## SOME CONVERGENCE THEOREMS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS IN $\lambda(n, k)$ PARAMETER FAMILIES

## S. UMAMAHESWARAM

1. Introduction. Assume $n$ and $k$ are integers, $n \geqq 2$ and $1 \leqq k \leqq n$. Let $\lambda(n, k)=(\lambda(1), \cdots, \lambda(k))$ be an ordered $k$-tuple of positive integers satisfying $\lambda(1)+\cdots+\lambda(k)=n$, which we call an ordered $k$-partition of $n$. Suppose $\lambda(n, k)$ is a fixed ordered $k$-partition of $n$ and $F \subset C^{j}(I)$ where $I \subset R$ is an interval and $j>0$ is large enough so that the following definitions make sense.

Definition 1.1. $F$ is said to be a $\lambda(n, k)$-parameter family on $I$ if for every set of $k$ distinct points $x_{1}<x_{2}<\cdots<x_{k}$ in $I$ and every set of $n$ real numbers $y_{i r}$ there exists a unique $f \in F$ satisfying

$$
\begin{equation*}
f^{(r)}\left(x_{i}\right)=y_{i r}, r=0,1, \cdots, \lambda(i)-1, i=1, \cdots, k \tag{1.1}
\end{equation*}
$$

Let $P(n)$ denote the set of all ordered $k$-partitions $\lambda(n, k)$ of $n$ with $k$ varying such that $1 \leqq k \leqq n$. If $1 \leqq m \leqq k$ is fixed we shall define $\{\lambda(n, k ; m)\}=\{\mu(n, j) \in P(n): \mu(n, j)$ is obtained from $\lambda(n, k)$ by writing $\lambda(m)-1$ in the place of $\lambda(m)$ and inserting the integer 1 in any one of the $k+1$ possible places in the ordered array $(\lambda(1), \cdots, \lambda(m-1)$, $\lambda(m)-1, \lambda(m+1), \cdots, \lambda(k))\} \cup\{\mu(n, j) \in P(n): \mu(n, j)$ is obtained from $\lambda(n, k)$ by writing $\lambda(m)-1$ in the place of $\lambda(m)$ and writing $\lambda(i)+1$ in the place of $\lambda(i)$ for any one $i \neq m$, leaving all the other $\lambda(i)$ 's fixed $\}$. (In case $\lambda(m)=1$, the entry $\lambda(m)-1=0$ is simply deleted so that the first of the two sets above will consist of $k$-tuples whereas the second one will consist of $(k-1)$ - tuples).

Definition 1.2. $F$ is said to be a $\{\lambda(n, k ; m)\}$-parameter family in case $F$ is a $\mu(n, j)$-parameter family for all $\mu(n, j) \in\{\lambda(n, k ; m)\}$.

Suppose $F$ is a $\lambda(n, k)$ and also a $\{\lambda(n, k ; m)\}$-parameter family on $I=[a, b]$ and $f_{0} \in F$ is determined by the conditions (1.1). Let $\left\{x_{m j}: 1 \leqq j<+\infty\right\} \subset\left(x_{m}, x_{m+1}\right)$ be a strictly decreasing sequence of real numbers such that $x_{m j} \rightarrow x_{m}$ as $j \rightarrow+\infty$ (we consider in this paper only a strictly decreasing sequence $\left\{x_{m j}\right\}$ although similar results can be obtained for a strictly increasing sequence $\left\{x_{m j}\right\} \subset$

[^0]$\left(x_{m-1}, x_{m)}\right.$ such that $x_{m j} \rightarrow x_{m}$ as $j \rightarrow+\infty$.) and $\left\{\alpha_{j}: 1 \leqq j<+\infty\right\} \subset$ $R$ be a sequence such that $\alpha_{j} \rightarrow y_{m 0}$ as $j \rightarrow+\infty$. Also for each $j \geqq 1$ let $f_{j} \in F$ be the unique function determined by
\[

$$
\begin{equation*}
f_{j}\left(x_{m j}\right)=\alpha_{j} \tag{1.2}
\end{equation*}
$$

\]

and all the conditions of (1.1) except for $i=m$ and $r=\lambda(m)-1$. We will show in Theorem 2.1 that if the sequence $\left\{\alpha_{j}\right\}$ satisfies certain additional convergence conditions then the sequence $\left\{f_{j}\right\}$ converges to $f_{0}$ uniformly on $[a, b]$.

