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1. Introduction. In a 1970 article in Studies in Applied Mathe­
matics Ackerberg and O'Malley [1] described a curious phenomenon, 
which they called resonance, associated with the singular perturbation 
boundary value problem 

(a) ey" - p(x)y ' + q(x)y = 0, (0 < e « 1) 

(b) y(a) = a, y(b) = ß 

where the function p(x) changes sign within the interval [a, b]. As­
sume in fact that p ' (x) > 0 and that p increases from negative to posi­
tive, so that p(xc) = 0 at some "turning point" (or "critical point") xc G 
(a, b). Then normally the B.V.P. is uniquely solved by a function y(x) 
which is exponentially small throughout the body of the interval, ex­
cept in two thin boundary layers (of width O(e)), where it adjusts 
rapidly to match the prescribed boundary values. However in special 
circumstances, depending delicately on p(x) and q(x), SL kind of 
resonance occurs: y(x) is no longer asymptotically zero within (a, b), 
but is instead asymptotically close to a nontrivial solution of the 
reduced differential equation 

(2) p(x)y0' -q(x)yo = 0 

obtained by setting e = 0 in (1). In general, at least one boundary 
layer correction is needed in order that both boundary conditions may 
be satisfied, and depending on circumstances this correction may ap­
pear at the left or right endpoint. Under exceptional conditions there 
may even be boundary layer corrections at both ends. 

Ackerberg and O'Malley gave a simple necessary condition for 
resonance to occur: it is that the ratio I = q(xc)lp ' (xc) must be a non-
negative integer. Later W. D. Lakin [7] and P. Cook and W. Eckhaus 
[3] independently discovered that this necessary condition is only the 
first of an infinite sequence of such conditions involving p and q. In 
fact the sequence of conditions can be shown to be sufficient. The 
conditions after the first become exceedingly burdensome to compute 
or even to write down, and the problem of finding effectively appli­
cable criteria for resonance remains open. (But see Kreiss and Parter 
[6] and B. Matkowsky [14].) 

In this article we shall examine several phenomena which while 
quite diverse in appearance seem to have a common origin related to 
resonance. For much of the asymptotic analysis we shall rely on two 
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early papers of R. McKelvey [15] and [16] which utilize the methods 
of R. E. Langer. 

In paragraph 2 we review the basic facts about the "classical" 
Ackerberg-O'Malley resonance phenomenon. In paragraph 3 we 
examine the "interior flaring" phenomenon which occurs when the 
slope of the coefficient function p(x) in (la) is reversed. An explicitly 
solvable example has already been treated by R. O'Malley [ 18]. 

In paragraph 4 we examine the asymptotic form of solutions of the 
D.E. 

- iy" = M p ( % ' - q(x)y] as A -* + oc 

where p(a) < 0 < p(b). The particular solution which to one side 
(left or right) of the turning point is asymptotic to a solution of the re­
duced equation, breaks up on passing across the turning point into a 
pattern of rapid oscillations. Exceptionally, there is a resonant state in 
which the slowly varying regular behavior persists across the entire 
interval. 

In paragraph 5 we examine the stability properties of the differential 
equation 

(3) ey" - [ U(x) - c] (y' + ay) + n{e)U'(x)y = 0 

where U(x) is to be interpreted as a velocity, e as an inverse Reynolds 
number and a and c as frequencies in space and time. When the 
equation is uniformly in resonance (via conditions on n(e)) its stability 
properties are analogues to those encountered in viscous shear flow, 
as described by the fourth order Orr-Sommerfield equation of hydro­
dynamics. Equation (3) is therefore a kind of second order "model" of 
O.S. The O.S. equation itself exhibits certain residual characteristics 
of "resonance," and we discuss this briefly. 

In paragraph 6 we examine a "resonance" phenomenon associated 
with a class of differential equations which are singular at one end of 
the interval of interest: The D.E. is 

ey»-<p(x9e)y'+ [ — ^ - + ^f-1 J y = 0, (<p(x) f 0) 

with B.C.: 

-iy" = 0(xm + 1/2) a t* = 0; y{\) = 1. 

