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APPLICATION OF SINGULAR PERTURBATION THEORY 
TO THE RESTRICTED THREE BODY PROBLEM 

L. M.PERKO 

ABSTRACT. This paper describes how the theory of singular 
perturbations can be applied to establish the existence and 
asymptotic approximation of those solutions of the restricted 
three body problem with small mass ratio M > 0 which reach 
an O(M) neighborhood of the perturbing body. It also describes 
how singular perturbation theory and the theory of ordinary 
differential equations can be used to establish the existence of 
one-parameter families of periodic solutions of the second 
species of Poincaré for the restricted three body problem. 

1. The restricted problem as a singular perturbation problem. The 
equations of motion of the restricted three body problem with mass 
ratio 0 < fi <$C 1 can be written in an inertial, earth-centered coor
dinate system as 

(i) 
" [ i f f 

Xm(t) X Xm\}) 

(*)l3 M3 M*)l= 
d_ 
di 

where x G E3 is the position vector of the particle and xm E: E3 is the 
position vector of the moon. Note that if the particle collides with 
the moon; i.e., if x — xm = 0, then the perturbation term becomes 
singular. On the other hand, if the particle reaches an 0(/JL) neighbor
hood of the moon, \x — xm\ = 0(/x), 

^ - ^ L = o ( i ) 

and the system (1) can be written in the form of a singular perturba
tion problem with y as the dependent variable: 

,.. = y n _ , r My + xm(t) xm(t) -i 

^ ixy lyl* M ^ L l ^ + ^ w p MOP J 
Xm 

\x J 

For /x = 0, (1) has the form ' 
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(3) 

" — _ X° 

.. *n 

Thus, x0(t) and xm(t) are earth-centered Keplerian conies. We assume 
that xm(t) is a Keplerian ellipse, that x0(t) / 0, and that at some time 

(4) *0('i) = xm(t{) 

with relative velocity 

Vl = *0(*l) - *m(*l) 7̂  0. 

We then choose the initial conditions for the restricted problem (1) as 

x(t0, /x) = x0(to) + 8XO(IL) 

x(t0, fl) = X0(t0) + ÔX0(» 

with ôx0 = 0(/x) and 8x0 = 0( / i ) . It follows that |x(£, /n) — xm(t)\ 
= 0( /LI) for t = ^ + 0( jLt) and we have a singular perturbation 
problem. 

2. The outer approximation and error estimates. For t EL [t^ tY — 
0(/A1-6)], e > 0, the asymptotic expansion for the restricted problem 
(1), which we write as 

x = f(x) + iig(x, t\ f(x) = - r ^ 

has the form 
N 

(6) x(t, ix) = X ^ ( f ) + rN(f, pi) 
j = 0 

where, as in (3), x0 is the solution of the two body problem x0 = 
f(x0), and the Xj are successively defined as the solutions of the linear 
equations 

df , . , , \ / x ôx0 . Ôx0 

xY= -f- (x0)xl + g x0, *)>*i(*o) = , x^to) = 
dx fx [x 

df i \ M V X dkf ( N V 

('I 

xti • • • xik 

J_1 J_i!g_ 
K = 1 11 H H j . - J — 1 
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Xj(t0) = Xj(t0) = 0 

for j è 2. 

The remainder after N terms, rN, satisifes a nonlinear equation of 
the form rN = F(rN, t, /x). Cf. [28, p. 741]. 

The asymptotic form of the outer approximation as t—>tl is deter
mined from the Taylor series expansion of x0(t) about t~tx and from 
the solutions of the linear equations (7); cf. [3, 26, 28] : 

*o(*) - *m(t) = - VrT + ) \ V, 
6\xm(h)\3 L 

_ 3(xm(*i) • VMh) i 

l*m('l)|2 J 
(8) 

% / T ( ) \ 
x i W = "^T ln ( 7 / + x ^ 

*2(*) = Y T ( - ) [ l n ( ^ ) + a1 + V l n r ] + x2h(t) 

where r = t{ — t, r0 = £x — t0, i— Vi/IVj and % (̂£)> j = 1, are 
analytic functions of t. 

