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PRODUCT INTEGRALS AND CONTINUITY 
J. A. CHATFIELD 

ABSTRACT. Suppose R is the set of real numbers and G is 
a function from R X R to R. 

One type of continuity for G is to require that f%G2 = 0 
for G to be continuous on [a, b]. Jon C. Helton, the author, 
and others have investigated product integrals and sum inte­
grals of interval functions and their relationship to this type of 
continuity. This paper examines interval functions which may 
not have this type of continuity. In an earlier paper [2] it is 
shown that if G has this type of continuity and /*JG exists, 
then u à (1 + G) exists and is exp(J^G). Using several 
conditions on G including the condition that / £ G exists but 
not the condition that / £ G = 0, the main theorem (Theorem 
5) of this paper shows that Yla (1 + G) exists and gives an 
evaluation of ü a U + G). A stronger continuity require­
ment is to require u à (1 + G2) = 1 a n ( l m Theorems 3 and 
4 a relationship between these two types of continuity is estab­
lished. 

1. Definitions, Notations, and Basic Theorems. All functions are 
from RX R to R, where R denotes the set of real numbers and all 
integrals are of the subdivision-refinement type, [a, b] and (a, b) will 
be used to denote the set to which p belongs if and only if a â p = b 
or a < p < b, respectively. D = fa} f=0 is a subdivision of [a, b] means 
(1) D is a finite subset of [a, b] and (2) a = x0 < xx < x2 < ' ' ' < xn 

= b. D' is a refinement of the subdivision D of [a, b] means (1) D' is 
a subdivision of [a, b] and (2) D is a subset of D '. 

If D ' = {Xi} "=0 is a refinement of the subdivision D = {pj } JL0 of [ a, b] 
and G is a function from RX R to R then the following nota­
tions will be used when no misinterpretation is likely: 

(l) S Q = i G(*i-i,*i) 
D' i = l 

D' 

and fi (1+Q)= Il [l + Gft.!,*)]; 
D' i = l 
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32 J. A. CHATFIELD 

(2) S G - 2GK**-i.**) 
D [Pj-l.Pj] Q 

and [ I (1 + Q) = n [1 + G(xk_lf xk)], 
D'-bj-LPji ^ 

where Q = {xk}l=0 denotes the subdivision of [pj-i, pj\ for some 0 < j 
^ m consisting of the numbers of D' in -[pj^^pj], 

(3) G(p,p+)= lim G(p,x) 

and G(p~, p) = limG(x, p). 
x-+p~ 

Gis: 
(a) bounded on [a, b] means there is a subdivision D of [a, b] and 

a number M such that if D ' = {£t}?=o is a refinement of D and 
0 < i ^ n, then iGfo.x, x<)| < M. 

(b) product bounded on [a, b] means there is a number M and a 
subdivision D of [a, b] such that if D ' = {̂ t}T=o *s a refinement of D 
andO < p < 9 ^ n, then J I?-p (1 + Q) | < M. 

(c) of bounded variation on [a, b] means there is a number M and 
a subdivision D of [a, b] such that if D ' is a refinement of D, then 
2 D ' I Q I < M . 

It should be noted that the set of functions having property (c) consti­
tute a proper subset of the set of functions having property (b). 

The sum integral of G exists on [a, b] means there is a number A 
such that if c > 0 then there is a subdivision D of [a, b] such that if 
D ' = {Xj}t

n
=0 is a refinement of D, then ££D, G* — A| < c. A will be 

denoted by Sì G. 
The product integral of G exists on [a, b] means there is a number 

A such that if c > 0 then there is a subdivision D of [a, b] such that if 
D' = {*i}r=o is a refinement of D, then \Y\D' [1 + Q] — A| < c. 
A will be denoted by f ]a (1 + G). 

Definitions of words, phrases, or symbols used, but not defined, may 
be found in [3]. 

The following theorems are used later and are stated here for con­
venience. 

