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FACTORIAL MODULES 
CHIN-PI LU 

Introduction. In [7] the notion of unique factorization domains 
(UFD's) was generalized to torsion free modules over integral domains, 
called factorial modules, and some basic theorems for factorial modules 
were proved. 

The purpose of this article is to extend the investigation of factorial 
modules to wider classes of modules in order to search for more re
semblance between the theory of factorial modules and the theory of 
UFD's. 

§ 1 initiates the study by giving formal definitions of factorial 
modules and related terminologies. In § 2 we prove Theorem 2.1, 
which is the most fundamental theorem of factorial modules; it states 
five conditions each of which is equivalent to that a module is fac
torial over a UFD. In § 3 we introduce the notion of prime sub-
modules which is similar to prime ideals of rings. It is proved that a 
module M over a UFD R, which is not a field, is factorial if and only 
if M possesses non-zero prime submodules each of which contains an 
element of the form prj for certain irreducible elements 77 G M and 
p G R respectively. An overring of a UFD R is called a factorial ex
tension if it is a factorial R-module. In § 4 we study a necessary and 
sufficient condition in order that an overring of a UFD be a factorial 
extension. The result yields a series of corollaries such as that the 
completion of a regular local ring R is a factorial extension of R. § 5 
consists of various transition theorems which deal with the inheritance 
problem of the factorial property between, respectively: (i) a module 
M and modules Ms of fractions of M and (ii) a topological module 
and its completion. Thus, an analogue of Nagata's theorem and that 
of Mori's theorem for UFD's are considered for modules. Finally § 6, 
in which results of previous sections are fully applied, is devoted to 
the study of the factorial property of an R[x{ \ i G 7] -module M[x{ \ 
i G Z] and an R[ [x{ | i G I] ] -module M[ [x{ \ i G I] ] for any I. 

In this paper we confine ourselves exclusively to commutative 
unitary rings and torsion free unitary modules; all subrings are as
sumed to possess the identity element of the containing ring. 

1. Definitions. Let M be a non-zero module over an integral domain 
R, and U the group of units of R. Let m and m ' be two elements of M. 
We say that m divides m' in M and write m | m ' if there exists an ele-
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ment r G R such that m ' = rm. If m \ m ', then m is called di factor or 
divisor ofm' in M. Similarly, an element d G R is said to divide m in 
M, written d\m, if there exists an element ra0 G M such that m = 
dm0. It d\m, then d is called a divisor ofm in R. Note that including 
the division a \ a ' of elements a and a ' in R, we are here dealing with 
three types of divisions. If m \ m' and m' \ m, then we shall say that 
these elements are associates in M and write m ~ m '. Clearly, 
m ~ m ' if and only if m = wra' and m ' = um for some u and t> in U. 
If m | m ' and m is not an associate of m ', then we say that m is a proper 
factor ofm ' in M. 

DEFINITION 1.1. A non-zero element m EL M is said to be irreduci
ble in M if m has no proper factor in M. 

It is clear that m ^ 0 is irreducible if and only if m = am ' for 
a G R and m' G M implies that a Œ U. 

DEFINITION 1.2. A non-zero element m G M is said to be primitive 
in M if, whenever m \ am' for 0 ^ a G R and m ' G M, then m\ m'. 

Every primitive element m is irreducible in M because m = am ' 
implies that m ~ m ', i.e., a is a unit. An element r of R, regarded as a 
module over itself, is primitive if and only if r is a unit, since 
r | r • 1. 

A submodule IV of M is called a pure submodule if rM D N = rN 
for every r G f i . 

PROPOSITION 1.1. Le£ m be a non-zero element of an R-module M. 
Then the following statements are equivalent: 

(1) m is primitive; 
(2) the cyclic submodule Rm is pure; 
(3) if x G M, then either Rx H Rm = (O)orRxC Rm. 

COROLLARY. TWO primitive elements m and m' of an R-module M 
are non-associates if and only ifRm D Rm ' = (0). 

DEFINITION 1.3. An element p G R is said to be prime to an R-
module M if 

(i) p is irreducible in R, and 
(ii) p | am for a G R and m G M implies that p | a in R or p | m in 

M. 

DEFINITION 1.4. A (torsion free) module M over an integral domain 
R is called a unique factorization module (UFM) or a. factorial module 
if the following two conditions are satisfied: 
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Every non-zero element x G M has an irreducible factoriza
tion—that is, x = 0^2 * * * anm, where a1? a2, • ' ', an are 
irreducible in R and m is irreducible in M. 
If x = a ^ ' * ' an

m == &i^2 ' ' ' fofc™' are two irreducible 
factorizations of x, then n = fc, m ~ m ' in M, and we can re
arrange the order of the fo/s so that a{ ~ fo; in R for every 
i G { l , 2 , - - s n } . 