Assuming the induction hypotheses that 

|xfc(*)| ^ ck 
l n r I* - 1 

Hi-I ec0(t-t0) 
T I 

for all t G [£0, ^] and 2 ^ fc < j , we obtain the following integral in
equality for Xj from (7); 

1̂ (01 ^ \[ \[ [ col^f")! + cj ' ' ^ " I T ' ] d«" <**', 

and then using a variant of GronwalFs lemma, we prove the following 
theorem by induction on^'; cf. [28, p. 747] ; 

THEOREM 1. Let x0(t) and xm(t) be solutions of (3) with x0(t) ^ 0, 
xm(t) 7^ 0> and with the initial conditions x0(^o) and ^o(̂ o) chosen so 
that conditions (4) are satisfied for some tx > t0. It follows that there 
exists positive constants Cj, j = 1, such that the solutions to the linear 
equations (7) satisfy 

IxJt)] ^ Cillnrlé^'-'o) 
(9) 

\Xj(t)\ ^ Cj I - 1 \J~Y
 ec0(t-t0) 
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for all j ^ 2 and t G [fo, O . 

We now estimate the error term rN. Using Theorem 1 and the esti
mate \x(t) — xm(t)\ > ar, a> 0, which follows from (8), it is possible 
to deduce the following integral inequalities: 

(io) J t° K 

| f N | g P F0(\rN\,t',ix)dt' 

where 

l lr iT^-1 { in T "~ 
M N

 T N + 1 

+ Y Ì«J(M|lnT|)fc-̂  + 
fc=2 i = l 

+ / t | lnT | + tf y + j tO*| lnT | + u ) " / /A|lriT| + M y 
V b-u I m - u)N+l 

The above integral inequalities hold on any sub-interval of [t0, tY — 
0(/utI_e)] where 

(*) M*,M)I < K(t) = min[b,»r] 

provided /A > 0 is sufficiently small. Theorem 1 and this last in
equality (*), together with the fact that \x0 — xm\ > ar, imply that 
\x — xm\ = di > 0 on [t0, t{ — 0(fjLl~€)]. Hence, the solution x(t, /x) 
exists on [t0, t{ — 0(/x1_€)] for all fx > 0 sufficiently small provided 
the above inequality (*) is satisfied. 

Despite the complicated nature of the integral inequalities (10), 
estimates for \rN\ and \rN\ can be deduced by construction an appro
priate majorizing function MN(t, /x). This follows from the estima
tion lemma in [26] and [28] which is a nontrivial generaliza
tion of Gronwall's lemma to the nonlinear case when the function 
FQ(U, t, JJL) is a monotone function of u on its domain of definition. 
The clue to the proper form of the majorizing function comes from the 
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estimates on \Xj(t)\ in Theorem 1. We find that the function 

C.*)«/Mi+£+^)| V 
I N - 1 

MN(t, n) = nNcN ( 1 + ^ T + -rfrr ) I — I ec^~^ 

satisfies the differential inequality MN = F0(MN, t, /m) and the in
equality (*) MN(t, fi) < K(t) for all t G [t0,tl - 0(fjL1-*)] and }JL > 0 
sufficiently small; cf. [28, p. 752-753]. The following theorem then 
follows from the estimation lemma [28, p. 744]. 

THEOREM 2. Under the hypotheses of Theorem 1, it follows that for 
all N â 2 and e > 0 there exists a fxl> 0 such that for all \i G 
[0, fxi] there exist constants CN such that x(t, /ut) exists for t G 
[t0, tx — /x1-é] and 

I h iT l ^ - 1 

\rN(t,n)\êCN^\ ^ 
(ll) 

M ^ j g c w j i " I M * - ' 

for all t G [f0, *i - M1- ' ]-

3. The inner approximation and error estimates. With the introduc
tion of inner variables 

Y = X ~%m and s =l^JlLy t = t 1 + 0( / i ) , 

the three body equations (1) take the form 

Y x r Xm(s, /i) + ixY Xm(s, M) -, 
Y" = - | W - M(l - M) [ |Y|* ^ " L |Xm(s, /*) + MY|3 |Xm(*, /i)| = 

(12) = / ( Y ) + MG(Y ) S ; M) 

IXJ3 

where capitals are used to denote functions of s. 
The inner expansion has the form 

where 
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(13) 

Yo" = /(Yo), 

Y i " = ^ ( Y 0 ) Y 1 + G ( Y 0 , S , 0 ) 

for j ^ 2 with Y/0) = fyO) = 0 for j ^ 1, x = (x, fi) G E4 and Y0 

= (Y0, 0) G E4. Y0(s) is a moon centered hyperbola. 
If Y0(s) / 0, we find that for s = O(l), \Yj(s)\ ^ C, and |Y/(s)| ^ Q; 

and from the linear integral inequalities satisfied by the Yj(s), similar 
to those in § 2, we find, using an inductive argument and a variant of 
GronwalFs Lemma that 

\Yj(s)\ ^ j ^ , \%(s)\ Si Cj for \s\ =i O ( - j L - ) . 