Thus in hypothesizing that $\left\{x_{m j}\right\} \rightarrow x_{m}$ as $j \rightarrow+\infty$ we treat in this theorem a situation of degeneracy of boundary conditions that is not covered by Tornheim's convergence theorem (Theorem 5 of [5]) for $n$-parameter families. Moreover if we have an $n$-th order differential equation of the form $y^{(n)}=f\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right)$ satisfying the assumed uniqueness and existence conditions, this theorem illustrates how a solution to a $k$-point boundary value problem can be approximated by a solution to a ( $k+1$ )-point boundary value problem with suitably chosen boundary values. We also give in Theorem 2.3 an alternate set of sufficient conditions that will guarantee that $f_{j} \rightarrow$ $f_{0}$ as $j \rightarrow+\infty$ uniformly on $[a, b]$. There are several papers in the literature concerning $\lambda(n, k)$-parameter families or their special cases and [1]-[5] are a few such references.
2. Main results. We shall introduce the following notations concerning sequences of points in $R \times R$ in order to simplify the statement of our main theorem.

If $\left\{\left(t_{j}, \alpha_{j}\right): 1 \leqq j<+\infty\right\} \subset R \times R$ is a sequence of points such that $\left(t_{j}, \alpha_{j}\right) \rightarrow\left(t_{0}, c_{0}\right) \in R \times R$ as $j \rightarrow+\infty$ with $\left\{t_{j}\right\}$ strictly decreasing and $c_{i} \in R, i=1, \cdots, r$ are given, then define $D^{i} \alpha_{j}, i=0,1, \cdots$, $r$ recursively as follows:

$$
\begin{aligned}
D^{0} \alpha_{j} & \equiv \alpha_{j} \\
D^{i} \alpha_{j} & \equiv\left(D^{i-1} \alpha_{j}-c_{i-1} /(i-1)!\right) /\left(t_{j}-t_{0}\right) .
\end{aligned}
$$

The following remarks which are easy consequences of the above definitions will be useful in the proof of our main theorem.

Remark 1. If $\lim _{j \rightarrow+\infty} D^{i} \alpha_{j}$ exists and $=a$ constant $d$ then $\lim _{j \rightarrow+\infty} D^{p} \alpha_{j}=c_{p} / p!, p=0,1, \cdots, i-1$.

Remark 2. If $t_{0} \in(a, b)$ and $g \in C^{n}[a, b]$ is such that $g^{(p)}\left(t_{0}\right)=c_{p}$, $p=0,1, \cdots, r(\leqq n)$ and $g\left(t_{j}\right)=\alpha_{j}, j \geqq 1$ then $\lim _{j \rightarrow+\infty} D^{p} \alpha_{j}=c_{p} / p!$, $p=0,1, \cdots, r$.

Remark 3. If $\left\{\left(t_{j}, \boldsymbol{\beta}_{j}\right): 1 \leqq j<+\infty\right\} \subset R \times R$ is such that $\alpha_{j} \leqq \beta_{j}$ for all $j \geqq 1, \lim _{j \rightarrow+\infty} D^{p} \alpha_{j}=\lim _{j \rightarrow+\infty} D^{p} \beta_{j}=c_{p} / p!p=0,1, \cdots, r-1$ and $\lim _{j \rightarrow+\infty} D^{r} \alpha_{j}$ and $\lim _{j \rightarrow+\infty} D^{r} \beta_{j}$ exist, then $\lim _{j \rightarrow+\infty} D^{r} \alpha_{j} \leqq$ $\lim _{j \rightarrow+\infty} D^{r} \beta_{j}$.

