SPIRAL FUNCTIONS AND RELATED CLASSES WITH FIXED SECOND COEFFICIENT

H. SILVERMAN AND D. N. TELAGE

ABSTRACT. Denote by $G_p(\lambda, \alpha)(|\lambda| < \pi/2, 0 \le \alpha \le \cos \lambda, 0 \le p \le \cos \lambda - \alpha, \cos \lambda \neq \alpha)$ the class of functions $g(z) = 1 + 2a_2z^2 + \cdots$ analytic in |z| < 1 for which $\operatorname{Re}(e^{i\lambda}g(z)) > \alpha$ with $|a_2| = p$. We determine the largest disk $|z| < r = r(\lambda, \alpha, \gamma, \beta, p)$ in which functions in $G_p(\lambda, \alpha)$ satisfy $\operatorname{Re}\{e^{i\gamma}g(z)\} > \beta$. By specializing our parameters and our function g(z), we obtain results relating subclasses of spiral functions to subclasses of starlike functions. When p = 0 results concerning odd functions are found.

1. Introduction. Let S be the class of functions analytic and univalent in the unit disk, with f(z) in S normalized by f(0) = 0 and f'(0) = 1. A function f(z) is said to be in $S(\lambda, \alpha)$ if

(1) Re
$$\left\{ e^{i\lambda} \frac{zf'(z)}{f(z)} \right\} > \alpha(|z| < 1, |\lambda| < \frac{\pi}{2}, 0 \le \alpha < \cos \lambda).$$

The class $S(\lambda,\alpha)$ of λ -spiral functions of order α was introduced by Libera [4]. For $\alpha = 0$ we have the so called "spiral-like" functions, defined and shown to be in S by Spaček [9].

In [7] Robertson introduced an associated class consisting of those functions f(z) for which zf'(z) is in $S(\lambda, \alpha)$, which we shall denote by $K(\lambda, \alpha)$. In view of (1.1), a function f(z) is in $K(\lambda, \alpha)$ if and only if

(2) Re
$$\left\{ e^{i\lambda} \left(1 + \frac{zf''(z)}{f'(z)} \right) \right\}$$

> $\alpha(|z| < 1, |\lambda| < \frac{\pi}{2}, 0 \le \alpha \le \cos \lambda).$

DEFINITION 1. A function $f(z) = z + a_2 z^2 + \cdots$ analytic in |z| < 1 is said to be in $S_p(\lambda, \alpha)(|\lambda| < \pi/2, |a_2| = 2p, 0 \le p \le \cos \lambda - \alpha, \cos \lambda \ne \alpha)$ if it satisfies (1).

DEFINITION 2. A function f(z) is in $K_p(\lambda, \alpha)$ if zf'(z) is in $S_p(\lambda, \alpha)$. Note that functions in $K_p(\lambda, \alpha)$ must satisfy (2). Although $S_p(\lambda, \alpha) \subset$

Received by the editors on September 8, 1975, and in revised form on November 26, 1975.

AMS (MOS) 1970 Subject Classification. Primary 30A36; Secondary 30A32. Key words and phrases: univalent, spiral-like, starlike, convex.

S, functions in $K_p(\lambda, \alpha)$ need not be univalent, as is shown in [3].

In this paper we obtain bounds for these two classes, which reduce to those of $S(\lambda, \alpha)$ or $K(\lambda, \alpha)$ when $p = \cos \lambda - \alpha$, and are otherwise an improvement. Results in terms of a fixed second coefficient have been given for various subclasses of S. Finkelstein [2] investigated the classes $S_p(0, 0)$ and $K_p(0, 0)$, the starlike and convex functions with preassigned second coefficient. Extensions of these results can be found in [1] and [8].

2. Growth Estimates. The following lemma, proved in [2] and known to Löwner [5], is used in the proof of our main theorem. It gives a growth estimate for analytic mappings of the unit disk into itself in terms of the second coefficient, and thus generalizes Schwarz's lemma.