The remainder after N terms RN satisfies a nonlinear differential 
equation of the form 

RN"= F ^ s , fi). 

By constructing an appropriate majorizing function and using the 
estimation lemma in [28, p. 744], it is possible to prove the following 
theorem. The details for the case N = 2 are carried out in [26]. 

THEOREM 3. For N ^ 2 let \RN(s, /x)| = 0(/xN" I- e) and \RN
f(s, /i)| 

= 0(iLN-l-e)for s= -fjL-112 and let Y(s, /x), Yj(s) and Xm(s, fi) be 
solutions of (12) and (13) u;i£n Y0(s) ^ 0 and Xm(s, fx) ^ 0. It follows 
that for all N ^ 2, and e > 0 there exists a fxY > 0 swc/i that for all 
/ i E [0, /xL] Y(s, /A) exists for s G [ —l//xi/2, l//ute] and fhßre exisf 
constants CN such that 

\RN(s,rì\^CNpN-i-< 
(14) 

for all s G [ - l / jx1 '2 , l / / i e] . 

REMARK. In terms of the outer variables, this implies that the inner 
expansion has the form 
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x(t, fi) = xjt) + fiy0(t, IL) + 2 f** +'!/*('> M) + 0(MN"e) 
fc = l 
N-Ì 

i(t, 11) = i m (0 + fiy0(t, M) + S M*+1y*('> M) + o ( ^ - 1 - e ) 

for N g 2 , and for all t G [tp - /x1/2, tp + /A1"*] where t/̂ f, pt) = 

»(* - y^)-
Thus, if we can establish, via asymptotic matching, that the inner 

expansion written in terms of outer variables matches the outer expan
sion to within error terms of 0(fiN~€) for all t — tp = 0(fi112), then 
we will obtain an asymptotic expansion uniformly valid to within 
error terms of 0(fiN~e) for all t G [t0, tp + 0(/x1"e)] by taking 
2N — 1 terms in the outer expansion and N terms in the inner expan
sion. Actually, it is not necessary to carry all parts of all of these terms 
in order to obtain an asymptotic expansion uniformly valid to 
0(/xN-*);cf. [4]. 

4. The asymptotic matching. The asymptotic matching for this 
problem compares the functional forms of the inner expansion ex
pressed in terms of outer variables and the outer asymptotic expansion 
in the region where t — tx = 0(fi112) as fji —» 0. It determines the 
parameters of the moon centered parabola y0(t, fi) in terms of the 
initial conditions x0(t0), x0(t0) and the variations in the initial condi
tions ôx0, SXQ. This matching has been carried out to first order in 
[3] and in [26] and to second order in [4]. 

In the remainder of this paper, we find it more convenient to use 
the outer variables with respect to the earth, x(t, fi) and with respect 
to the moon 

7) = fiy = x - xm. 

The second order matching then determines the parameters of the 
moon-centered hyperbola rj0(t, fi) = fiy0(t, fi) correct to within error 
terms of 0(/x3~e) for any e > 0; i.e., the distance to the asymptote of 
the hyperbola 

A = fij • xufa) + fi2j ' x2b(tl) 
(15a) _ ( / x 2 / V i ) [ j . ±ib{ti)] {i . Xlb{h)] + O(fi^) 

the time of perilune passage, tp, is determined by 

(15b) 

+ TTT U • *ib(ti)] [i • *ib(*i)] + Z*2* • *2fc(*i) + 0 ( / * 3 - ) 
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where e1 = [1 + (Voo2A//x)2] 1/2, and the velocity at infinity along 
the hyperbola, V«, is determined by a more complicated formula, the 
second order terms given in [4] being too lengthy to include here 

(15c) V . = V! + /£*,„(*,) + M2(- • •) + 0(/i3-«). 

We note that the explicit form of xib(ti) is given by 

Xlb(h) = *n(h, fo) ( — ) + *„,(*!, « ) ) ( — ) + j ^ &l(*l, *) <** 

where 

bl(tut)= *„,(*!, *)g[x0(*),*] ~ T T V - , * ? * * I 

fci(*i,*i) = 0 

is an analytic function of £ and <£>(t, t0) is the fundamental matrix solu
tion of 

• - [/ ,woi Ó] *•*('».'») = '• 
We can then prove the following existence theorem based on 

Theorems 2 and 3 above and the theory of ordinary differential equa
tions as in [29, p. 206]. 