As pointed out in [7, p. 37], Property 2.2, if an R-module M is a 
UFM, then R is necessarily a UFD. Therefore when looking for fac-
torability of an R-module we may assume from the start that the ring 
R is a UFD. We remark that the following condition [UFI '] implies 
[UFI] if Ris a UFD: 

[UFI ' ] M satisfies the ascending chain condition 
(a.c.c.) for cyclic submodules. 

DEFINITION 1.5. Let a G R and m G M. 

(1) An element d G ß is a greatest common divisor (g.c.d.) of a and 
m if 

(i) d | a in R and d \ m in M, and 
(ii) any element c G f i , such that c \ a in R and c \ m in M, is a 

divisor of d. 

We denote it by (a, m) or g.c.d. {a, ra}. 

(2) An element ra* G M is a least common multiple (l.c.m.) of a and 
m if 

(i) a | m* and m \ ra* in M respectively, and 
(ii) any element w EL M such that a \ w and ra | w in M has ra* as a 

factor. 

We denote it by [a, ra] or l.c.m. {a, ra}. 

PROPOSITION 1.2. Let M be a module over an integral domain R. 
Let m and m*be elements ofM, and a G R. 77ien 

(1) ra* ~ l.c.m. {a, ra} if and only if aM fi Rra = Rra*. 
(2) Let p be an irreducible element of R such that an l.c.m. {p, ra} 

exists in M. If p/f ra, then pM D Rra = Rpra. 

PROOF. (1) is trivial. (2) Let ra* ~- l.c.m. {p, ra}, then 0 ^ ra* = 
am = pra0 and pm = bm* for some non-zero elements a, b G R and 
ra0 G M. We have that p = ab and so ra = fora0. Since p/f ra and 
fo | ra, p7^ fo. Hence p ~ a and b is a unit, i.e., ra* ~ pra so that 
pM fi Rra = Rpra by (1). 
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PROPOSITION 1.3. Let M be a module over a G.C.D.-domain R such 
that a g.c.d. {a, m} = (a, m) exists for every a E. R and m EL M. Then, 
for any b E R, 

(1) ((a,b),m)~(a,(b,m)), 
(2) (ba, bm) - (b(a, m)), 
(3) if a | bm and (a, m) = 1, then a \ b. 

2. Factorial Modules. In the present section we investigate the 
following fundamental characterization of a factorial module and its 
application to various examples. 

THEOREM 2.1. Let M be a module over a UFD R which satisfies 
[UFI] . Then the following statements are equivalent: 

(1) M is factorial over R; 
(2) Every irreducible element of M is primitive; 
(3) For any pair of elements a E R and m EM, a g.c.d. {a, m) 

exists in R; 
(4) For any pair of elements a E R and m E M, an Lem. {a, m) 

exists in M, i.e., the submodule aM fi Rm is cyclic; 
(5) Every irreducible element p of Ris prime to M; 
(6) (i) If a and b are elements of R such that aM Ç bM, then b | a, 

and 
(ii) for every pair a, b E R, there exists an element c ER such 

thataMDbM= cM( [7, p. 41, Theorem4.3] ). 

REMARK. If M is a UFM, any element c satisfying (i) and (ii) is 
necessarily an Lem. {a, b) in R. 

PROOF, (a) It is trivially true that (1)<=>(2). 
(b) (2) => (3): If m = 0, then g.c.d. {a, m) ~ a for every a E R. If 

m = bm0 ^ 0, where b E R and ra0 is an irreducible element of M, 
then we claim that g.c.d. {a, m} ~- g.c.d. {a, b) = d E R. Clearly d 
is a common divisor of a and m. Assume that d ' is another common 
divisor of a and m, and put m = bm0 = d'mf for some ra ' E M. Then 
d' | b so that d' \ d, since m0 is primitive and d = g.c.d. {a, b}. Conse
quently d ~ g.c.d. {a, m}; thus (3) holds. 

(c) (3) = P (4): If a = 0, then Lem. {a, m) ~ 0 G M for every m G M. 
For any pair 0 ^ a E R and m EM, let d ~ g.c.d. {a, m}. Then 
a = da' and m = dm ' for some a ' E R and m' EM such that g.c.d. 
{a', m'} ~ 1 by Proposition 1.3, (2). Now it can be verified that ra* 
= a 'm is an Lem. {a, m) with the aid of Proposition 1.3, (3). 