LEMMA A. If $\omega(z) = b_1 z + \cdots$ is an analytic map of the unit disk into itself, then $|b_1| \leq 1$ and

$$|\omega(z)| \leq \frac{r(r+|b_1|)}{1+|b_1|r}(|z|=r).$$

Equality holds at some $z \neq 0$ if and only if

$$\omega(z) = \frac{e^{-it}z(z+b_1e^{it})}{1+\overline{b}_1e^{-it}z} (t \ge 0).$$

To obtain growth estimates for $S_p(\lambda, \alpha)$ and $K_p(\lambda, \alpha)$ it is useful to consider the following class of functions.

DEFINITION 3. A function $g(z) = 1 + 2a_2z + \cdots$, analytic in the unit disk, is in $G_p(\lambda, \alpha)(|\lambda| < \pi/2, |a_2| = p, 0 \le p \le \cos \lambda - \alpha, \cos \lambda \ne \alpha)$ if

$$\operatorname{Re}\left\{e^{i_{\lambda}}g(z)\right\} > \alpha\left(|z| < 1\right).$$

Observe that $f(z) \in S_p(\lambda, \alpha)$ if and only if $zf'(z)/f(z) \in G_p(\lambda, \alpha)$ and $f(z) \in K_p(\lambda, \alpha)$ if and only if $1 + zf''(z)/f'(z) \in G_p(\lambda, \alpha)$. In the proof of Theorem 1 we shall use a result of Robertson [6].

LEMMA B. For all real μ and ν the following sharp inequality holds:

$$\frac{(1-R^2)\cos\mu + 2R\sin\mu\cos\gamma}{1-2R\cos\nu + R^2}$$
$$\ge \frac{(1+R^2)\cos\mu - 2R}{1-R^2} (0 \le R < 1).$$

112

THEOREM 1. Suppose $g(z) \in G_p(\lambda, \alpha), |\gamma| < \pi/2$, and $U = \text{pr} + (\cos \lambda - \alpha)$ $V = (\cos \lambda - \alpha)r + p$.

Then

(3)

$$\frac{\operatorname{Re}\left\{e^{i\gamma}g(z)\right\}}{\geq} \frac{U^{2}\cos\gamma - 2r(\cos\lambda - \alpha)UV + V^{2}r^{2}[\cos(\gamma - 2\lambda) - 2\alpha\cos(\gamma - \lambda)]}{U^{2} - r^{2}V^{2}} \\ (|z| = r).$$

The result is sharp.

PROOF. If $g(z) \in G_p(\lambda, \alpha)$ we may write

(4)
$$\frac{e^{i\lambda}g(z)-(\alpha+i\sin\lambda)}{\cos\lambda-\alpha}=\frac{1+\omega(z)}{1-\omega(z)},$$

where $\omega(z) = b_1 z + \cdots (|b_1| = p/\cos \lambda - \alpha)$ satisfies the hypotheses of Lemma A. Thus

(5)
$$|\omega(z)| \leq \frac{rV}{U}(|z| = r).$$

From (4) we have

$$e^{i\gamma}g(z) = e^{i(\gamma-\lambda)} \left\{ (\cos\lambda - \alpha) \left[\frac{1+\omega(z)}{1-\omega(z)} \right] + \alpha + i \sin\lambda \right\}$$

and

Re
$$\{e^{i\gamma}g(z)\} = (\cos \lambda - \alpha) \cos (\gamma - \lambda) \operatorname{Re} \left[\frac{1 + \omega(z)}{1 - \omega(z)}\right]$$

(6) $+ (\cos \lambda - \alpha) \sin (\gamma - \lambda) \operatorname{Im} \left[\frac{1 + \omega(z)}{1 - \omega(z)}\right]$
 $+ \alpha \cos (\gamma - \lambda) - \sin (\gamma - \lambda) \sin \lambda.$

Setting $\omega(z) = \operatorname{Re}^{i\theta}$ in (6) and simplifying, we obtain

 $\operatorname{Re}\left\{e^{i\gamma}g(z)\right\}$

(7) =
$$(\cos \lambda - \alpha) \left[\frac{(1 - R^2) \cos (\gamma - \lambda) + 2R \sin \theta \sin (\gamma - \lambda)}{1 - 2R \cos \theta + R^2} \right] + \alpha \cos (\gamma - \lambda) - \sin (\gamma - \lambda) \sin \lambda.$$

An application of Lemma B to (7) with $\mu = \gamma - \lambda$ and $\nu = \theta$ yields

(8)
$$\{\operatorname{Re} e^{i\gamma}g(z)\} \ge (\cos\lambda - \alpha) \left[\frac{(1+R^2)\cos(\gamma-\lambda) - 2R}{1-R^2}\right] + \alpha\cos(\gamma-\lambda) - \sin(\gamma-\lambda)\sin\lambda.$$

A substitution of (5) into (8) leads to (3). The sharp function may be obtained by combining the sharp functions of Lemmas A and B.