A. [8, p. 151]. Ifnis an integer greater than 1 and each of {ai}
T\=l 

and {bi}f=1 is a sequence of numbers, then 
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n «.- ri bt= t (iibj\ai-bi)( n * ) . 
where 

ri **- ft * - i . 
j= l fc=n+l 

B. [3, Theorem 4.1]. Suppose G is a function from R X R to R, 
fa

bG exists, and for each a^x< t/ = &, H(x,t/) = |G(x,y) — Sy
xG\. 

Then, lh
a H exists and is 0. 

C. [2, Theorem 3] . If G is a function from RX R to R and 
Sa

bG2 = 0 then the following two statements are equivalent: 
(1) /S G exists and 
(2) I la (1 + G) exists and is not zero. 

Furthermore, if either (1) or (2) is true, then S^G= l n j | a ( l + G). 

D. If f i g (1 + G) exists and \\b (1 + G) existe, tfien []a (1 + G) 
existe and i s l ]a (1 + G) • ufo (1 + G)-

The following theorem follows directly from Theorem B. 

E. If G is a function from RX Rto R, f^G exists and e > 0, then 
there is a subdivision D of [a, b] such that ifD'= {a*}T=o ^s a refine­
ment ofD,0<i^n, and D{ = {pj} JL0 is a subdivision of [Xj_i, Xi], 
then |5)D. Q ~~ G(xi_1, x*)| < e. 

F. [3, Theorem 4.2]. If Gis a junction from RX Rto R such that 
Y\a (1 + G) existe and for each x < y 

H ( x , y ) = | [ l + G ( x , y ) ] - tf (1 + G)L 

f/ien /J H exists and is 0. 

2. Theorems. Theorems 1-4 establish relationships between sum 
integrals and product integrals using the two similar continuity 
conditions]}« (1 + G2) = 1 and J£ G2 = 0. 

THEOREM 1. / / Y[a (1 + G2) = 1 and e > 0, ffoen f/iere is a sub­
division Dof[a, b] such that ifD'= {**} "=0 is a refinement ofD then 
for each 0 < i § n , ^ ( x ^ , Xj)| < €. 

PROOF. Since IJS (1 + G2) = 1 and €2 > 0 there is a subdivision 
Dof [a, b] such that if D ' = {x{} "=0 is a refinement of D, then 
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e* > n (1 + G2) - 1 
D' 

= n a + da) - n M 
I D' D> » 

= 1 s r f i i 1 [i+G,2-i] r n (i+Q2)i I 

= E G,2 ( n a + Q2) ) 
^ 2 IGI2-

D' 

Hence for 0 < i ^ n , € 2 > | Q 2 | a n d € > |Q| . 

THEOREM 2. If f ]£ (1 + G2) = 1 and Il£ (1 + G) existe then if 
e > 0 £here is a subdivision D of [a, b] such that if D' = {Xj}"=0 is a 
refinement ofD, then O ^ - i (1 + ^ ) ~~ M < €for eac^ ® < i = n-

PROOF. Suppose theorem is false. Then there is an e > 0 such that 
if D is a subdivision of [a, b] there is a refinement D ' = {Xi}?=0 of D 
such that 0 4 - ! (1 + G) - 1| ^ € for some 0 < i ^ n. From Theorem 
1 and Theorem F there is a subdivision D of [a, b] such that if D ' = 
{*i}[*=() is a refinement of D and 0 < i ^§ n, then |G(xi_1, Xi)| < e/2 
and j n t i (1 + G) - [1 + Gfa-i , x*)] | < e/2. 

There is a refinement D ' of D and an X; in D ' such that 

I f l ( l + G ) - l | ^ 6 . 
* t - l 

Therefore, 

«= I ft (1 + G ) - [l + G(*i-i,*i)] + [ I + G^XJ.LX,)] - l l 
I xi-\ ' 

S I ft (1 + G)- [l + Gfo.!,*)] I 

+ {[l + GiXi^xt)] - 1 | 

<-*- + -*-
2 2 ' 
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and € < € so that the assumption is false and the theorem is true. 

THEOREM 3. The following two statements are equivalent: 
(1) Y\ì (1 + G2) exists and is 1, and 
(2) lh

a G
2 exists and is 0 and G2 is product bounded on [a, b]. 