(d) (4)=v (5): Let p be an irreducible element of R such that 
p | am for a E R and m E M. If p/m, then am E pM D Rm = Rpm 
by Proposition 1.2, (2). Therefore p | a, which means that (5) is true. 

(e) (5)=> (6): (i) Let a and b be two elements of R such that aM 
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C bM. If b = 0, then a = 0 so that b \ a. Assume that b ^ 0, then 
b | am0 for any irreducible element ra0 G M, whence p | am0 for each 
prime factor p of b. By (5), p \ a for each prime factor p of b; hence 
b | a. (ii) If a = 0 or b = 0, then clearly c = 0. Assume that a ^ 0 and 
b ^ 0, and put e ~ Lem. {a, b} and d ~ g.c.d. {a, b}. Then aM H bM 
D cM and c = a'b = ab', where a' — aid and b' = b/d If w; is any 
non-zero element of M such that w = am = bm ' G aM fì bM, then 
a'm = b'm'. Since a ' | b ' r a ' and (a' , b ' ) — 1, a ' | m' by the same 
argument as in the proof of part (i). Consequently, c = a'b divides 
w = bm '. Thus aM H bM Ç cM, and (ii) is true. 

(d) (6)=> (2) => (1): If m is an irreducible element of M such that 
am ' = bm for some a, b G ß and m ' G M; then am ' = bm G aM H 
bM = cM for some c G f i b y (6), (ii), and in view of (6), (i), b | c and 
a | c. Since m is irreducible, b ~ c whence a | b and m\m'. That is, 
m is primitive. Thus (2) is true and (2) ==> (1) by part (a) above. This 
completes the proof of Theorem 2.1. 

Our next results give some basic information about factorial modules. 
Most of them were already discussed and proved in [7] ; however, 
some proofs are rather unnecessarily lengthy. Here, we intend to 
give simpler proofs by applying Theorem 2.1. We assume that every 
module in the results is a non-zero module. 

RESULT 2.1. Every cyclic module Rm over a UFD R is a UFM in 
which every primitive element is an associate ofm. 

RESULT 2.2. Every vector space is a (trivial) UFM in which every 
non-zero vector is primitive. 

RESULT 2.3. Let K be the field of quotients of a UFD R, and M an 
R-submodule of K. Then M is factorial if and only if it is cyclic. Hence 
an ideal of Risa UFM over R if and only if it is a principal ideal. 

PROOF. For any pair of non-zero elements x = alb and y = eld 
of M, we have 0 ^ bcx — ady G Rx H Ry. In view of the Corollary 
to Proposition 1.1, M has at most one cyclic submodule generated by a 
primitive element. Now, Result 2.3 is easy to see. 

RESULT 2.4. Every pure submodule N of a factorial module M over 
a UFD R is also a factorial R-module, in which every irreducible ele
ment remains irreducible in M. 

PROOF. Clearly N satisfies [ U F I ' ] . For any a G R and m G M, 
aNHRm= (aM fi N) D Rm = (aM Pi Rm) nN=RxHN=Rx 
for some x G M b y (4) of Theorem 2.1 and the purity of N. Hence N 
is factorial. The second statement is obvious. 
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RESULT 2.5. Let {M{ \ i E 1} be a set of modules over a UFD R. 
Then the following statements are equivalent: 

(1) JliG/ Mi is factorial over R; 
(2) ©j eI Mi is factorial over R, 
(3) each Mi is factorial over R. 

PROOF. Result 2.4 implies that (1)=> (2)=> (3). Assume (3) and put 
T\iei Mi= M. If m = (mùei E M, where each m{ = a{mi for some 
a{ER and an irreducible element m{ ' E M{; then m is irreducible if 
and only if the set of elements {a{\i E 1} has no g.c.d. in R. Hence 
we can see that M satisfies [UFI] . Let p be any irreducible element 
of R such that p \ am in M for some a E R and m = (ra^ G / E M, then 
p | ami in Mi for every i. If p/f Ö in R, then p | ra^ in M; for every i 
by (5) of Theorem 2.1, as each M{ is factorial. Consequently p | m and, 
therefore, J | t e / ^ = M is factorial due to (5) of Theorem 2.1 again. 
Thus(3)=> (1). 

COROLLARY. (1) Every free module over a UFD is factorial. (2) 
Every projective module over a UFD is factorial. (3) If R is a UFD, 
then the R-modules R\x{\iET\ and R[ [x{ \ i E I]] are factorial for 
any index set I. 