For brevity we confine our description to the prototypical case where 
cp and \p are constant; the general class can be handled using the 
analysis of [16]. The behavior here is very similar to the original 
Ackerberg-O'M alley situation. 
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The phenomena considered in this paper all have in common two 
things: First an order-reducing limiting process whereby certain solu­
tions of the full D.E. are represented asymptotically on subintervals by 
solutions of a reduced equation. Second the coalescence, at certain 
critical values of parameters in the D.E., of solutions which are of 
asymptotically distinguished types. It is this latter occurrence which 
we call resonance. 

Extensions of results announced here, as well as precise statements 
and detailed computations, will be found in R. Bohac's University of 
Montana dissertation. 

We wish to thank Seymour Parter and Robert O'Malley for calling 
our attention to Ackerberg-O'Malley resonance, and for bringing us 
up to date on the research dealing with it. 

2. Classical Ackerberg-O'Malley resonance. The occurrence of 
resonance can be explained from several points of view (H. O. Kreiss 
and S. Parter [6] ; P. P. N de Groen [4] ). The simplest, it seems to us, 
is in the original framework of asymptotic turning point analysis. Let 

€x=- f Pit) dt. 
€ Jxc 

Thus, for each fixed e > 0, ijx vanishes at the turning point xc and in­
creases monotonically as one moves away from xc, either to the left or 
to the right. By the W.K.B. method (E. Zauderer [23] ) or otherwise, 
one finds on either side of the turning point a pair of asymptotic solu­
tions, respectively, 

(a) y0(x) + e yx(x) + e2y2(x) + • • • , 
(4) 

(b) exp(fx)[Mo(x) + e ux(x) + e2u2(x) + • • • ] . 

The first of these has the structure of a regular perturbation or "bal­
anced" solution: formal substitution in the differential equation (1 a) 
shows that the leading term j/o(x) must satisfy the reduced equation (2). 
The second is of asymptotically "dominant" type, becoming infinite at 
x ^ xc as e —» 0. Alternatively, this second solution may be modified 
to a boundary layer form by inserting an exponential damping factor 
independent of the variable x: 

exp[ - (& - &)] • O0(x) + € Uy{x) + e*u2{x) + • • • ] , for x > xc 

or 

exp[ — (fa — £J] [uQ(x) + e uY(x) + €hi2(x) + • • •] forx < xc. 

In general the asymptotic forms (4) cannot be continued across the 
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turning point, e.g., the solution represented by (4 a) to the left of the 
turning point normally will be linearly independent of that solution 
which is represented by (4 a) to the right. Indeed resonance occurs 
precisely in the exceptional circumstance that these two solutions 
happen to become dependent! 

Briefly, out of resonance the solution which is balanced to left of the 
turning point connects to one which is dominant to the right. Modify­
ing the overall solution by a factor c • exp(— Çh) yields a solution which 
is exponentially small everywhere in [a, b) outside of a narrow bound­
ary layer at b and, with adjustment of the constant c, takes on the 
boundary value ß at b. Similarly one finds a solution which takes on 
the boundary value a at a, and is exponentially small in (a, b] outside 
of a narrow boundary layer at a. Superimposing these two solutions 
one solves the B.V.P. 

On the other hand, in resonance the balanced solutions are con­
nected — indeed, with no jump in the value of yo(x) on crossing the 
critical point. A second solution is exponentially large at both ends. 
When £a i^ £h, that solution should be modified by the factor exp( — fa) 
to one which is exponentially small in the interval and rapidly chang­
ing within a boundary layer at a. In the special case where £a = t;b, 
i.e., where 

r p(t) dt=o, 

this modified solution also grows in a boundary layer at b. The B.V.P. 
can once again be satisfied by a linear combination of the two solu­
tions, but now the combination will be asymptotically non-zero and, 
outside of the boundary layers and a shrinking critical layer — within 
which it remains bounded 0(e112) — is asymptotically close to a non­
zero solution of the reduced equation. 