COROLLARY 1. If $g(z) \in G_p(\lambda, \alpha)$, then $\operatorname{Re} \{e^{i\gamma}g(z)\} > \beta$ for $|z| < \tilde{r}$, where $\tilde{r} = \tilde{r}(\lambda, \alpha, \gamma, \beta, p)$ is the least positive root of

(9)
$$(\cos \gamma - \beta)(U^2 - V^2 r^2) - 2Vr(\cos \lambda - \alpha)(U - Vr\cos (\gamma - \lambda)) = 0(|z| = r).$$

PROOF. By Theorem 1, $\operatorname{Re} \{e^{i\gamma}g(z)\} > \beta$ when the right side of (3) is $\geq \beta$. This is equivalent to

$$U^{2}\cos\gamma - 2r(\cos\lambda - \alpha)UV + V^{2}r^{2}[\cos(\gamma - 2\lambda) - 2\alpha\cos(\gamma - \lambda)]$$
$$\geqq \beta [U^{2} - V^{2}r^{2}]$$

or

$$(\cos \gamma - \beta)(U^2 - V^2 r^2) - 2Vr(\cos \lambda - \alpha)(U - Vr \cos(\gamma - \lambda)) \ge 0.$$

The sharpness follows as in Theorem 1.

DEFINITION 4. If $f(z) \in S$ and $|\gamma| < \pi/2$, then the spiral radius of order γ and type β of f(z), written $R(\gamma, \beta, f(z))$, is given by

$$R(\boldsymbol{\gamma},\boldsymbol{\beta},f(z)) = \sup \left[r: \operatorname{Re} \left\{ e^{i\boldsymbol{\gamma}} \frac{zf'(z)}{f(z)} \right\} > \boldsymbol{\beta}, |z| = r \right].$$

DEFINITION 5. If F is a subclass of S, then the spiral radius of order γ and type β of F, denoted $R(\gamma,\beta, F)$, is given by

(10)
$$R(\boldsymbol{\gamma},\boldsymbol{\beta},F) = \inf_{f(\boldsymbol{z}) \in F} R(\boldsymbol{\gamma},\boldsymbol{\beta},f(\boldsymbol{z})).$$

These definitions reduce to those of Libera [4] when $\beta = 0$. If in addition $\gamma = 0$, then the right side of (10) is the radius of starlikeness of the family F.

Setting g(z) = zf'(z)/f(z) in Corollary 1, we see that $\tilde{r} = R(\gamma, \beta, S_p(\lambda, \alpha))$.

Now set $\alpha = \gamma = \beta = 0$ in Corollary 1, so that \tilde{r} depends only on λ and p. For fixed λ we put $\tilde{r} = \tilde{r}(p, \lambda)$.

We can now relate λ -spiral functions to starlike functions. In the

sequel set $G_p(\lambda, 0) = G_p(\lambda)$, $S_p(\lambda, 0) = S_p(\lambda)$, and $K_p(\lambda, 0) = K_p(\lambda)$.