RESULT 2.6. Let M be a module over a unique factorization Bézout 
domain R, in particular, a principal ideal domain. Then (1) M is fac
torial if and only if it satisfies [UFI] , and (2) if M is a UFM, then it 
is a faithfully flat R-module (cf. [7, p. 45, Property 5.2] ). 

PROOF. (1) The necessity is trivial. To prove the sufficiency, let p 
be an irreducible element of R such that p \ am for a E R and m E M. 
Suppose that p/ a, then there exist some 5 and t in R such that 
(p, a) = 1 = ps + at. Now we can see that p \ m since m = psm + 
atm; therefore, M is factorial by (5) of Theorem 2.1. (2) follows from 
[1, p. 44, Proposition 1, (d)]. 

3. Prime submodules of factorial modules. In this section we con
sider two families of submodules of a factorial module which play 
roles similar to those principal prime ideals do in a UFD. 

DEFINITION 3.1. A proper submodule N of a module M which may 
not be torsion free over a ring R is called a prime submodule if x E M, 
a E R, and ax E N implies that either xENoraEN.M. 

Evidently, every prime ideal F of a ring R is a prime submodule of 
the R-module R with P : R= P. It is also clear that every torsion free 
module contains the prime submodule (0). 
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In the following Result 3.1-Result 3.3, the modules M need to be 
torsion free. 

RESULT 3.1. If N is a prime submodule of an R-module M, then 
N : Misa prime ideal ofR. 

RESULT 3.2. Every maximal submodule is prime. 

RESULT 3.3. A proper submodule N of a module M is pure if and 
only if it is a prime submodule with N : M = (0). 

RESULT 3.4. If M is a free R-module, then PM is a prime submodule 
of M with FM : M = Pfor each prime ideal P ofR. 

PROPOSITION 3.1. Let M be a module over an integral domain R 
and m Œ. M such that Rm f^ M. Then m is primitive if and only if 
Rm is a prime submodule with Rm : M = (0). 

This is a combined result of Proposition 1.1 and Result 3.3. 

PROPOSITION 3.2. Let M be a module over an integral domain R 
such that pM j^ M for every non-unit element p Œ. R. Then the fol
lowing two statements are equivalent: 

(1) p is prime to M; 
(2) pM is a prime submodule of M with pM : M = (p). 

PROOF. It is straightforward to show that (1) implies (2). To prove 
the converse, firstly we notice that p is irreducible. For otherwise, 
we are led to the contradiction pM = M. Now the rest of the proof is 
easy. 

THEOREM 3.1. Let M be a factorial module over a UFD R. Then 
(1) Rm is a prime submodule with Rm : M = (0) for every irre

ducible element m of M such that Rm ^ M, and 
(2) pM is a prime submodule with pM : M = (p) for every irre

ducible element p ofR. 

COROLLARY. Let M be a cyclic module Rx over a UFD R and m €E M 
such that m - / x. Then, 

Rm is a prime submodule 

<==?> m ~ pxfor some irreducible 
element p ofR, 

<=> Rm = pMfor some irreducible 
element p ofR. 
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PROOF. Put m = ax, where a G R, then Rm : Rx = (a). If Rm is 
prime, then (a) is a prime ideal by Result 3.1. Hence, m ~ px for an 
irreducible element p G R. Now, the proof of the corollary can be 
completed easily by applying Theorem 3.1, (2). 

DEFINITION 3.2. In a torsion free module, a non-zero prime sub-
module is said to be minimal if it contains properly no prime sub-
module other than (0). 

THEOREM 3.2. Let N be a non-zero submodule of a factorial R-
module M. Then (1) N is a minimal prime submodule with N : M = (0) 
if and only if N = Rq ^ M for a primitive element rj of M, and (2) N 
is a minimal prime submodule with N : M ^ (0) if and only if N = 
pMfor an irreducible element p G R. 