PROOF. 

A. Suppose (1) is true and € > 0. Then there is a subdivision D of 
[a, b] such that if D ' = {x»}r=o i s a refinement of D, then 

€ > | n (i + Q2) -11 

= I n a + G*) - n 11 
• D' D' • 

= I E [ f f i i t i + G^-i] r n (i + G,2)] | 

i= S Gf
2 

D' 

Thus ß G2 = 0. 
Also note that if 0 < p < q ^ n t h e n f ] ? ^ (1 + G2)^HD,(1 + G2) 

< 1 + €, so that G2 is product bounded on [a, b]. 
B. Suppose (2) is true and € > 0. Then there is a subdivison D of 

[a, b] and a number M such that if D ' = {Xi}"=0 is a refinement of D, 
then 

(1) if 0 < p < q ^ n, then f i (1 + G2) < M, 

and 

(2) X G2<^-. 

Let D ' = {*i}"=o be a refinement of D, then 

i n (i + Q2) - 1 1 = 
D' 

n (i + G 2 ) - n i 1= E f n i l [i + Gi2-i] 

[ n (i + G2)] 
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< M S Q2 
D' 

< € . 

HenceIJ£(1 + G2) exists and is 1. 

Theorem 4 establishes a relationship between the equivalence of 
sum integrals and the equivalence of product integrals for functions 
from R X R to R. 

THEOREM 4. If each of F and G is a function from RX R to R then 
the following two statements are equivalent: 

(1) J Ì G = /S Fand ß G2 = ß F2 = 0,and 

( 2 ) n S ( l + G ) = n S a + ^ / O and ü ^ (l + F 2 ) = n S ( l + 
G2) = 1. 

PROOF. 

A. Suppose (1) is true. From Theorem C, |"J£ (1 + F) exists, 
I l e a + G) exists, and In £ [£ (1 + F) = ß F = J* G = In n S ( l 
+ G). Hence, U S (1 + F) = H S (1 + G). 

Since J* F2 = J* G2 = 0, /J F 4 = J J G 4 = 0 so that we have, 
again from Theorem C, that f [ g ( l + F2) exists, f [ 2 ( l + G 2) ex i s t s> 
and 

In J ] (1 + F2) = \h F2 = 0 = f b G2 = In J ] (1 + G2)-
a Ja Ja 

Hence ,nS (1 + F2) = Ü * (1 + G2) = 1. 
Therefore if (1) is true then (2) is true. 
B. Suppose (2) is true. Since [ ]S (1 + F2) = [ ] a ( l + G2) = 1, 

from Theorem 3, ft G2 = pa F
2 = 0. Since JJ G2 = 0 and 

I!« (1 + G) j4 0, from Theorem C, H £ ( l + G) exists and is 
exp(/S G), and similarly, f]S (1 + F) = exp(/S F). Since f [è ( l + 
G ) = n S ( l + F ) , t h e n ß G = ß F. 

The following example is of a function G having the property that 
J.1! G exists and J!1! G2 is non-zero. Thus, Theorem 3 of [2] can 
not be used to determine the value of J\-i 0- + G) nor can it be 
used to determine whether or notfjix (1 + G) even exists. 

EXAMPLE. Suppose g is defined by 
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g(*) = 1 

if 0 < x ^ land x is in 

r 1 n + 3 I 
L n + 1 ' (n + l)(n + 2) J ' 

for some positive integer n, 

r n + 3 -1 
L* ( n + l)(n + 2)J ' 