Sometimes the matching across xc of the balanced solutions can be 
detected by direct examination of the series (4 a), should the expected 
singularities at xc fail to occur in the coefficients y^x) (see Matkowsky 
[ 14] ). But this regularity of coefficients at xc is in no way necessary 
for resonance; in general there is a critical layer (of width 0(e1/2)) 
about xc within which the W.K.B. expressions (4) simply are invalid. 
Then one must match up solutions (4) across xc with the help of explicit 
linear connection formulas involving so-called Stokes' multipliers. 
These may be derived by utilizing "local turning point solutions" or, 
as we prefer, by use of comparison equations which are solvable 
across the whole interval, in terms of special functions of known struc­
ture at the turning point. 
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This latter method was developed, in the first instance, by R. E. 
Langer [9], [10], and then by several others (McKelvey [15], Hanson 
and Russell [5], Roy Lee [11], F. W. J. Olver [17] ). If the D.E. (1 a) 
is normalized by the transformation y = v exp(l/2fj to 

(5) 0«_ | - _ L p 2 _ i ( p ( + 2q) ]v 

then one sees that the turning point is of order 2: i.e., the term 
(l/4€2)p2, which is dominant away from the turning point, has a second 
order zero at the turning point. Hence a comparison equation, in 
order to capture the asymptotic properties of solutions, must faithfully 
duplicate this given equation at least to Ik terms in the vicinity of the 
turning point. An algorithm for doing this was given by McKelvey 
[ 15], providing exact solutions to a sequence of equations 

(6) 2 " = [^Ep2-je(p'+2q) + 0(e-")]z (N = 0 ,1 , 2, • • •) 

by 

N dn(£) N 

(7) z = „(0 2 e"A.(*) + -¥" E *»(*) 

where 17(f) is essentially a Whittaker function (= confluent hyper-
geometric function) 

N 

7l0) = f"1'4 W1/4(1+2£),l/4, With£(€) = S *%> 
n=0 

and An(x), Bn(x), and £n are determined recursively. The role of the 
adjustable constants £n is crucial, for without them the formal recur­
sion formulas for the Bn's would contain non-integrable singularities at 
xc. The adjustment dictates the values of the £n's; in particular £0 = 
q(xc)lp'(xc), the number which occurs in the Ackerberg-O'Malley 
resonance condition. 

The relevant connection formula between solutions of (6) is an 
immediate reflection of the connection formula for the (multiple-
valued) Whittaker functions 

/> o -x —Zrri ' exp( —fori) XTr ... , ,„T 

where fc = 1/4(1 H- 2J2,). The condition for resonance for (6) is the linear 
dependence of Wk 1/4(f ), which is exponentially small to the right of 
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the turning point, and Wfc 1/4(^_27ri) which is exponentially small to 
the left. A glance at the gamma functions in (8) shows that resonance 
occurs in (6) whenever Z(e) is a non-negative integer, i.e., when £0 = 
q(xc)lp'(xc) is a non-negative integer and lY = £2

 = • • • = £ # = 0. The 
latter are equivalent to the successive resonance conditions of Cook-
Eckhaus and Lakin. 

Resonance for (5) and hence for (1) requires resonance in (6) for 
every N = 1, 2, • • • and hence that £„ = 0 for all positive integers. 
The sufficiency of the conditions is an easy consequence of the uni­
form simplification theorem, first proved for a second order turning 
point by Roy Lee [11] and described in the monograph of Sibuya 
[21]. More precisely, by Lee's result the conditions imply resonance 
for a certain differential equation which cannot be distinguished 
asymptotically from the given equation. Within the context of 
asymptotic analysis, that is the most that can be said. 

3. The interior flaring phenomenon. Significantly different be­
havior occurs for the B.V.P. 

(a) ey"-p(x)y' + q(x)y = 0 (p'(x) < 0, p(xc) = 0) 

(b) y(a) = a9 y(b) = ß9 

which superficially differs from B.V.P.(1) only in the sign of the co­
efficient of y '. Defining f x now to be, 

Ìx= - ( l / e ) P p(t)dt, 

the transformation y = v • exp(— l/2fx) normalizes the differential 
equation (9 a) to (5), so that once again there is a second order turning 
point and the algorithm of [15] can be applied. As before there are 
two asymptotically simple solution forms on either side of the turning 
point: 

(a) t/o(z) + eyi(x) + e2!/2(*) + ' ' ' 