PROOF. (1) If N is a minimal prime submodule with N : M = (0), 
then N is pure and contains a primitive element TJ G M. Since N is 
minimal and Rq is prime by Theorem 3.1, N = Rq. The converse is 
easy to see because any non-zero prime submodule of M contained in 
Rq, where rj is primitive, is pure and therefore contains rj. (2) The 
necessity follows from the fact that the non-zero prime ideal N : M 
must contain an irreducible element p of R so that pM Ç. N, where 
pM is a prime submodule by Theorem 3.1. To prove the sufficiency, 
let N ' be a prime submodule of M contained in N = pM for some 
irreducible element p of R. In Theorem 3.1 we have seen that N is a 
prime submodule with N : M = (p), hence N contains no primitive 
element of M. We assert that N' : M = (p); for otherwise, N' : M = (0) 
and N' Q N contains a primitive element. Now, it is clear that pM = 
N = N'. Thus N = pM is a minimal prime submodule with N : M 

= (p) ¥ (0)-

It is known that an integral domain is a UFD if and only if every 
non-zero prime ideal contains a principal prime ( [5, p. 4, Theorem 5] ). 
We shall prove that a similar statement holds for modules in the next 
Theorem 3.3, where we exclude a trivial case of factorial modules — 
vector spaces. 

THEOREM 3.3. Let R be a UFD which is not afield. An R-module 
M is a UFM <=> (i) M contains non-zero prime submodules, and 
(ii) each non-zero prime submodule possesses an element of the form 
prqfor a primitive element 7) G M and a prime element p G R. 

PROOF. The necessity follows from Theorem 3.1 and the fact that 
every non-zero prime submodule of a factorial module contains a 
minimal prime submodule. Note that either type of minimal prime 
submodule (cf. Theorem 3.2) contains an element of the form prq as 
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described in the theorem. To prove the sufficiency let S be the set of 
all primitive elements in M and put S* = {at] \ 17 G S and Û £ R -
{0}}; then S* ^ 0 since S ^ 0 by the hypothesis. We remark 
that M is factorial if and only if S* = M — {0}. Suppose that S* ^ M 
— {0} and let e be a non-zero element of M — S*, then ReQ M — S*. 
For otherwise, e G S* fi (M - S*)= 0 , because some primitive 
element divides e in M if Re fi S* / 0 . Next, we extend Re to a 
submodule N of M maximal with respect to exclusion of S*; such N 
must exist by Zorn's Lemma. We assert that N is pure. If it is not so, 
then there exist some O / Ö E R and m G M — N such that 
am G aM fi N. Since (N 4- Rra) H S * / 0 , there exists an ele
ment « ; G S * such that w = x 4- rra for some x Œ. N and r G R, which 
implies the contradiction aw = ax + mm £ ! V n S * = 0 . Thus 
N is pure, so that it is prime. Due to the hypothesis, we have that 
N H S * / 0 , a contradiction. Therefore S* = M — {0}, hence, M 
is factorial. This completes the proof. 

REMARK. In the special case M = R, Theorem 3.3 is identical with 
the above mentioned Theorem 5 of [5, p. 4] for UFD. Recall that 
r) is primitive in the R-module M = R if and only if TJ is a unit. 

4. Factorial Extensions. Let B be a unitary overring of a UFD A. 
We call B a factorial extension of A if B is factorial as an A-module 
(cf. [7, p. 48, §7]). 

Let K be the field of quotients of A. We can see easily that B f i K 
= A if and only if a 'B Ç. aB implies that a \ a ' in A for any a and a ' G 
A. Thus in view of Theorem 2.1, (6), we have 

THEOREM 4.1. Let B be a unitary overring of a UFD A which is a 
torsion free A-module. Then B is a factorial extension of A if and 
only if (1) the A-module B satisfies [UFI] , (2) B n K = A, and (3) 
/or any pair of elements ai9 a2 G A, £her£ e x t e an element a3E. A 
such thataxB D a2B = a3B. 

Suppose that B is an integral domain containing a UFD A and that 
B satisfies the a.c.c. for principal ideals. If B C\ K = A, then B also 
satisfies [ U F I ' ] , the a.c.c. for cyclic A-submodules. This gives rise 
to the following series of corollaries to Theorem 4.1: 

COROLLARY 1. Let B be an integral domain containing a UFD A. 
If (I) B satisfies the a.c.c. for principal ideals and (2) B is a faithfully 
flat A-module, then B is a factorial extension of A. 

COROLLARY 2. Let Rbe a UFD which is a Zariski ring with respect 
to an ideal m such that the m-adic completion R of R is an integral 
domain. Then È is a factorial extension of R ( [2, p. 72, Proposition 9] ). 
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COROLLARY 3. If R is a regular local ring, then the completion R 
of R for the natural topology is a factorial extension ofR. 

COROLLARY 4. Let A and B be two UFD's such that A C R Then 
B is a factorial extension of A if and only if(l)BDK=A and (2) for 
any pair au a2 G A, l.c.m. {al,a2} G A and Lem. {aua2} G B are 
associates in B ( [7, p. 49, Theorem 7.5] ). 