(n + l)(n + 2) 
2 

I 0, 
and G is defined by 

G(x,t/) = 

n + 3 

(n + l)(n + 2) 

if 0 < x ~ 1 and x is in 

r n + 3 l l 

L(n + l ) (n+2) ' nJ ' 

for some positive integer n, 

i f x = 0 

g(y) - g(x), if 0 g x < y < 1 

7TX 

sm 4 ' if 0 < x < t/ = 1 

0, i f - l ^ x < t / g 0 

Then (1) J^ G exists and is V2 4- 1/V2, since 

= 0 + £ G i 

— 

= 

—> 

D- {%„) 

g(*n-l) -

(2K3)r 
2 L 

V2+ 1 

+ G(xn 

g(0) + 

n - 1 ~~ 

asxn_i 

- 1 ? x n ) 

sm 
4 

— 1 
(2)(3)J 

-1 

+ sin 
7 T X n _ 1 

4 
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(2) X! i G 2 is notO, and 
(3) G is not of bounded variation on [ — 1,1]. 
Hence the hypothesis of Theorem 3 in [2] is not satisfied. How­

ever, the hypothesis of Theorem 5 of the present paper is satisfied and 
hence f j i i (1 + G) exists and is€/V2. 

Furthermore, if J£ G2 is required to be 0 and ft G exists, then 
G may still fail to be of bounded variation on [a, b]. So the necessity 
of (2) and (4) in Theorem 5 can be seen. 

THEOREM 5. Suppose G is a junction from fix R to R defined on 
[a, b] such that 

(1) ft G exists, 

(2) there is a subdivision D = fa}"=0 °f [a> b] such that if [p, q] 
is a subset of (xi_l,xi) for some 0 < i ^ n, then 
IP

qG* = 0, 

G(x, y), ifx jL xi9 i = 0 ,1 , • • • n, 

y ^ Xi, i = 1,2, • • -,n 

(3) H(x, y) = G(y-, y), ifx=xh i = 0 ,1 , • • n - 1. 

G(x, x+), if y = Xi, i = 1, 2, • • • n. 
and (4) for each x{, i = 0 ,1 , • • • n,in D, there is a segment (ci9 di) con­

taining Xi such that G is of bounded variation on [cif d{]. 

Then,Y\% (1 + G) exists and is 

{exp ( \b
a H ) } { n [1 + G(xr, Xi)] J {"n [1 + G(Xi, xt+)] } . 

It should be noted that if for some 0 < i ^ n, JXi_l G
2 = 0, then 

G(Xi~, Xi) = 0 and G(xi_l, x+
i_1 ) = 0. 

In order to establish Theorem 5 we need the following seven lemmas. 

LEMMA 1. Suppose (1), (2), and (4) of the hypothesis of Theorem 5 
are satisfied, € > 0, and 0 < i ^ n, then there is an x in ( x ^ , x{) 
and a y in (*i_i, x{) such that ifXi_Y < p < q=iX and y^r<s<xi9 

then (A) \G(p, q)\<€ and (B) \G(r, s)\<e. 

PROOF. Suppose the conclusion is false, then for each x in (aCi_i, x{) 
there is a p and a q such that x{_x < p < q ^ x and \G(p, q) | ̂  e. 

Since G is of bounded variation on [Cj_1? d{_i], there is a number M 
and a subdivision Dx = {ri}z

i=0 of [x{_lydi\ such that if D ' = {pi}™=0 

is a refinement of Di9 then ]£D, |G(pi_l9 pi)\ < M. Let Q be a positive 
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integer such that Q > 2M/e. Let {[«(, ft] }f=l denote a sequence of 
intervals such that for each 0 < i ê Q, 

(1) xi_1<ai<ßi^di, 

(2) ft+1 < ai, 

and (3) |G(o»,A)|£ | . 

Let D ' - D j + S i i i {«i} + 2.9=i { f t }={p«}Eo denote a sub­
division of [*j_i,dj] which is a refinement of Di. Then, 

M > S |G(P i_1 ) P j) | 
D' 

Q 

^ S |G(afcA)| 

Q 

2 V 

e _2M 
2 ' e 

= M, which is a contradiction. 

Hence (A) is true. 
A similar argument may be used to show (B) is true. 

The following lemma is stated for convenience. 

LEMMA 2. If \A - B\ < e and \c - D\ < e, then \Ac - BD\ < 
€ [ | c | + | B Q . 

LEMMA 3. Suppose (1), (2), and (4) of the hypothesis of Theorem 5 
are satisfied and 0 < i ^ n, then Qxj. i , xt_1) and Gfo", **) exisf. 