We are now ready to state our main theorem.
Theorem 2.1. Let $F$ be a $\lambda(n, k)$ and also a $\{\lambda(n, k ; m)\}$-parameter family on an interval $[a, b]$ for some fixed integer $m, 1 \leqq m \leqq k$. Let $\alpha \leqq x_{1}<x_{2}<\cdots<x_{k}<b$ and $y_{i r} \in R$ be arbitrary for $r=0,1, \cdots$, $\lambda(i)-1, i=1, \cdots, k$ Let $\left\{\left(x_{m j}, \alpha_{j}\right): 1 \leqq j<+\infty\right\} \subset\left(x_{m}, x_{m+1}\right) \times R$ be a sequence of points such that $i)\left(x_{m j}, \alpha_{j}\right) \rightarrow\left(x_{m}, y_{m 0}\right)$ as $j \rightarrow+\infty$ with $x_{m j}$ strictly decreasing (in case $m=k$ interpret $x_{k+1}=b$ ) and ii) $D^{r} \alpha_{j} \rightarrow y_{m r} / r!$ as $j \rightarrow+\infty, r=0,1, \cdots, \lambda(m)-1$. Also suppose $f_{0} \in$ $F$ is the unique function determined by (1.1) and for $j \geqq 1, f_{j} \in F$ is the unique function determined by (1.2) and all conditions of (1.1) except for $i=m$ and $r=\lambda(m)-1$. Then $f_{j} \rightarrow f_{0}$ as $j \rightarrow+\infty$ uniformly on $[a, b]$.
Proof: If the sequence $\left\{f_{j}\right\}$ is such that $f_{j} \equiv f_{j+1}$ for all $j \geqq q$ where $q$ is a fixed positive integer, then we claim $f_{j}^{(\lambda(m)-1)}\left(x_{m}\right)=y_{m_{\lambda}(m)-1}$, $j \geqq q$. Setting $f_{j} \equiv g$ for $j \geqq q$ we have by virtue of our hypothesis and remark 2 that $g^{\lambda(m)-1)}\left(x_{m}\right)=(\lambda(m)-1)!\lim _{j \rightarrow+\infty} D^{\lambda(m)-1} \alpha_{j}=y_{m,(m)-1}$. Consequently $f_{j} \equiv f_{0}, j \geqq q$ and we are done. Now pick a sequence $\{n(i)\}$ of positive integers so that $n(1)=1$ and for each $i \geqq 2, f_{j} \equiv f_{i-1}$ for $i-1 \leqq j<n(i)$ and $f_{n(i)} \neq f_{i-1}$. The sequence $\left\{f_{n(j)}\right\}$ clearly converges uniformly if and only if the sequence $\left\{f_{j}\right\}$ converges uniformly, so for simplicity of notation, we relabel $f_{n(j)}$ as $f_{j}, \alpha_{n(j)}$ as $\alpha_{j}$ and $x_{m n(j)}$ as $x_{m j}$. Then we have $f_{j} \neq f_{j+1}$ for each $j \geqq 1$.

Further, for each $j \geqq 1, f_{j}-f_{j+1}$ has $\lambda(1), \cdots, \lambda(m-1), \lambda(m)-1$, $\lambda(m+1), \cdots, \lambda(k)$ zeros at $x_{1}, \cdots, x_{k}$ respectively on $[a, b]$ and hence cannot have any more zeros on $[a, b]$. Thus $f_{j}-f_{j+1}$ must keep a constant sign on each of the intervals $\left(x_{i}, x_{i+1}\right), i=0,1, \cdots, k$ (where $x_{0}=a$ ) and consequently $\left\{f_{j}\right\}$ is pointwise monotone on each of the intervals $\left(x_{i}, x_{i+1}\right), i=0,1, \cdots, k$. We can further assume without loss of generality that $f_{j}^{(\lambda(m)-1)}\left(x_{m}\right) \neq y_{m \lambda(m)-1}, j \geqq 1$ for if equality holds for some $j=J$ then $f_{J} \equiv f_{0}$ and we can suppress $f_{J}$ from $\left\{f_{j}\right\}$. Now at least one of the following two cases must occur.

