\ • 
O 

• I n (i + H ) - n (i + Hj)| 

+ [1 + G(p0,p!)] [1 + G(pm_ !, p j ] 11(1 + H) - W 
I x i _ l • 

< ^ + M a ~ + I [l + G(po,Pi)] 
8 8M2 

[1+ G0»m_i,pJ] exp( J"*'̂  H ) 
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- exp ( j " * ^ H ) [1 + Gixt-.xi)] [1 + G(x,_1,x1ÎL1)] j 

~ | + | exp ( J * ^ H ) | • | [1 + GKXÌ-LPI) ] [1 +. G ^ , * ) ] 

- [l + G ^ r . ^ l t l + G ^ i . x t ^ ) ] | 

+ | 1 + Gfo.^xVi)!] , (Lemma2) 

< f + M -3& [ M + M ] 

< € . 

Hence, for 0 < i â n , J | x ^ (1 + G) exists and is 

exp ( J ^ H ) [1 + Gixr, Xi)] [1 + G ^ . i , x+_i )] • 

Then, from Theorem D, J | £ (1 H- G) exists and is 

exp ( £ H ) {A [1 + <%"*<)] } { fi1 E1 + Gfo>*+)] } • 

Note: Results related to Theorem 5 may be found in [4, Theorem 
1.7]. 
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