PROOF. Let € > 0, then from Lemma 1 there is an x > Xi_Y such that 
if Xj_! < p < q ^k x, then \G(p, q)\ < e/2 and from Theorem E there 
is a subdivision DY of [xi_l, xj such that if D ' = {Pj}jl0 is a refine­
ment of Dj and D, — {yk}k=o *s a subdivision of [pj-i, Pj], for some 
0 < j ^ m, then |]TD. Gfc - G ^ , Vj)\ < eß. 

Let x̂ _x < z < x and x^i < z < px and let s and £ be numbers such 
that x{_x < s < z and x^i < t < z. Hence Dl + {z} is a refinement 
of DY and {x^^ s, t, px} is a subdivision of [p0, z] so that 
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iGfa.!, s) + G(s, t) - G ^ . i , t)\< €/2 

and \GiXi_u s) - Q x ^ , t)\ < e/2 + |G(s, *)| < €. 
Therefore lims_>x._1+ G(Xi_i, s) = G(xi_l, x ^ ^ ) exists. A similar 

argument shows that G(Xf", x») exists. 

LEMMA 4. /f fhe hypothesis of Theorem 5 is satisfied then lh
a H

2 

= 0. 

PROOF. Let 1 > € > 0 and 0 < i ^ n. 

Since G is of bounded variation on [ci? di], and on [Cj_x, di_x], Xi is 
in (e», di), and Xi_L is in (ci_l, dj_i), there is a number M, a subdivision 
D2 of [x^x, d^x] , and a subdivision D3 of [cif x{] such that if D' = 
{Pi}ïï=o is a refinement of D2 or D3 then ^ D r I G ^ ^ , p») | < M. 

From Lemma 1 there is an x in (Xi_b d»_i) and a t/ in (ciy x{) such 
that if x{_x < p < q^x and t/ < r < s ^ x̂  then |G(p, q)\ < e/4M, 
|G(r ,s) |<€/4M, |G(p, </) |<e/3, and |G(r, s)| < c/3. Since [x,y] 
is a subset of (*<_!, x»), /^ G2 = 0, and since H(p,q) = G(p,q) for 
each p in [x, (/], q in [x, t/], then $y

x JF/2 = 0. 
Since f% H2 = 0 there is a subdivision DY of [x, t/] such that if 

D ' = {pt}Ilo i s a refinement of D1? then [£Df [H(pi_l9pi)]2\ < e/4. 
Let D4 = Dl + D2 4- D3 and D ' = {p^^o be a refinement of D4. 
Then 

E D » [ H ( P Ì - I . P Ì ) ] 2 I 

= I [H(Pi-l,Pi)]2 + S [^(Pi-l,Pi)]2 + 
D'-[xi-i,x] D'-[xty] 

X [H(p<-i,p<)]2 

= [H(po,Pi)]2 

< [H(po,pù]2 

+ S [tf(pi-i,Pi)]2 

D'[Pi,Jt] 

+ S [n(pi-i,Pi)]2 

D'[x,y] 

+ S [ » ( P i - b P O l ^ l H ^ - L p J ] 2 

+ S [H(p*-i>Pi)]2+f 
D'[p„x] 4 

+ S [«(Pi-l>P()]2 

D'-[»J»m-ll 

+ [H(Pm-l,pm)]2 
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- |G(pr , P l ) | 2 + S \G(Pi-i,Pi)\2+ f 
D'-[p„*] * 

+ S \G(Pi-i,Pi)\2+\G(pm-i,pÙ-i)\2 

D ' [ y . p m - i J 

+ - . , L , I G < P ' - ' " " , I + ^ 

< € . 

Therefore J ' ^ H2 = 0 for 0 < i g n. Hence /J H2 = 0. 

LEMMA 5. Suppose the hypothesis of Theorem 5 is satisfied and 
0 < i ^ n, tften J£| H existe. 