Case 1: There exists an infinite number of functions $f_{j}$ such that $\left.f_{j} a(m)-1\right)\left(x_{m}\right)<y_{m, \lambda(m)-1}$.

Case 2: There exists an infinite number of functions $f_{j}$ such that $f_{j}{ }^{\wedge(m)-1)}\left(x_{m}\right)>y_{m, \lambda(m)-1}$.

Because of the similarity of the proofs involved we shall consider only the first case. In this case we claim that we can find a subsequence $\left\{f_{j(p)}\right\} \subset\left\{f_{j}\right\}$ such that $f_{j(1)}^{(\lambda(m)-1)}\left(x_{m}\right)<f_{j(2)}^{(\lambda(m)-1)}\left(x_{m}\right)<\cdots$ $y_{m, \lambda(m)-1}$. For let $j(1)$ be any integer such that $f_{j(1)}^{(\lambda(m)-1)}\left(x_{m}\right)<y_{m, \lambda(m)-1}$. Then there must exist an integer $j(2)>j(1)$ such that $f_{j(1)}^{(\lambda(m)-1)}\left(x_{m}\right)<$ $f_{j(2)}^{(\lambda(m)-1)}\left(x_{m}\right)<y_{m, \lambda(m)-1}$. If not, for every $j>j(1)$ we will have $f_{j}^{(\lambda(m)-1)}\left(x_{m}\right)<f_{j(1)}^{(\lambda(m)-1)}\left(x_{m}\right)<y_{m, \lambda(m)-1}$. This implies by virtue of our hypothesis on $F$ that $f_{j}(x)<f_{j(1)}(x)<f_{0}(x)$ for all $x, x_{m}<x<x_{m+1}$ and all $j>j(1)$. In particular $\alpha_{j}<f_{j(1)}\left(x_{m j}\right)<f_{0}\left(x_{m j}\right), j>j(1)$. Consequently, in view of remarks 2 and 3 we have $y_{m, \lambda(m)-1}=(\lambda(m)-1)$ ! $\lim _{j \rightarrow+\infty} D^{\lambda(m)-1} \alpha_{j} \leqq(\lambda(m)-1)!\lim _{j \rightarrow+\infty} D^{\lambda(m)-1} f_{j(1)}\left(x_{m j}\right)=f_{j(1)}^{(\lambda(m)-1)}$ $\left(x_{m}\right)<y_{m, \lambda(m)-1}$. This contradiction proves our claim.

For convenience of notation we shall now denote the subsequence $\left\{f_{j(p)}\right\}$ by $\left\{f_{j}\right\}$ and set $s_{i}=-1+\sum_{p=i+1}^{m} \lambda(p), i=0,1, \cdots, m-1$ and $S_{i}=\sum_{p=m+1}^{i} \lambda(p), i=m, \cdots, k$ (where $S_{m}=0$ ). Now the sequence $\left\{f_{j}\right\}$ has the property that $\left\{(-1)^{s} f_{j}\right\}$ is pointwise monotone increasing on $\left(x_{i}, x_{i+1}\right), i=0,1, \cdots, m-1$ and $\left\{(-1)^{S_{i}} f_{j}\right\}$ is pointwise monotone increasing on ( $\mathrm{x}_{\mathrm{i}}, x_{i+1}$ ), $i=m, \cdots, k$. Furthermore $\left\{(-1)^{s_{i}}\left(f_{0}-f_{j}\right)\right\}$ is positive on $\left(x_{i}, x_{i+1}\right), i=0,1, \cdots, m-1$ and $\left\{(-1)^{\mathrm{S}_{i}}\left(f_{0}-f_{j}\right)\right\}$ is positive on $\left(x_{i}, x_{i+1}\right), i=m, \cdots, k$.