THEOREM 4.2. Let A and B be two UFD's such that AG B. Sup
pose that a B-module M is a UFM, then M is factorial over A if and 
only ifB is a factorial extension of A. 

PROOF. (Necessity): If a'la = b G B PI K, then a'M= abM C aU 
which implies that a \ a ' in A as M is factorial over A. Therefore, 
B H K= A. Next, for any pair al9 a2 G A, l.c.m. {au a2) = a3G. A 
and l.c.m. {01,02} = b G B are associates in B since axM Pi a2M = 
a3M = bM from the hypothesis that M is factorial over both A and 
B. Hence B is a factorial extension of A by Corollary 4 to Theorem 
4.1. 

(Sufficiency): We assume that M is factorial over B and B is fac
torial over A. Let 0 ^ m G M, then m = forç, where b EL B and 
17 G M is irreducible over B. Let b = afo ', where a G A and fo ' G B is 
irreducible over A, then m = a(b '17), and it can be verified that the 
element b '17 is a primitive element of the A-module M. This proves 
that M is factorial over A. 

COROLLARY. Let A, B, C be rings such that AC. BQ C and that 
C is a factorial extension of B. Then C is a factorial extension of A if 
and only ifB is that of A. 

5. Factorization in modules of fractions and topological modules. 
It is well known that if R is a UFD, then the ring fìs of fractions is 
also a UFD for any multiplicatively closed set S of R such that 0 (£ S. 
For modules, similarly, we have 

THEOREM 5.1. Let S be a multiplicatively closed set of a UFD R 
such that 0 (£ S. If M is a factorial R-module, then the module of 
fractions Ms is a factorial Rs-module. 

PROOF. M S satisfied [UFI] since every irreducible element of M 
remains irreducible in Ms. Let F be a system of representatives of 
irreducible elements of Rs; we may choose each representative from 
R so that P C fi. Since M is factorial over R, each p G F is prime to 
M by Theorem 2.1, (5); moreover p/ s for each s G S (cf. [9, p. 29, 
Theorem 4] ). Applying these properties of elements of F, we can 
prove that every p G F is prime to the Rs-module Ms. Hence, Ms is 
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factorial over Rs by Theorem 2.1, (5) again. 

We remark that the ring of fractions Rs of a UFD R is not a factorial 
extension of R in general. For example, no element of the field of 
quotients of R is irreducible over R 

Next, we consider a modification to UFM's of Nagata's theorem for 
UFD's ( [9, p. 31, Theorem 5] ). 

THEOREM 5.2. Let M be a module over a UFD R satisfying [UFI] . 
Let S be the multiplicatively closed set of R generated by any family 
P' of elements which are prime to M. If the Rs-module Ms is factorial, 
so is the R-module M. 

PROOF. Let P and P" be systems of representatives of irreducible 
elements of R and Rs respectively, then P = P' U P". In view of 
Theorem 2.1, (5), it is sufficient to prove that every irreducible element 
of R is prime to M. This is trivially true for each p G P \ Suppose that 
p G P" and p | am in M for some a E. R and m G M. Since Ms is a 
UFM, p | a in Rs or p \ m in Ms. Applying the facts that (s, p) = 1 in 
R for every s G S and that every irreducible factor of s G S is prime 
to M, we can prove that p \ a in R or p \ m in M. Thus every p in 
P", hence in P, is prime to the Rmodule M. 

THEOREM 5.3. Let R be a noetherian UFD and m an ideal of R 
such that the completion R for the m-adic topology is a UFD. Let 
M be a finitely generated R-module and M the completion of M 

for the m-adic topology. If M is a factorial module over R, then M is 
a factorial module over R 

PROOF. Since the noetherian UFD R is a flat Rmodule and M is 
torsion free over R, the Rmodule M = È ®R M is torsion free over 
R by [1, p. 65, Ex. 20]. Clearly, R is noetherian as R is a Haus
dorff space. According to [7, p. 43, Theorem 4.6], it suffices to 
show that M is a reflexive module over R. This however, is easy to 
see from [3, p. 53, Proposition 8]. 

A ring with a linear topology is called a Gelfand ring if its radical 
is open. For example, all Zariski rings are Gelfand rings. A generaliza
tion of Mori's theorem for Zariski rings to Gelfand rings was studied 
in [6]. Applying its results, here we investigate a similar problem 
for modules over Gelfand rings. 