PROOF. Let e > 0, then from Theorem B, there is a subdivision Di 
of [Xi_],xJ such that if D ' = {Pj}JL0 is a refinement of Dl then 

sr-iiCG-Gte-i,»)^«^. 
From Lemma 3, G(xi~, x{) exists, G(xi_l, x+i_l) exists and there is an 

x in [Xi_x, Xi] and a t/ in [x^^xj such that if Xf_x < p^ x and 
y=q<xi9 then 

(1) i G f o ^ . p ) - q ^ x V i J ^ e P 

and (2) \G(qf x,) - G(x r, x«)| < €/7. 

From Lemma 4, /x
x,_ H2 = 0 so that there is a number r in 

(Xi-i,Xi) and a number s in (x^!,x$) such that if xi_l< p^ r and 
5 g <7 < Xi then (//(x^j, p) | < e/7 and |H(qf, xf) | < €/7. 

Let D2 = Dx -h {x} + {y} + {r} + {s} and D ' = { f t } ^ be a 
refinement of D2. Then 

I 2 H, - fXi G - G(x,-, x,) - Gfo-i, * V-i) I 

g |H(po,p1)|+ \H(pm-l9pm)\+ I 2 H, 
D ' - { p 0 } - { P m } 

- /r° i + ir ; , c -<*>-•• * > i 
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+ l ! L G - G ( ^ ^ l 
+ |Gte-i,Pi)-Gfe-i^ti)l 
+ ÌGiptn-itXj-Gix-kXi)] 

7 7 7 7 7 7 7 

Hence, /*' H exists. 
x t - i 

LEMMA 6. Suppose the hypothesis of Theorem 5 is satisfied and 
0 < i § n, and e > 0, then there is an x in (Xi_i, x*) and a y in 
(x*_ i, Xi) such that ifx{_ i < r ^ x and y = s^ xif then 

|[1 + H(Xi_ur)]-l\<€ + land\[l+ H(s,Xi)]~l\<€ + 1. 

PROOF. Lemma 6 follows directly from Lemma 4. 

LEMMA 7. Suppose the hypothesis of Theorem 5 is satisfied and 
0 < i ^ n, £/ien £foere is a number M and a subdivision Dlof[xi_l,xi\ 
such that ifD'= {pJ}

n)=u is a refinement ofDi then 

I n (i + c,) I < M. 
1 D'-{p0}-fpm} • 

PROOF. From Lemmas 4 and 5 and Theorem C, J J £_j (1 + ff) exists. 
Lemma 7 then follows immediately from the definition of H and 
Lemma 6. 

PROOF OF THEOREM 5. Suppose 0 < i ^ n and € > 0. 
From Lemma 3, G(xi_l,x+_r) and G{xcx{) exists and there is a 

subdivision Dx of [Xj_i, x4] and a number M > e such that if D ' = 
{Pj}"Lo *s a refinement of Dj, then, if 0 <j^m, 

(1) |1 + G(p0,Pi)l < M and 11 + G(pm^>Pm)\ < M 

(2) | l + G ( p m - , p m ) | < M 

(3) | l + G(po ,Po + ) l<M 

(4) |G (po ,P i ) -G(p 0 , po + ) l<7 /32M 2 

(5) iGKpm-x, pm) - G(pm-, Pm)\ < 7/32M2 

(6) | exp (}*' H ) | <M 

(7) I n (i + ç ) I < M-
I n'— In \— In \ ' D'-{Po}-{p 
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From Lemma 1, H(xi_1? xVi) = 0, H(xi~, x<) = 0, and there is a 
number x / in [x^^x*] and a number x" in [Xj_1?x*] such that if 
x ^ < p < q g Xi ' and x/' ^ r < s < x{ then \H(p, q)\ < *I8M and 
\H(r,s)\ < €/8M. From Lemma 4, / ^ x JF/2 = 0 and from Lemma 5, 
/•^_1 H exists, so that from Theorem C, YV*i-i (1 "*" ̂ 0 ex^s anc^ is 
exp(/ï.f_1 H). Hence there is a subdivision D2 of [Xi_x, x*] such that 
if D ' = {pi}t1o i s a refinement of D2, then \f[D, (1 + H*) - f l ^ - i (* 
+ H)| < €/8M2. Let D3 = Dx + {*,'} -f {x/'} + D2 and let D ' = 
{Pj}™ =obe a refinement of D3. Let k0, km, and W denote numbers 
such that 