We now claim $\lim _{j \rightarrow+\infty} f_{j}(x)=f_{0}(x), a \leqq x \leqq b$. We will first show $\left.\lim _{j \rightarrow+\infty} f_{j} \lambda(m)-1\right)\left(x_{m}\right)=y_{m, \lambda(m)-1}$. By our choice of $\left\{f_{j}\right\}$ it is clear that $L \equiv$ $\lim _{j \rightarrow+\infty} f_{j}^{(\lambda(m)-1)}\left(x_{m)} \leqq y_{m, \lambda(m)-1}\right.$. Suppose $L<y_{m, \lambda(m)-1}$. Let $g \in F$ be determined by $g^{(\lambda(m)-1)}\left(x_{m}\right)=L$ and all the conditions in (1.1) except for $i=m$ and $r=\lambda(m)-1$. Then $f_{j}(x)<g(x)<f_{0}(x)$ for all $x, x_{m}<$ $x<x_{m+1}$ and all $j \geqq 1$. In particular, $\alpha_{j}<g\left(x_{m j}\right)<f_{0}\left(x_{m j}\right)$ and as a result of remarks 2 and 3 it follows that $y_{m, \lambda(m)-1}=(\lambda(m)-1)$ ! $\lim _{j \rightarrow+\infty} D^{\lambda(m)-1} \alpha_{j} \leqq g^{(\lambda(m)-1)}\left(x_{m}\right)<y_{m, \lambda(m)-1}$, a contradiction. Hence $L=y_{m \lambda(m)-1}$.

Now suppose if possible $\lim _{j \rightarrow+\infty} f_{j}\left(x^{\prime}\right) \neq f_{0}\left(x^{\prime}\right)$ for some $x^{\prime}, x_{t}<x^{\prime}<$ $x_{t+1}$ where $t$ is some fixed integer $0 \leqq t \leqq k$. Without loss of generality we can assume $m \leqq t \leqq k$ since the proof will be similar if $0 \leqq t \leqq m-1$. So there exists an $\epsilon>0$ and a subsequence of $\left\{f_{j}\right\}$ which we again call $\left\{f_{j}\right\}$ such that $\left|f_{j}\left(x^{\prime}\right)-f_{0}\left(x^{\prime}\right)\right|>\epsilon$. In particular $(-1)^{S_{t}}\left(f_{0}\left(x^{\prime}\right)-f_{j}\left(x^{\prime}\right)\right)>\epsilon$ for all $j \geqq 1$. Now choose $z^{\prime} \in R$ such that $(-1)^{s_{t}} f_{0}\left(x^{\prime}\right)-\epsilon / 2>z^{\prime}>(-1)^{s_{t}} f_{j}\left(x^{\prime}\right)+\epsilon / 2$ and let $h \in F$ be the unique function determined by $h\left(x^{\prime}\right)=z^{\prime}$ and all the conditions of (1.1) except for $i=m$ and $r=\lambda(m)-1$. Then by our hypothesis on $F$ we must have $f_{j}^{(\lambda(m)-1)}\left(x_{m}\right)<h^{(\lambda(m)-1)}\left(x_{m}\right)<y_{m, \lambda(m)-1}$. This contradicts our earlier assertion that $f_{j}^{(\lambda(m)-1)}\left(x_{m}\right) \rightarrow y_{m, \lambda(m)-1}$ as $j \rightarrow+\infty$. Hence $\lim _{j \rightarrow+\infty} f_{j}(x)=f_{0}(x), a \leqq x \leqq b$.

Now by Dini's theorem it follows that $\lim _{j \rightarrow+\infty} f_{j}(x)=f_{0}(x)$, uniformly on $[a, b]$. Since from every subsequence of the original sequence $\left\{f_{j}\right\}$ we can extract by the above process a further subsequence that converges to $f_{0}$ uniformly on $[a, b]$, it follows that $\left\{f_{j}\right\}$ converges to $f_{0}$ uniformly on $[a, b]$.