THEOREM 5.4. Let (R, (qn)n=o) be a filtered Gelfand domain such 
that the completion R of R is an integral domain which is a faith
fully flat R-module. Let (M, (gnM)*=0) be a finitely generated 
filtered R-module, which is a Hausdorff space. If the completion M 
of M is factorial over R, then M is factorial over R 
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PROOF. Firstly, we note that M = RM. Since M is a UFM 
over R, fi is a UFD. According to [6, p. 374, Corollary 1 to 
Theorem 1], R is a UFD. Moreover R is a factorial extension of R 
by Corollary 1 to Theorem 4.1. Consequently, M is factorial over 
R due to Theorem 4.2. Next, we assert that M is a pure R-submodule 
of M. For, if r G R, then rM = r(RM) = R(rM) so that R(rM) 
fi M = rM Pi M = rM by [1, p. 52, Proposition 10, (ii)]. Now it is 
clear that M is factorial over R from Result 2.4. 

COROLLARY. Let M be a finitely generated module over a regular 
local ring R and R the completion of R for the natural topology. 
Then M is factorial over R if and only if the completion M of M is 
factorial over R. 

6. M[%i | i G 7] and M[ [x{ \ i G I] ]. Let 7 be any nonempty set. 
Following the definition and notation in [2, p. 112 Ex. 22], the ring 
R[ [xi | i G 7] ] of formal power series in indeterminates {Xi}iGI over 
a ring R can be identified with RNiI), which we simply write Rj. If, in 
particular, J = {1, 2, • • -, n}, then RNiI) = RN* = R[ [x1? x2, • • -, xn]] 
and the ring R[x l7 x2, • • *, xn] of polynomials is its subring. We ex
tend these notions to M/ = MN(I) for any R-module M and call each 
element of M/ a power series in the indeterminates {Xj}iG/ with co
efficients in M; we also denote M/ by Af [ [acf | i G Z] ] , and put N{1) 

= 7*. Clearly M/ is an abelian group under termwise addition and 
has a structure of R7-module if for each / = (a^e/* G R/ and F = 
(mi)iGI* G M/ we define fF = (Wi)iGI* such that tVi = ^s+t=iasmt 

for every i. Accordingly, MNl = M[[JC1 ? ac2, ' * ', xn]] for 7 = {1, 2, 
• •-, n} is a module over R[[x l 5 x2, * *', *n]]>

 a n ( i the subset 
M[x!, x2, ' ' ', xn] of polynomials in ac1? oc2, * * ', xn with coefficients in 
M forms a module over fì [xÌ9 x2, ' ', xn] (cf. [8, p. 29] ). We re
mark that M[xu x2, • • -, xn] = R[xu x2, • • -, xn] ®R M for each 
n ^ 1. If M is a torsion free R-module, then it is easy to see that 
R/-modules Mi and R[x1? x2, • • -, xn]-modules M[x l3 x2, • • -, xn] 
are also torsion free for any 7 and n ^ 7. They are known to be 
noetherian modules for any finite set 7 and n ^ 1 when M is noetherian 
(cf. [8, p. 30, Theorem 10 and p. 68, Ex. 10] ). 

We now begin an investigation of the factorial property of M[x] 
and M[ [x] ] . If R is an integral domain satisfying the a.c.c. for princi
pal ideals, then both R[x] and R[ [x]] satisfy the a.c.c. for principal 
ideals. Similar statements hold for M[x] and M[[x]] respectively. 
More generally, we have 

PROPOSITION 6.1. Let R be an integral domain satisfying the a.c.c. 
for principal ideals and M an R-module. If M satisfies the a.c.c. for 
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cyclic submodules, so do both the R[Xi \ i G /] -module M[x{ \ i G Z] 
and the R[ [xi \ i G 7] ] -module M[ [x{ \ i G 7] ] /or am/1. 

If M is a UFM over a UFD R, then every irreducible element p of 
R is prime to M. We remark that p remains prime to the R[x] -module 
M[x]. Therefore S = R — {0} is a multiplicatively closed set in 
R[x] generated by the family P = {p \ p G R, and p is irreducible in 
R [x] } of elements which are prime to M [x]. 

THEOREM 6.1. If M is a factorial module over a UFD R, then the 
R[x] -module M[x] is also factorial. 

PROOF. Let S = R — {0} and K the field of quotients of R. Apply
ing Theorem 5.1 and Proposition 6.1 we can verify that the 
module (M[x])s = Ms[x] over the principal ideal domain (R[x])s 

= K[x] satisfies [UFI '] ; hence it is factorial by Result 2.6. It follows 
immediately that M [x] is factorial over R[x] from Theorem 5.2. 