(b) exp(-£)[u0(x) + €Mx(x) + e2!^*) + " ' ' ] , 

where now the solutions (10 b) are asymptotically recessive, i.e., —> 0 
as e —» Ò for x away from the turning point. It is these asymptotically 
recessive solutions which arise via the transformation y = v 
exp(-l/2£x) from the Whittaker functions Wfc>1/4(f) and Wk,i/4(^-277i), 
respectively to right and left of the turning point. As we shall demon­
strate there is again a kind of resonance phenomenon when these two 
(recessive) WTiittaker functions become dependent. Because here k = 
—1/4(1 + 2£), the conditions for resonance are: 
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£o — negative integer; £x = £2
 = • • • = 0 

The solution of the boundary value problem can now be sketched: 
Out of resonance, the solution which is balanced to the left of the turn­
ing point connects to a recessive solution to the right, and hence is 
asymptotically zero at b. This solution, multiplied by a constant, will 
satisfy the boundary condition at a. A second solution displays the 
image behavior, i.e., is balanced to the right satisfying the B.C. at b, 
and damps exponentially to zero to the left of the turning point. Super­
imposing the two solutions yields a solution to the full boundary value 
problem. This full solution is asymptotic to a solution y0~ of the re­
duced equation on [a, xc) and to another y0

 + on (xc,b). In general 
y0

 + and y0~ cannot be expected to match at xc since boundary values 
at a and b are assigned independently. Hence a finite adjustment must 
occur across a narrow critical layer at xc. Its detailed structure in the 
layer reflects that of the Whittaker functions W±fcl/4 (£) for bounded £. 

In resonance one solution is exponentially small on both sides of the 
turning point (and the lead coefficient r?o(x) suffers no jump on cross­
ing the critical layer.) A second solution is balanced on both sides of 
xc (but with a definite jump in its lead coefficient yo(x) — the size of 
the jump may be calculated by the use of the connection formulas). 
Suppose Ça > £b, and define a point a ' by a ' < xc, ija, = £b. Now 
modify the recessive solution (b) by the expansion factor exp(£b) to 

(11) Cexp(& - ÌX)[U0(X) + €Ul(x) + • • • ] . 

By adjusting c, one gives this solution any desired value at x = b; it 
will be exponentially asymptotic to zero for x G [a, a'). One now 
solves the B.V.P. by matching the B.C. at x = a by a multiple of the 
balanced solution and correcting the discrepancy at x = b by adding 
in a solution of form (11). 

A similar approach, with endpoints interchanged handles the case 
£a < fb. If £a = Çb solution (11) has non-zero values at both endpoints, 
but a linear combination with the balanced solution will still solve 
B.V.P. (9). 

The presence of a component of form (11) in the resonant solution 
means that in the interior subinterval (a',b) where £x < £b, the resonant 
solution becomes exponentially large as e —> 0. In particular the 
resonant solution in [a',b] is not asymptotically close to a solution of 
the reduced equation. Despite these differences from Ackerberg-
O'Malley, perhaps the term "resonance" remains descriptive of the 
dramatic consequences of a minor adjustment in the parameter £. 
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4. An oscillatory system. As is well-known in classical analysis, a 
proper understanding of the special functions of mathematical physics 
is gained only by examining their behavior in the complex domain. In 
the case of the Whittaker functions such a treatment suggests defining 

W,(0 = W6 M / 4 (^-- ) , 

where v is any integer and h{y) = ( — 1)". For |f| large, Wv(ij) has the 
asymptotic representation 

(12) Wv(€) = e-1/2* (&-«*)*[1 + 0(l/£)] , 

valid in the sector 

£ „ : ( " - 3/2TT) + € ^ a r g £ g (i; + 3/2TT) - €. 

In the middle third of this sector, namely in 

$, : v - l/2w < arg £ < i; + 1/2TT, 

the function Wv(f) is exponentially recessive in character; in the outer 
thirds it is exponentially dominant, and on the dividing lines (anti-
Stokes lines) where Re £ = 0, W„(f) is purely oscillatory. To represent 
Wv outside of ^ one must have recourse to lateral connection 
formulas, e.g., formula (8) expresses W2 as a linear combination of 
W0 and WJL. 