COROLLARY 2. If $g(z) \in G_p(\lambda)$ and we set $C = \cos \lambda + |\sin \lambda|$ then $\operatorname{Re}\{g(z)\} > 0$ for $|z| < \tilde{r}(p, \lambda)$, where

(11)
$$\tilde{r}(p,\lambda) = \left[\frac{p(1-C) + \sqrt{p^2(1-C)^2 + 4C\cos^2\lambda}}{2C\cos\lambda}\right]$$

Furthermore $\tilde{r}(p, \lambda)$ is decreasing $(0 \leq p \leq \cos \lambda)$ with

$$\tilde{r}(0) = \frac{1}{\sqrt{C}}$$
$$\tilde{r}(\cos \lambda) = \frac{1}{C}.$$

PROOF. Set $\alpha = \gamma = \beta = 0$ in (9). The least positive root of this equation is given by (11). The quantities $\partial/\partial p [\tilde{r}(p, \lambda)]$ and

(12)
$$(1-C)[\sqrt{p^2(1-C)^2+4C\cos^2\lambda}+p(1-C)]$$

have the same sign. Since

$$\sqrt{p^2(1-C)^2+4C\cos^2\lambda} \ge p|1-C|$$

and $C \ge 1$, (12) is nonpositive. Thus $\tilde{r}(p, \lambda)$ is decreasing in p.

REMARK. The radius of starlikeness of $S_p(\lambda)$ is thus given by (11). Since C is maximized at $|\lambda| = \pi/4$, for all p we have

(13)
$$\left[\sin \frac{\pi}{4} + \cos \frac{\pi}{4} \right]^{-1} = \frac{1}{\sqrt{2}} \leq \tilde{r}(p, \lambda)$$
$$\leq \frac{1}{\sqrt[4]{2}} = \left[\sin \frac{\pi}{4} + \cos \frac{\pi}{4} \right]^{-1/2}.$$

The lower bound in (13) is the radius of starlikeness of λ -spiral functions, found by Robertson in [6]. The upper bound in (13) shows that odd λ -spiral functions are starlike for $|z| < 1/\sqrt[4]{2}$

In the result that follows we relate starlike to spiral functions.

COROLLARY 3. If $g(z) \in G_p(0)$ and we set $D = \sec \gamma + |\tan \gamma|$ then Re $\{e^{i\gamma}g(z)\} > 0$ for $|z| < \tilde{r}(p, \gamma)$, where

(14)
$$\tilde{r}(p, \gamma) = \left[\frac{p(1-D) + \sqrt{p^2(1-D)^2 + 4D}}{2D} \right].$$

Furthermore $\tilde{r}(p, \gamma)$ is decreasing $(0 \leq p \leq 1)$ with

$$\tilde{r}(0) = rac{1}{\sqrt{D}}$$
 $\tilde{r}(1) = rac{1}{D}.$

PROOF. Set $\alpha = \lambda = \beta = 0$ in (9). The least positive root is then given by (14). It can easily be shown that $\partial/\partial p [\tilde{r}(p, \gamma)] \leq 0$.

REMARK 1. Thus if $f(z) \in S_p(0)$, then $\operatorname{Re}\{e^{i\gamma} zf'(z)/f(z)\} > 0$ $|z| < \tilde{r}(p, \gamma)$, where $\tilde{r}(p, \gamma)$ is defined by (14).

REMARK 2. We can obtain results about the family $K_p(\lambda)$ from those found for $S_n(\lambda)$ by a simple application of Definition 2.

References

1. H. S. Al-Amiri, On p-close-to-star functions of order α , Proc. Amer. Math. Soc. 29 (1971), 103-108.

2. M. Finkelstein, Growth estimates of convex functions, Proc. Amer. Math. Soc. 18 (1967), 412-418.

3. J. Krzyz and Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 447-448.

4. R. J. Libera, Univalent α -spiral functions, Can. J. Math. 19 (1967), 449-456.

5. K. Löwner, Untersuchen über schlicte konforme Abbildungen des Einheitskreises, I. Math. Ann. 89 (1923), 103-121.

6. M. S. Robertson, Radii of starlikeness and close-to-convexity, Proc. Amer. Math. Soc. 16 (1965), 847-852.

7. —, Univalent functions f(z) for which zf'(z) is spirallike, Mich. Math. J. 16 (1969), 97-101.

8. H. Silverman, On a class of close-to-convex functions, Proc. Amer. Math. Soc. 36 (1972), 477-484.

9. L. Špaček, Contributions à la théorie des functions univalents (in Czech), Casop. Pést. Mat.-Fys. 62 (1933), 12-19.

College of Charleston, Charleston, South Carolina 29401 University of Kentucky, Lexington, Kentucky 40506