(1) /£(*_!, Pi) + &0 = H(p09 Pl) + fc0 = /(Po, Po+) = 0, 

(2) H(pm-l9 pm) + km = H(pm_l9 Xi) + km = H(pw-, pTO) = 0, 

( 3 ) |fco1 < HHMP' | f c J < 16A^' '*o1 < 1 ' a n d 

(4) W = e x p ( | ^ ff)[l+Gfa- * ) ] [ ! + G ^ x V i ) ] . 

Then 

inD- (i + q.) - w| 

= I [i + apo,pi)] \ n d + q)l 

[l+G(pM-x,pm)] - W | 

= | [ l + G(po,Pi)][l + G(pm_i,pm)] 

[ I l (1 + Q)1 [l + H(po,Pi) + *o] 
D'-{Po>_<Pm} 

[l + tf(pm_1)Pm) + fcm] - W | 

= I [l + G(po,Pi)][l+G(pm_1,pm)] 
F 11 (1 + ^ ) 1 [l + H(Po,Pi)][l + H(pm-!,pm)] 
L D' - {p 0 } - tPm} J 

+ [l + G(po,Pi)][l + G(pm_1>pJ] 

F I I (1 + Gj)] [kokm] 
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+ [1 + G(p0,Pi)][l + G(pm^,pm)] 

I l ( l + q ) l [l + H(po,Pl)][fcm] 

+ t 

< |[1 

+ | 

+ 2 

+ 2 

D'-fPoJ-IP™) 

+ G(p0,p1)][l+G(pm_1)pm)] 

u (1 + Gj)] [1 + «(?,,,_„ p j ] [fco] - W 
D'-[poP-[pm] J 

+ G(po,p!)] [1 + G{pm^,pm)] \ u (1 + Hi) 1 - W I 
L D' J ' 

[1 + G(p0,p1)][l+ G(pm_!,pm)] 

n a + Q) ] [*ou | 
D'-{p0}-{pm 

•[l+G(po,Pi)][l + G(P»-i.P»)] 

n (i + G,)] [fcj | 
D'-{P0}-(Pm} 

|[1 + G(po,Pi)] [1 + Gipm-upJ] 

n a + G,)] [fco]I 
D'-{p0}-{Pm} 

< I • I + M3 • (1) • -^— + M3 • —— + M3 • -^— 
1 ' K ' 8M3 8M3 8M3 

= ^ + | [1 + G(po,Pi)] [1 + Gip^pJ] [ I ] (1 + H,)] - w | 

^ + |1 + G(po,p!)| • |1 + G{pm^,pm)\ • 
O 

• I n (i + H ) - n (i + Hj)| 

+ [1 + G(p0,p!)] [1 + G(pm_ !, p j ] 11(1 + H) - W 
I x i _ l • 

< ^ + M a ~ + I [l + G(po,Pi)] 
8 8M2 

[1+ G0»m_i,pJ] exp( J"*'̂  H ) 
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- exp ( j " * ^ H ) [1 + Gixt-.xi)] [1 + G(x,_1,x1ÎL1)] j 

~ | + | exp ( J * ^ H ) | • | [1 + GKXÌ-LPI) ] [1 +. G ^ , * ) ] 

- [l + G ^ r . ^ l t l + G ^ i . x t ^ ) ] | 

+ | 1 + Gfo.^xVi)!] , (Lemma2) 

< f + M -3& [ M + M ] 

< € . 

Hence, for 0 < i â n , J | x ^ (1 + G) exists and is 

exp ( J ^ H ) [1 + Gixr, Xi)] [1 + G ^ . i , x+_i )] • 

Then, from Theorem D, J | £ (1 H- G) exists and is 

exp ( £ H ) {A [1 + <%"*<)] } { fi1 E1 + Gfo>*+)] } • 

Note: Results related to Theorem 5 may be found in [4, Theorem 
1.7]. 
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