In our applications, 

(13) € = 2X f* p(t) d*, 

where up to now the parameter X has been large and positive. The 
asymptotic sectors St in £ are imaged in asymptotic sectors §, ' in the 
jc-plane, sectors with central angle 90°. When X is positive and p'(t) > 
0, the x-sectors are bounded by the 45° lines Im x = ± Re x, and so 
when x is real e$ has always the dominant and e~% the recessive 
character. 

To obtain oscillatory behavior for real x, one must take X to be pure 
imaginary; this is the basic ingredient of our next example. 

Accordingly, we consider the D.E. 

(14) - i u " = k[p(x)u ' - q(x)u], X -» oo ? 

where p and q are real, p '(*) > 0 and p(xc) = 0 for some xc G (a, fo). 
With f defined by (13), the sectors S^ ' in the x-plane are ordinary 

cartesian quadrants centered at xfi. The positive axis x > xc is the 
boundary between S0 ' (below) and Sx ' (above); the negative axis is the 
boundary between S2 ' (above) and S3 ' (below). Consequently, to the 
right of the critical point W0 and W\ are given directly by asymptotic 
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formulas (12), while to the left W2 and W3 have this direct representa­
tion. No solution can be continued across the critical point without 
use of a connection formula. 

Since Whittaker functions enter into the solution of (14) only after a 
normalization u = üexp( — l/2f), one concludes that the balanced 
solutions are v0(x, X) and v2(x, X), i.e., those obtained as transforma­
tions from W0(£) and W2(f ). Thus resonance corresponds to the linear 
dependence of these solutions, i.e., that£ be a non-negative integer in 
the connection formula (8). Working through the algorithm for a solu­
tion of the form (7) one may in principal determine recursively the 
infinite set of conditions for resonance; the first is that q(xc)lp'(xc) = £. 

The behavior of solutions may now be simply described: Out of 
resonance one finds one solution which is balanced to the left of xc, 
i.e., is asymptotic there to a solution of the reduced equation. On 
crossing to the right of the critical point that solution becomes the 
superposition of a balanced solution and a rapidly oscillating part of a 
comparable magnitude. A second solution has a structure which is 
mirror image to the first. 

In resonance these two solutions coalesce into one, which is balanced 
on both sides of xc with no jump through the critical layer except in 
smaller order terms. A second solution is purely oscillatory to the 
right of xc and a superposition of both forms to the left. A third solu­
tion is oscillatory to the left and a superposition to the right. 

The change in behavior of resonance is clearly shown when one 
imposes B.C. such as pu' = qu at x = a, b, since these are automatically 
satisfied by a solution which is balanced. 

5. A uniformly resonant model. The Orr-Somerfeld B.V.P. has the 
form 

(D2 - <72)V - i R[U(x) - c] (D2 - d2)<p 

(15) + l/"(x)? = 0 , ( D = dldx) 

(p = ip' = 03itx=a and x = b, 

where U(x) is an unperturbed velocity profile, R ^> 1 is Reynolds' 
number and cp(x) exp[i<j(y ~ct)] is the stream function for a velocity 
perturbation wave. Unstable waves correspond to Im c > 0; the pro­
file is stable for given R when there are no unstable waves for any 
real o\ The "stable boundary" consists of waves, specified by 
(c, a, R), for which c is real. 

A second order B.V.P. which at least superficially resembles (15) is 
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(a) e D V - [ U(x) -c](D+ <r)<p 

(16) + v(^)Ut(x)y = 0, (€ = ((b - a)IR) 

(b) *>(a) = 0, <p(b) = 0. 

Whenever U'(x)> 0 on [a, &], this is for real a and small positive 
e a B.V.P. of the type (1) studied by Ackerberg and O'Malley [1]. If c 
is real and in [U(a), U(b)] there is a turning point at xc (E [a, b], i.e., 
for U(xc) = c. 