This completes the proof of the theorem.
Corollary 2.2. Let $p(x)=\sum_{r=0}^{\lambda(m)-1}\left(x-x_{m}\right)^{r} y_{m r} / r!$ and $\left(x_{m j}, \boldsymbol{\alpha}_{j}\right) \rightarrow$ $\left(x_{m}, y_{m 0}\right)$ along the arc of the polynomial $p(x)$. Let $f_{j}(x)$ and $f_{0}(x)$ be as defined in Theorem 2.1. Then $f_{j}(x) \rightarrow f_{0}(x)$ as $j \rightarrow+\infty$ uniformly on [a,b].

In the next theorem we shall give an alternate set of sufficient conditions that will ensure the uniform convergence of $f_{j}$ to $f_{0}$ on $[a, b]$.

Theorem 2.3. Assume $F, f_{0}$ and $\left\{x_{m j}\right\}$ are as in Theorem 2.1. Let $\left\{\alpha_{j}: 1 \leqq j<+\infty\right\} \subset R$ be a sequence such that $\alpha_{j} \rightarrow y_{m 0}$ and $\left(\alpha_{j}-f_{0}\left(x_{m j}\right)\right) /\left(x_{m j}-x_{m}\right)^{\lambda(m)-1} \rightarrow 0$ as $j \rightarrow+\infty$. For each $j \geqq 1$, let $f_{j} \in$ $F$ be determined as in Theorem 2.1. Then $f_{j} \rightarrow f_{0}$ as $j \rightarrow+\infty$ uniformly on $[a, b]$.

Proof. If $\left\{f_{j}\right\}$ is such that $f_{j} \equiv f_{j+1}$ for all $j \geqq q$ then we claim $f_{j}{ }^{a(m)-1)}\left(x_{m}\right)=f_{0}{ }^{a(m)-1)}\left(x_{m}\right), j \geqq q$ for setting $f_{j} \equiv g, j \geqq q$ we have

$$
\begin{aligned}
\left(\alpha_{j}-f_{0}\left(x_{m j}\right)\right) /\left(x_{m j}-x_{m}\right)^{\lambda(m)-1}= & \left(g^{(\lambda(m)-1)}\left(x_{m}\right)\right. \\
& \left.-f_{0}{ }^{(\lambda(m)-1)}\left(x_{m}\right)\right) /(\lambda(m-1)!+\underline{o}(1) .
\end{aligned}
$$

On taking the limit as $j \rightarrow+\infty$ we obtain $g^{(\lambda(m)-1)}\left(x_{m}\right)=f_{0}{ }^{\text {a(m)-1) }}\left(x_{m}\right)$ and consequently $f_{j} \equiv g \equiv f_{0}, j \geqq q$ and we are done.

Otherwise, arguing as in the proof of Theorem 2.1, we can assume without loss of generality that $f_{j} \neq f_{j+1}$ for all $j \geqq 1$. Then for each $j \geqq, f_{j}-f_{j+1}$ has $\lambda(1), \cdots, \lambda(m-1), \lambda(m)-1, \lambda(m+1), \cdots, \lambda(k)$ zeros at $x_{1}, \cdots, x_{k}$ respectively and hence cannot have any more zeros on [ $a, b$ ] and also must keep a constant sign on each of the intervals $\left(x_{i}, x_{i+1}\right), i=0,1, \cdots, k$. Further, we can assume without loss of generality as in the proof of Theorem 2.1 that $f_{j}^{(\lambda(m)-1)}\left(x_{m}\right) \neq y_{m, \lambda(m)-1}$, $j \geqq 1$. Now at least one of the following two cases must hold.

Case 1: There exists an infinite number of functions $f_{j}$ such that $f_{j}{ }^{\wedge(m)-1)}\left(x_{m}\right)<y_{m, \lambda(m)-1}$.