COROLLARY. If M is factorial over a UFD R, then M[Xi \ i G I] is 
factorial over R[x{ \ i G I] for any set I. 

THEOREM 6.2. Let R be a noetherian UFD such that R[[x]] is a 
UFD. If a finitely generated R-module M is factorial, so is the R[ [x] ] -
module M[[*]]. 

PROOF. We note that M[[x]] is the completion of the finitely 
generated R[x] -module M[x] for the (x)-adic topology. Since M[x] 
is factorial over R[x] by Theorem 6.1, M[[x]] is factorial over 
R [ [x] ] due to Theorem 5.3. 

COROLLARY 1. Let R be a noetherian UFD such that ß[[x 1 ? x2, 
• • -, xn] ] is a UFD for ann^l and M a finitely generated R-module. 
If M is a UFM, so is the R[ [xu x2, ' ' *, xn] ] -module M[ [xl9 x2, • • •, 

COROLLARY 2. Let M be a finitely generated module over a regular 
UFD R. If M is a UFM, so is the R[[xu x2, ' ', xn]]-module 
M[ [x{, x2, ' • *, Xn] ] for every n ^ 1 (cf. [5, p. 137, Theorem 188] ). 

Let M be a free module of rank I over an integral domain R. Let 
A = R[[xx, x2, * * *, xn]] and £ = M[[xu x2, • • -, xn]] for any 
n e l , where A is equipped with the (xu x2, • • -, xn)-adic topology. 
If / is finite, then clearly E = A1 as an A-module; but if / is infinite, 
then E ^k A1. In fact, E is isomorphic to the submodule A(/) of the A-
module A7 which consists of families (f^ G / of elements f G A such 
that l im^ = 0 with respect to the filter of complements of finite 
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parts of Z( [2, p. 121, Ex. 16, Ex. 17] ). 

PROPOSITION 6.2. A(7) = M[ [xu x2, • * •, xn] ] is a pure submodule 
of the free A-module A1. 

PROOF. Let 0 ^ g G A and (f)iEI G A'. Then g( / , ) i e / = (gfi)<ei 

G g A' H A(7)*=*lim gf{ = g limi; = 0 ~ l i m / , = 0 *=*(f)iGI G A ( / , 
This proves that gAl H A(/) = gA(/) for every g G A. 

Proposition 6.2 implies that A(7) is a factorial A-module if A is a 
UFD, by Result 2.4 and Result 2.5. Thus we have 

THEOREM 6.3. Let R be a UFD such that R[[xl9 x2, ' ' *, xn] ] is a 
UFD for flnn^L If M is a free (respectively, projective) R-module, 
then the R[[xu x2, ' ' *, xn]]-module M[[xu x2, * • *, xn]] is fac
torial. 

THEOREM 6.4. Let I be any infinite index set. Let M be a factorial 
module over a UFD R such that M[ [xi \ i G J] ] is a factorial module 
over R[[Xi\iGJ]] for every finite subset J of I. Then M[ [Xi \ i G I] ] 
is factorial over R[ [x{ \ i G /] ] . 

PROOF. M [ [ x i | i G Z ] ] = M7 satisfies [UFI ' ] by Proposition 6.1. 
Let A be the set of all finite subsets of 7. Since M[ [^ | i G J] ] = Mj 
is a UFM over R[[xi\iGJ]] = Rj for every / G A, Rj is a UFD for 
every J by [7, p. 37, Property 2.2]. Therefore, R[[x{ \ i G /]] = R7 

is a UFD by [4]. Let P be an irreducible element of Rz such that 
P \fG in M/ f o r / G R7 and G G M7. Let (P); be the F-projection of 
P in Rj (cf. [4, p. 48] ); that is, (P)j is the element of Rj obtained from 
P by substituting 0 for all x{ such that % ^ / . We can define the F-
projection (G)j of G in Mj in a similar way and see easily that (fG)j 
= (f)j(G)j for every / G A . According to [4, p. 56, L. 9] , there 
exists a ) ' £ A such that (f)Jf is irreducible in RJ(. If ? / / in 
R7 and P / G in M7, then there exists a / G A so large that / ' C / , 
(P); is irreducible in R;, and (P) ; / (/)7 in R; and (P) ; / (G); in 
Mj. Since M; is a UFM over R7, this is a contradiction in view of 
Theorem 2.1, (5). Hence P\f or P\ G, so that M7 is factorial over R7. 
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