For Orr-Sommerfeld, the "outer" solution, away from boundary 
layers and critical layer, is asymptotic to a non-zero solution of the 
reduced equation. As we know, to achieve the same for (16), this 
second order equation must be in resonance for all a and all c. The 
special structure of (16a) makes this possible; in particular, the Acker-
berg-O'Malley necessary condition for resonance is simply that the 
leading term of 17(e) = 7j0 + 07 x + e 2 ^ + • • • shall be a non-negative 
integer £. By examining the details of the algorithm in [15], it be­
comes evident that 171,172, " ' ' rnay be determined recursively so that 
(16) will satisfy all Lakin-Cook-Eckhaus conditions — unfortunately 
subsequent 77/s must vary with c and o\ We assume that the adjust­
ments have been made and therefore that B.V.P. (16) is in resonance, 
uniformly in a and c. 

It happens, in studying the neutral curve for Orr-Sommerfeld, that 
the entire lower branch of this curve may correspond to values of xc 

which are near to a boundary point x = a or b, causing the boundary 
layer and critical layer to coalesce. This state of affairs turns out to be 
important for B.V.P. (16) as well and brings into play a new connection 
formula, namely 

( i 7 ) w M / 4 ( ( a = ^ | Mfc.U4<0+ T«î^M t ._W 4(f). 

Here Mk±m{Ç) are those Whittaker functions which are real for real 
£ and are distinguished by their functional form at the branch point 
£ = 0. At resonance (where £ is a non-negative integer) Wfc)1/4(f) 
becomes a multiple of one of the M's, which itself reduces to £-3/4^/2 
times a Laguerre polynomial. Thus both functions M+̂ ,1/4 have only 
finitely many oscillations on the axis. The complex-valued function 
W_fc 1/4(^~7ri) is given by a connection formula similar to (17), from 
which as £ traverses the real axis the function values wind around the 
origin finitely many times. 

Returning to the B.V.P. (16), let f7 be the average value of U(x) = 
Ux on the interval [a, b] : 
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U = \b Ut dtl(b - a). 
J a 

For values of c away from the endpoint velocities Ua and Ub, the char­
acteristic equation for B.V.P. (16) is 

2JI + 1 ( Uu — r \ z* + 1 

— ) e-^b~a\ 
c - Ua I 

On the other hand when xc — b — 0(fì~1/2) the characteristic equa­
tion becomes 

— e +k™R-^ + V2)eR(c- D) 

(19) 
= Ke*>*-)e- ^ [ W - f c | 1 / 4 ( ^ ^ ) / W t i l / 4 ( & ) ] 

where & = R(Ub - c)2l{2Ub'(b - a)) and K = (CV)A-1/2(C7b -
[/fl)

2jl + 1/[2(fo - a)] * + 1'2 is a real constant. 
In order to satisfy the characteristic equation it is necessary to allow 

complex values of a; the simplest case is where 

(20) 2 a (b - a) = yni, (y real). 

With assumption (20) one obtains a neutral curve, most conveniently 
graphed by plotting y = y(c) and R = R(c) against c G [Ua, Ub] as 
independent variable. 

Referring to (19) the factor ey7fi must wind around the unit circle a 
finite number of times to compensate for the variations in W_fc 1/4 

(fe-wi). Thus y(c) is virtually constant for c away from the end points, 
and near c = Ub varies motonically according to 

y(fc) - (£/2 + 5/4) - " S ^ - M M t f ^ 

The graph R = R(c) displays vertical asymptotes, from equation (18) 
at (Ua 4- C/fe)/2 and from equation (19) at the finitely many zeroes of 
Wfcjl/4(f). Under the symmetry assumption that £7 = (Ua + C7b)/2, all 
components of the graph are (7-shaped, opening toward R = 4- <». 

Other conditions than (20) on a yield other kinds of behavior. One 
interesting case is to allow a to vary over any radial line in the com­
plex plane and to search out eigenvalues c for any large but fixed 
value of K, There will be a finite number of such eigenvalues on 
[Ua, Ub], interlacing the zeroes of Mfc>1/4 and tending to the endpoints 
as R —» oo . Here [ Ua, Ub] is a line of continuous spectrum for any 
reduced B.V.P. 