Case 2: There exists an infinite number of functions $f_{j}$ such that $f_{j}{ }^{\wedge(m)-1)}\left(x_{m}\right)>y_{m, \lambda(m)-1}$.

We shall consider only Case 1 since the proof for Case 2 is similar. We claim we can find a subsequence $\left\{f_{j(p)}\right\} \subset\left\{f_{j}\right\}$ such that $f_{j(1)}^{(a(m)-1)}$ $\left(x_{m}\right)<f_{j(2)}^{(\lambda)-1)}\left(x_{m}\right)<\cdots<y_{m_{\lambda}(m)-1}$, for let $j(1)$ be any integer such
that $f_{j(1)}^{\wedge(m)-1)}\left(x_{m}\right)<y_{m,(m)-1}$. Then there exists an integer $j(2)>j(1)$ such that $f_{j(1)}^{(\lambda(m)-1)}\left(x_{m}\right)<f_{j(2)}^{a(m)-1)}\left(x_{m}\right)<y_{m, \lambda(m)-1}$. If not, for all $j>j(1)$ we will have

$$
\begin{equation*}
f_{j}^{(\lambda(m)-1)}\left(x_{m}\right)<f_{j(1)}^{(\lambda(m)-1)}\left(x_{m}\right)<f_{0}{ }^{(\lambda(m)-1)}\left(x_{m}\right) \tag{A}
\end{equation*}
$$

We also have

$$
\begin{aligned}
& \left(\alpha_{j}-f_{0}\left(x_{m j}\right)\right) /\left(x_{m j}-x_{m}\right)^{\lambda(m)-1}= \\
& \quad\left(f_{j}^{(\lambda)-1)}\left(x_{m}\right)-f_{0}{ }^{a(m)-1)}\left(x_{m}\right)\right) /(\lambda(m)-1)!+\underline{o}(1) .
\end{aligned}
$$

On taking the limit as $j \rightarrow+\infty$ by virtue of our hypothesis we obtain that $f_{j}^{(\lambda(m)-1)}\left(x_{m}\right) \rightarrow f_{0}{ }^{(\lambda(m)-1)}\left(x_{m}\right)$ as $j \rightarrow+\infty$, a contradiction to assertion (A). This proves our claim.

For convenience of notation we shall again denote the subsequence $\left\{f_{j(p)}\right\}$ by $\left\{f_{j}\right\}$. Now the sequences $\left\{f_{j}\right\}$ and $\left\{f_{\mathrm{o}}-f_{j}\right\}$ have the properties of monotonicity and positiveness respectively on the intervals $\left(x_{i}, x_{i+1}\right), i=0,1, \cdots, k$ as in the proof of Theorem 2.1. Also from our choice of $\left\{f_{j}\right\}$ it follows that $\lim _{j \rightarrow+\infty} f_{j}^{(\lambda(m)-1)}\left(x_{m}\right)=f_{0}^{(\lambda(m)-1)}$ $\left(x_{m}\right)$. The rest of the proof is similar to that of Theorem 2.1 and is omitted.

This completes the proof of the theorem.

## References

1. P. Hartman, On N-parameter families and interpolation problems for nonlinear ordinary differential equations, Trans. Amer. Math. Soc. 154(1971), 201-226.
2. ——, Unrestricted n-parameter families, Rend. Circ. Mat. Palermo (2) 7(1959), 123-142.
3. R. M. Mathsen, $\lambda(n)$-parameter families, Canad. Math. Bull. 12(1969), 185-191.
4. S. Umamaheswaram, $\lambda(n, k)$-parameter families and associated convex functions, (to appear).
5. L. Tornheim, On n-parameter families of functions and associated convex functions, Trans. Amer. Math. Soc. (1950), 457-467.

Indian Institute of Science, Bangalore 560012, India


[^0]:    Received by the editors on July 1, 1975 and in revised form on September 22, 1975.

    AMS 1970 Subject Classification: Primary 34B10, 34B15.
    Key words and phrases: Convergence, multipoint, boundary value problems.