THEOREM 4. Let x0(t), xm(t), x0(t0) and x0(t0) satisfy the conditions 
of Theorem 1. Let the variations 8x0 and 8x0 satisfy the following non-
collision condition: given k0 > 0 there are constants ii0 > 0 and d0 > 0 
such that for all \8x0\ ^ /u,/c0, \8x0\ = /x/c0 and fi Œ (0, /i0), 

| j • <&„(*!, f0)8x0 + 7 • * ro(*i, *o)ôx0 + 
(16) 

If then follows that given e > 0 £here exists a fxx > 0 (u;i£ft ^ ^ /x0) 
swc/i £/ia£ for t Œ [t0, tY + ^t1_€fco] a n ^ /x, G (0, /xj £/iere existe a 
unique solution x(t, ôx0, ôx0, /A) of the restricted three body problem 
(1) with initial conditions (5) which is an anayltic function of its 
variables and which is approximated uniformly on this interval to with
in an error of 0( t t 3 _ e) by the outer expansion (6) with N = 5 on 
[t0, tx — /x1/2fc0] and by the inner expansion (12) with N = 3 on 
[tl — 2/c0Lt1/2, t1 + fjbl~€k0] provided r)0(t, it), is a moon centered 
hyperbola with the parameters given by equations (15). 
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NOTE. The appearance of 0(/LL3_C) estimates is due to the fact that 
there are terms of 0(/u,3|ln JJL\) in the error term. These terms are 
ofO(/x/3-6), fore > 0, butarenotofO(jx3). 

5. Periodic solutions of the second species of Poincaré. In this 
section we will discuss periodic solutions of the planar, circular, re
stricted three-body problem with the coordinates normalized so that 
l*m(£)l = l*mWI — 1. A periodic solution will refer to a solution of 
the restricted three body problem (1) which is periodic in rotating 
coordinates. A periodic solution is called a periodic solution of the 
second species if it approaches arcs of Keplerian conies joined at 
corners at the position of the perturbing body as jx —> 0. This type of 
periodic solution is therefore quite different from periodic solutions of 
the second kind which approach Keplerian ellipses which do not 
intersect the position of the perturbing body as fx —» 0. Arenstorf [ 1] 
established the existence of one-parameter families of periodic solutions 
of the second kind using the continuation method of Poincaré to show 
that a certain periodicity condition is satisfied. The author [29] has 
established the existence of one-parameter families of periodic solutions 
of the second species using the boundary layer approximation and 
error estimates described in the first part of this paper in order to 
show that this same periodicity condition is satisfied. 

In order to describe the families of second species periodic solu
tions, it is first necessary to describe the limit orbits which are called 
generating orbits. These are described by the author in [29] and 
have been studied extensively by Henon [ 14]. Briefly, a solution 
x()(t) of the two body problem (3) is called a generating orbit if for 
some tY and T() > 0 

xo(h) == xm(h) 

and 

x0(*i + T0) = xjty + T0). 

lfx0(t) is an ellipse with x0(^) = xm(^) and with semi-major axis a0 = 
(mlk)2,:\ then x0(t) is a generating ellipse (of type B) since x0(tl + T0) 
= *m(*i + T0) for T0 = koom(2irr) = 2rmr. The moon makes m revo
lutions and the particle k revolutions in the time interval T0. Figure 
1 shows two intersecting generating ellipses of type B with m—k 
= 1. The second species periodic orbit that can be generated from 
this pair of (type B) intersecting ellipses is shown in both inertial and 
rotating coordinates. 
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Figure 1 

There is another type of generating orbit of periodic solutions of the 
second species (of type A). This type of generating orbit is illustrated 
in Figure 2 which indicates that the time for the particle to move 
along the ellipse from t0 to tY is equal to the time it takes the moon 
to move along the circle from t0 to tx. The timing condition for type 
A orbits and the existence of families of type A orbits is given in [29, 
p. 202-203]. These orbits were also studied extensively by Henon in 
[ 14]. Figure 2 also shows the type of second species periodic orbit 
that can be generated from two intersecting (type A) ellipses in both 
inertial and rotating coordinates. 

Figure 2 

The existence of families of periodic solutions is established by 
showing that there are solutions of (1) which cross the earth-moon 
line of centers perpendicularly at two points. It follows from the sym
metry of the three body equations in rotating coordinates that such 
solutions are periodic in the rotating frame. This is the periodicity con
dition that was used by Arenstorf [1] and already by Brikhoff [2]. 

In order to establish the existence of periodic solutions of the 
second species of type A, we choose the initial conditions in the form 
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(5) where x0(t) is a generat ing ellipse of type A with x0(t0) * x0(t0)
 = 0 

and x0(t0) X xm(t0) = 0 and with 8x0 and 8x0 parallel to x0(^0) and 
x0(t0) respectively; i.e., we start at a perpendicular crossing of the 
earth-moon line of centers at t ime t0 as is indicated in Figure 2. W e 
then use the results of the first par t of this paper to derive conditions 
on the variations 8x0 and ôx0, subject to the above constraints, which 
imply the existence of a second perpendicular crossing of the earth 
moon line of centers. 

