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A GENERALIZATION OF THE REDUCED EQUATION 
IN SINGULARLY PERTURBED SYSTEMS 

M . B. BALACHANDRA 

In this presentation, based on the results of [ 1], it is shown that 
under suitable conditions, the solutions of singularly perturbed systems 
may approach asymptotic limits other than the solutions of the classical 
"reduced" systems. 

Considering the real, singularly perturbed system 

(1) -£ =f(T,x,y,e),e -j^= g(r, x, y,c), 

where x and y are vectors of arbitrary dimensionality and e > 0 is a 
small parameter, the classical results for the initial value problem show 
that the solutions of (1) approach, as € tends to zero, the solutions of 
the "reduced" system: 

(2) ~=f(r,x,y,0) 0 = g(r, *, y, 0). 

The convergence here is uniform over a given finite r-interval for x 
and uniform, except near the initial time, r = 0, for y. The results 
(e.g., [2] through [6]) involve consideration of the "boundary layer" 
equation 

(3) ft = g(T,x,z,0) 

and assumptions of a stability nature on the constant solution z = 
<\>(T, X) of (3). (Note that 0 (T, X) is a solution of the algebraic equation 
g = 0in(2)). 

The present work shows that if (3) possess a nonconstant solution 
z = <j)(t, r, x) that is bounded in a certain sense, then in the limit as 
e —> 0, x —» £(T) and y —> 0(r/e, T, £(T)), where £(r) is the solution of 
the "Averaged" Equation, 

(4) -§- = /O(T, C) = lim ± r T / ( T , x, <}>(s, T, x), 0) ds 

having the same initial value as JC in (1). The results depend on assump
tions about the limit in (4) and on the solution <f> of (3). 
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It may be seen that if 0 is constant, (4) reduces to (2). In this sense, 
the present result is a generalization of the classical result of Tikhonov 
[4]. 

It is also shown that a similar generalization of the concept of the 
reduced equation is obtained for the existence of almost periodic and 
bounded solutions of (1) when the functions on the right side have the 
appropriate properties. In this case also, the limiting system is anal
ogous to (4) and is different from (2) whenever <f) is not constant. 
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