We comment briefly on the role of resonance for the O.S. equation 
(15). Formal asymptotic solution of O.S. by Lin and Rabenstein [13] 
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requires recursive determination of two functions a(e) = CXQ + eaY + 
e2a2 + • • • and j8(e), which play the same role as k(e) in our theory, in 
suppressing non-integrable singularities which arise in the formal 
algorithm. (See [13]). 

Now a(e) figures in a much-used connection formula, namely 

(21) Ax + A2 + A3 = B0 + [1 - e-2»**)] B2. 

Here Al5 A2, A3 are solutions of dominant-recessive type, B0 is a 
wholly balanced solution and B2 is balanced in one sector and 
dominant in its complement. 

Clearly a coalesence of solutions occurs when a(e) is exactly an 
integer. In the case of the Orr-Sommerfeld equation, OQ = 0, so 
resonance may be suspected. However, as calculated by Lakin and 
Reid [8], «i / 0 so the equation is not in resonance. On the other 
hand, Wasow's first approximation to O.S. [22] uses a = 0 and so is in 
resonance. The use of a resonant approximant to a non-resonant 
equation would seem to require some caution, but the impact of 
resonance in (21) is presently more obscure than for the second order 
equation. 

The state-of-affairs for O.S. suggests that in some respects a more 
revealing second order model may be furnished by the interior flaring 
phenomenon: one again uses (16), but now with U' < 0 and with 
rj(e) exactly equal to a negative integer. We do not adjust subsequent 
coefficients 7)^7)2, • * • into resonance. Details will be given in 
R. Bohac [2]. 

6. Resonance in a singular B.V.P. We shall, in this report, confine 
attention to B.V.P.'s associated with the special D.E. 

(22) ey" - y ' + (klx - erlx^y = 0 on [0, b]. 

In fact, everything goes over, with little extra effort and some compli­
cation of notation, to the class of D.E.'s. 

ey" - <p(x,e)y' + (i//(x,e)/x - er(e)lx'2)y = 0, 

where <p(x,e) / O o n [0, b] : the asymptotic analysis in McKelvey [16] 
establishes that (22) is entirely typical in this class. 

Allowing e = 0 one obtains the reduced equation 

(23) xy ' - ky = 0, 

with the explicit solution y = xk. 
The transformation 

€=xle,y= et'2W,m= (1 + 4T)1/2 (Rem ^ 0) 
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carries (22) into Whittaker's differential equation 

d2W / 1 k 1 - m2 \ 
= ( )W. 

dÇ2 \4 f 4f2 / 
Hereafter, we confine attention to the case T = —1/4, for which m is 
real. We may immediately draw the relevant facts about the solutions 
of (22): 
1. Away from the singular point x = 0, the solutions of distinguished 
asymptotic form are: 

y+ = e(i-2WKml2(Ç) = c+xk + 0(e), 

y_ = eff2W_fc,fB/2(fe-<) = e**[c_x-k + 0(e)]. 

2. At the singular point x = 0 the solution of highest index is y0 = 
^ /2Mfcm/2(£) = 0(fm + 1/2) as ^ - > 0 . All other solutions have index 
f-m + i/2(orfi/2| n ^ when m = 0). 
3. The condition for resonance, i.e., for the dependence of the 
balance solution y+ and the high index solution î/0 i

s that 

I = k - (1 + m)/2 

be a non-negative integer. 
Boundary conditions natural to (22) on [0, b] are of the form 

lim x-m + ìl2y(x) = a, y(b) = ft 

Of particular interest to us will be the case a = 0,ß = 1, or 

(24) y(x) = 0(xm + 1/2) as x -^ 0, y(b) = 1. 

In resonance it is satisfied by cy+y non-zero balanced solution which, 
because of resonance, is 0(xm + 1/2) at the origin. Out of resonance the 
candidate is t/0, the only solution which is 0(xm + 1/2). This solution 
behaves like exl*x~k at x = b; by modifying it to ceblfy0(x) one con­
verts it into boundary layer form. Thus the modified solution, which 
does indeed satisfy B.C. (24) is exponentially small away from the 
endpoints. 

Note that, had we allowed r < —1/4, m would have become pure 
imaginary, and the solution behavior at the singular point would have 
been decidedly different. 
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