W e first restrict the apogee and per igee distances to satisfy a 0 ( l — 
e0) < 1 < a 0 ( l + e0). It then follows that | Vx | > |Vfl0(l eo2) ~ 
1| ^ 0. Cf. [29, p . 206] . 

W e next establish the important result that, just as for the hyperbolic 
motion rjo(t, fi), the solution of the restricted problem, x(t, /*,), with 
initial conditions of the form (5), has a unique time, t*, during each 
near-moon passage, at which the position and velocity vectors relative 
to the moon r) and r) are perpendicular and at which t ime the distance 
to the moon \rj\ is a minimum. 

THEOREM 5. Let x0(t) be a generating ellipse of type A with a0(l — 
e0) < 1 < tf()(l + e0) and let the variations 8x0 and 8x0 satisfy the non-
collision condition of Theorem 4. It then follows that given e > 0, 
there is a /JL1> 0 such that for fi G (0, /xx) there exists a unique value of 
t,t* G [ti — /x1_c/c0, ty + /LL1_efc0], such that 

(17) V(t*,p) • i j ( t * , i ) = 0 

and such that \r\(t, /x)| assumes its minimum value at t = t*. 

The proof of this and the next two theorems is based on the follow
ing simple lemma which follows from the intermediate value theorem 
and the law of the mean. 

L E M M A . If for e > 0, a G [1 , 3/2], k0 > 0, kY > 0, there exists a 
fx0 > 0 and an a0 such that z(a, //,) and z0(a, jx) are analytic functions 
of a and fi for all a G [a0 — k0jjL

a, a0 + fc0/x
a] and y. G (0, /x0) 

which satisfy 

(1) z(a, p) = z0(a, LL) + 0 ( / t 2 -« ) 

(2) z0(a0 , ix) = 0 

(3) dz0(a, Li)lda ^ kx > 0 

for all a EL [a0 — fco/i", a0 + k0[jia] and i± G (0, /x,0), then there exists a 
LLX > 0, (fiy g /IQ), and an a* = a0 + 0(ju,2 - e) 5wc/i f/iaf z(a*, fi) 
= Ofor all fi G (0, fi{). 
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PROOF. By the theorem of the mean, there exists a n ^ G (a0, a0 + 
/x«/co) such that z0(a0 + fiak0) = z0(a0) + V K ) / ^ o = / ^ o ^ i 
> 0. Similarly z0(a0 — /xafc0) ^ — fiakik0 < 0. 

Then from (1) it follows that z(a0 — fiak0) < 0 and that z(a0 + 
/i/*fc0) > 0 provided fx G (0, j ^ ) C (0, /xo) and fjLY > 0 is sufficiently 
small. Thus, the intermediate value theorem implies that there exists 
an a* G (a0 — fxak0, a0 + /xafc0) such that z(a*) = 0. 

Next, from the theorem of the mean, there exists an ax G (a0 — fJLak0, 
a0 + fiako) such that a* - a0 = [z0(a*) - z 0 ( M / V ( a i ) = °(/*2~e) 
since z;0(a0) = 0, z0(a*) = z(a*) + 0(jLt2_€) and 2 0 ' ( Ö ) = /cx > 0 for 
a G (oo - /Ltttfco, a0 + /x«/c0). 

oo**-<) 

°L*-/?k 
>-CL 

a*+/*kc 

Figure 3 

The proof of Theorem 5 is contained in [29, p. 209-212]. Briefly, 
for r)(t, fi) = x(t, fi) — xm(t), we note that by Theorem 3 (and the 
remark following this theorem with N = 2}q(t, fi) = rj0(t, fi) + 
0(/x2-e) and r)(t, n) = <n0(t, fi) + 0(fjLl~') for t G [tp - /xfc0, tp 

+ fik0]. Thus, if we let z(t) = rj(t) • rj(t) and z0(t) = r)0(t) • r)o(t), we 
have: (1) z(t) = z0(t) + 0(fi2~€) for t G [tp - /xfe0, £p + /x/c0] • And 
since 7)o(t) is a hyperbolic motion with perilune time tp, it follows 
that: (2) z0(tp) = 0. Also it can be shown, using the energy integral 
for ifo(f), cf. [29, p. 211], that: (3) *o(0 = V^/2 > 0. Thus, it fol
lows from the above lemma that for fi > 0 sufficiently small, there 
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exists a t* = tp + 0 ( fx2~€) such that z(t*) = 0. 
To establish the uniqueness of t*, we note that z(t) = rj(t) • 17(f) = 

|î7|(d|î7|/df) with \r)\ > 0 for /x > 0 sufficiently small and then show 
that d2\r)\ldt2 > 0 using the differential equation of motion for rj and 
the energy integral for r)0; cf. [29, p. 212]. This shows that d\r)\ldt 
is a monotone increasing function of t and that d\rj\ldt and therefore 
z(t) has a unique zero, t*, in [£p — tifc0, tp + /x/c0]. 

Since the hyperbolic motion T}0(£, /LI) is not uniquely defined by the 
asymptotic matching, we define rj0(t, xt) uniquely by specifying that 
r)0(t, /x) is that solution of the two body equations r}0 = fif(r}0) which 
satisfies 

(18) no(tp) = 7i(t*) andrio(fp) = ri(t*). 

Conversely, it then follows that by specifying the parameters of the 
hyperbolic motion A, V«, and tp, we uniquely specify a solution of the 
restricted three body problem x(t, /x) = xm(t) + rf(t, /x) through 
conditions (18). 

We now show that r)(t*, fi) is parallel to xm(t*); i.e., that there is a 
second perpendicular crossing of the earth-moon line of centers at £*, 
for a particular value of A, the distance to the asymptote of the moon 
centered hyperbola rj0(t, fx). 

THEOREM 6. Under the hypotheses of Theorem 5, given e > 0 there 
exists a jxl > 0 such that for all /x G (0, /x^) there exists a A * such that 
7){t, fi) determined by A*, V* = V\ + 0(/LL1 - €) and tp — t* through 
equation (18) satisifes 

(19) !,(** fji) X xm(t*) = 0 

where t* is defined in Theorem 5. 

The proof of this theorem is contained in [29, p. 214-216]. It 
follows the same line of reasoning as the proof of Theorem 5. In this 
case we define z(A) — ??(£*, A) X xm(t*) and z0(A) = %(£*, /x) X 
xm(t*). It then follows from the error estimates in the first part of this 
paper that: (1) z(A) = z0(A) + 0(/x2"e). Also, (2) Zo(Ai) = 0 where 
Ài = /xltan-Vil/Vcc2 and yx = a[V^ xm(tp)]. This follows from the 
elementary formula for hyperbolic motion, 

ßi = a[V„,V.+] = 2 T a n " ! ( x v ? ) 

and the fact that z0( A ) = 0 if and only if ßJ2 = TT/2 + yY. Cf. Figure 
3. It can also be shown that z 0 ' ( A ) ^ fci > 0 for all A = Ax + 
0{^2). The existence of a A* = Ax + 0(/x2"*) for all tt > 0 suf
ficiently small then follows from the above lemma. 



688 L. M . PERKO 

Figure 4 

The final step in the existence proof is to show that this value of A 
can be achieved by a particular choice of the variations in initial con
ditions 8x0 and 8x0, This is accomplished using equation 15(a). That 
is, we let z(8x0) = A(8x0) - A*(Ôx0) and z0(8x0) = A0(ôx0) -
A i(ôx0) where 

A0(ôx0) = a2iôx0 -h a248x0 + | j • b^t^ t) 
J to 

dt 

and apq are the components of the fundamental solution OR where 
R is a rotation through the angle a[x0(t0), Vi] a n d where Ax is de
fined above. It then follows that if a2l ^ 0, then for all ôx0 = 0(/x,): 
(1) z(8x0) = z0(8x0) + 0(/x2_e) since A = A 0 + 0(/x2"e) as in 
(15a) and since A * = A Y + 0( /x2~€) as in Theorem 6. Also, (2) 
*o(ô*o) = 0 if ôx0 = [(Ao - Ai) - a248x0]la2l and (3) z0'(8x0) = 
a2i 7̂  0. It then follows from the above lemma that if a2l ^ 0 and 
/jL > 0 is sufficiently small, then there exists a ôx0* = [(A0 — A J — 
a248x0]la2l + 0(/Li2-e) such that A(Ôx()*) = A*(ôx0*). 

We then show by direct computation that a2l(a0, e0) and a24(a0, e0) 
are equal to zero for at most a finite number of points (a0, e0) in any 
compact subset of {(a0, e0) \ a0(l — eQ) < 1 < a0(l + e0), 0 < e0 < 1} 
where aQ and e0 are the semi-major axis and eccentricity of the gener-
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ating ellipse x0(t) respectively, cf. [29, pp. 219-220]. 
Finally, since | A J = / ^ t a n y ^ / V i 2 + 0(JLL2"€) where ylQ = 

«[Vi, Xmih)] a n d since tany 1 0 = Ao/W^ 2 — AQ2 with AQ = 
Vö0(l — e0

2) — 1, we see that the non-collision condition (16) is satis
fied if a0(l - e0

2)f 1. 

THEOREM 7. Let (a0, e0) G E0 = {(a0, £0) I ao(l ~" ^o) < 1 < 

a0(l -h £0), 0 < e0 < 1, a0(l — e0
2) f^ 1} define a generating ellipse 

of type A. Then for all but possibly a finite number of (a0, e0) in any 
compact subset of E0, a2ia24 ^ 0 and given e > 0, there exists a 
/Xj > 0 such that for all /A G (0, fix) there exists a one-parameter 
family of solutions of the restricted three body problem x(t, ^) , 
periodic in rotating coordinates and determined by the initial condi
tions (5) where 

a2l8x0 + a248x0 = M [ - ^ y 2 - J'1 j ' &i(*i, t) dt] + O^2 e) 

and the period T = 2(tp — t0). 

It was also shown in [29] that a denumerable number of the 
periodic solutions of Theorem 7 are periodic in both rotating and 
inertial coordinates; cf. Theorem 2, p. 224. Periodic solutions which 
approach arcs of generating ellipses of type B were also established 
in [29] ; cf. Theorem 3, p. 230. 

6. Second species solutions with near-moon passages. As was noted 
in section 5, for 0(/LL) variations Ôx0 and 8x0 in the initial conditions 
(5), the particle passes within an 0(/x) neighborhood of the moon, 
the minimum distance occurring at a unique time tp = tl + 0(/x1_e), 
e > 0, which is defined to second order by equation (15b). At t = tp 

we have r)(tp) ' r)(tp) = 0. If the point r)(tp) lies on the earth-moon line 
of centers, we have a second perpendicular crossing of the earth-
moon line of centers and a periodic orbit in the rotating frame. How
ever, if 7)(tp) does not lie on the earth-moon line of centers, we have 
what is referred to as a near-moon passage. 

It is possible to have periodic solutions of the second species with n 
near-moon passages between two perpendicular crossing of the 
earth-moon line of centers. However, since the angle through which 
the velocity vector turns at a near-moon passage 

" - " • » • ' ( Ä V ? ) ' 

it follows that if A is determined to Nth order, then ß is only deter
mined to (N — l)st order; i.e., an order of accuracy is lost with each 
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near-moon passage. And since it is necessary to know ß to O(l) in 
order to establish a second perpendicular crossing of the earth-moon 
line of centers, it follows that to establish the existence and 1st order 
asymptotic approximation of a second species peridoic solution with 
n near-moon passages, it is necessary to carry out (n + l)st order 
asymptotic matching over the first arc, (n)th order matching over the 
second arc. . . . Second species periodic solutions with one near-moon 
passage have been established in [30] based on the results of second 
order matching [4]. Figure 4 shows an example of a second species 
solution with one near-moon passage in both inertial and rotating 
coordinates. 

Figure 5 

7. Second species bifurcation. Guillaume [13] extended the 
Breakwell-Perko asymptotic matching in the restricted three body 
problem to include variations in the initial conditions 8x0 and 8x0 

of 0( fjLa)7 1/3 ^ a ^ 1. The second species periodic solutions with 
these "large" variations in the initial conditions possess the interesting 
property that for a = 1 the angle through which the velocity vector 
turns at a near-moon passage 

^ = 2 T a n"(Ä^) = 0 ( 1 ) 

as /UI-H>0 since A = 0(/LL) and V,, = O(l), but for 0 < a < 1, the 
angle 

/ 8 = 2 T a n - ' ( - ^ - i - ) = O ( / t ' - ) - > 0 

as /X-+0 since A = 0(/xa). Thus, we have two entirely different 
types of limiting orbits as /LL—> 0 for a = 1 and for 0 < a < 1; cf. Fig. 
5. Guillaume in [12, p. 254] refers to this phenomena as a second 
species bifurcation. 

Another type of bifurcation phenomena referred to by Guillaume 
[11, p. 114] occurs at the intersection of two characteristics de
scribing generating orbits of type A. These characteristics are shown 
in Henon's work [14] in the (a0, e0) plane on page 389 and in an 
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equivalent system on page 384. This latter figure is reproduced below 
in Figure 6. At these points of intersection or "bifurcation points," a 
second order analysis in (8x0, 8x0) or equivalently in (8a0, 8e0) yields 
a quadratic form (Equation IV-13 on p. 114 in [11] ) 

(*) (W08a0 + W.Se^dao = t ^ l (A) - A.W,) + 0 ( ^ - < ) 

which describes a hyperbola with the tangents to the characteristics of 
the generating ellipse at the bifurcation point as asymptotes; cf. Figure 
7. 

Equation (*) above was compared to the numerical work of Deprit 
[8] which studies the Hecuba gap and the Hilda group in the asteroid 
belt between Mars and Jupiter. The qualitative agreement is excellent 
cf. Figure IV-8 in [11, p. 116]. And as Guillaume points out, a better 
quantitative agreement could be obtained by replacing the linear 
equations for the tangents to the characteristics of the generating 
ellipse by a non-linear approximation valid far from the bifurcation 
point. 

Finally, we note that the numerical work of Colombo et al. [7] on 
families of periodic orbits of the restricted problem for the asteroids 
at least appears to have a form similiar to what one would expect to 
obtain from the second species bifurcations; cf. Figures 6 and 8. It 
would indeed be interesting if the theory of singular perturbations 
could be used to describe the gaps in the asteroid belt and the 
stability of the Hilda and Hecuba groups of asteroids. 

8. Historical Notes. Lagerstrom and Kevorkian [19] performed 
the first asymptotic matching in the restricted three body problem 
for those trajectories which are near the earth-moon line of centers; 
i.e., those trajectories with an initial angular momentum h0 = 0 ( JU 1 / 2 ) . 

The author [27] then carried out the asymptotic matching for those 
trajectories with h0 = (1). Further work by Lagerstrom, Kevorkian 
and Lancaster [19, 20, 21, 23] and by Breakwell and Perko [3, 
4, 26] generalized this matching to apply to all cases for which 
Vi j£ 0. In addition, [3] includes the case of earth-to-Venus tra
jectories in the restricted four body problem. Second order matching 
has been carried out in [4] and in [23]. As was previously men
tioned, Guillaume [13] extended the Breakwell-Perko matching 
theory to include 0(fia), l / 3 S a S 1, variations in the initial condi
tions. It is interesting to note that the restricted three body problem 
with \x — xm\ = 0(/Lta) has the form of a singular perturbation prob
lem only if a > 1/3; i.e., a = 1/3 is the lower limit for which singular 
perturbation theory can be, or need be for that matter, applied. 
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Figure 6 

Figure 7 
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The error estimates for the first order boundary layer approximation 
to the restricted problem, uniformly valid for t G [t0, tp] ; i.e., during 
one near-moon passage, were derived by the author [26] and [28] 
using differential inequalities and the concept of a majorizing function. 

There has been an extensive amount of work on periodic orbits in 
the restricted three body problem of both a numerical and analytical 
nature. Poincaré [31] described the following classes of periodic 
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solutions: periodic solutions of the first kind which approach Kep-
lerian circular orbits as /A—»0; periodic solutions of the second kind 
which approach Keplerian elliptical orbits as fx,-* 0; and periodic solu
tions of the second species which approach arcs of Keplerian conies, 
joined at corners, as /x,—» 0. For small fi > 0 existence of periodic 
solutions of the first kind was established by Poincaré [31] and by 
Birkhoff [2] ; existence of periodic solutions of the second kind was 
established by Arenstorf [ 1] ; and existence of periodic solutions of 
the second species was established by the author [29]. The limit 
as fi —» 0 is uniform for periodic solutions of the first and second kinds 
and non-uniform for periodic solutions of the second species. 

Periodic solutions, using asymptotic methods, have also been studied 
by Kevorkian and Lancaster; cf. [17] and [22]. Periodic solu
tions of small period near either the earth or the moon have been 
established by Hill [16] and Siegel [32]. And periodic solutions 
of large period far from the earth and moon have been established by 
Koopman [18]. Solutions for small JJL > 0 which close only after 
many revolutions have been established by Birkhoff [2] and Moser 
[24]. 

Numerical studies of periodic orbits in the restricted three body 
problem have been extensive. Starting with some of the early work of 
Stromgren [33], many different facets of periodic solutions have 
been studied for both large and small values of /x in [5, 8, 9, 10, 14, 
15, 33]. These numerical studies, combined with the theory of 
ordinary differential equations and a computational error analysis, 
also serve to establish the existence of periodic orbits in the restricted 
three body problem; however, to the author's knowledge, no numerical 
study of second species solutions with near-moon passages," as de
scribed in § 6, has been made due to the difficult nature of this prob
lem. 
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