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SOME CONVERGENCE THEOREMS FOR MULTIPOINT
BOUNDARY VALUE PROBLEMS IN A(n, k)-
PARAMETER FAMILIES

S. UMAMAHESWARAM

1. Introduction. Assume n and k are integers,n = 2and 1 = k= n.
Let A(n, k) = (A(1), - - -,A(k)) be an ordered k-tuple of positive in-
tegers satisfying A(1) + - - - + A(k) = n, which we call an ordered
k-partition of n. Suppose A(n, k) is a fixed ordered k-partition of n and
F C C/(I) where I C R is an interval and j > 0 is large enough so that
the following definitions make sense.

DeriniTiON 1.1. F is said to be a A(n, k)-parameter family on I if for
every set of k distinct points x; < x < * -+ < x; in I and every set of
n real numbers y;, there exists a unique f € F satisfying

(L1) fx) = yypr=10,1, -, A{@) — 1,i=1, - k.

Let P(n) denote the set of all ordered k-partitions A(n, k) of n with k
varying such that 1=k=n. If 1=m =k is fixed we shall define
{A(n, k;m)} = {u(n,j) € P(n) : u(n,j) is obtained from A(n, k) by writ-
ing A(m) — 1 in the place of A(m) and inserting the integer 1 in any one
of the k + 1 possible places in the ordered array (A(1), * * -, A(m — 1),
Am) — L, a(m + 1), - -+, AMKk))} U {u(n, j) € P(n) : u(n, j) is obtained
from A(n, k) by writing A(m) — 1 in the place of A(m) and writing
A(i) + 1 in the place of A(i) for any one i # m, leaving all the other
A(i)’s fixed}. (In case A(m) =1, the entry A(m) — 1 =0 is simply
deleted so that the first of the two sets above will consist of k-tuples
whereas the second one will consist of (k — 1) — tuples).

DerintTioN 1.2, F is said to be a {\(n, k; m)}-parameter family in
case F is a u(n, j)-parameter family for all w(n, j) € {A(n, k; m)}.

Suppose F is a A(n, k) and also a {A(n, k; m)}-parameter family on
I= [a,b] and f, € F is determined by the conditions (1.1). Let
{xmi: 1=j< +©} C (2, Xm+1) be a strictly decreasing sequence of
real numbers such that x,;— x,, as j & +® (we consider in this
paper only a strictly decreasing sequence {x,,} although similar re-
sults can be obtained for a strictly increasing sequence {x,;} C
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(%*m—15 Xm) Such that x,;, > x, asj > +®.)and {g: 1 =j< +o}C
R be a sequence such that a;— y,9 as j — + . Also for each j=1
let f; € F be the unique function determined by

(1.2) ﬁ(xmj) = q;

and all the conditions of (1.1) except for i = m and r = A(m) — 1. We
will show in Theorem 2.1 that if the sequence {a;} satisfies certain
additional convergence conditions then the sequence {f;} converges
to fo uniformly on [a, b] .

Thus in hypothesizing that {x,,;} — x,, as j — +® we treat in this
theorem a situation of degeneracy of boundary conditions that is not
covered by Tornheim’s convergence theorem (Theorem 5 of [5]) for
n-parameter families. Moreover if we have an n-th order differential
equation of the form y®™ = f(x,y,y’, - - -,y®™~V) satisfying the as-
sumed uniqueness and existence conditions, this theorem illustrates
how a solution to a k-point boundary value problem can be ap-
proximated by a solution to a (k + 1)-point boundary value problem
with suitably chosen boundary values. We also give in Theorem 2.3
an alternate set of sufficient conditions that will guarantee that f; —
fo as j > + o uniformly on [a, b]. There are several papers in the
literature concerning A(n, k)-parameter families or their special cases
and [1]-[5] are a few such references.

2. Main results. We shall introduce the following notations con-
cerning sequences of points in R X R in order to simplify the state-
ment of our main theorem.

If {(t; @):1=j<+o}CRX R is a sequence of points such
that (¢, a;) — (t,co) E RX R as j — +» with {t;} strictly decreas-
ingand¢; ER, i =1, - - -, r are given, then define D'ey, i = 0,1, - - -,
r recursively as follows:

D= o
Digy= (D' a5 — c;_yf(i = DG — to).

The following remarks which are easy consequences of the above
definitions will be useful in the proof of our main theorem.

Remark 1. If lim;,, . Dia; exists and = a constant d then
lim;,, .DPa;=c,/pl,p=0,1, -+ -,i— 1.

Remark 2. If t) € (a,b) and g € C"[a, b] is such that gi)(ty) = c,,
p=0,1,--,r(=n) and g(t;) = o, j= 1 then lim;,, D" a; = c,/p!,
p=0,1,--r
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ReMark 3. If {(t,8;):1=j< +®} C RX R is such that oy = ;
for all j= 1, lim;,, .D? o5 = lim;, . .D"B; = ¢, /p!p= 10,1, - - -, r — 1
and lim;,,.D'e; and lim;,,.D'B; exist, then lim,,, .D'aj=
lim;,, D" B;.

We are now ready to state our main theorem.

TueoreM 2.1. Let F be a A(n, k) and also a {\(n, k; m)}-parameter
ﬁzmzly on an mterval [a, b] for some fixed integer m, 1 = m = k. Let
a=x <1< ' <x<bandy, € R be arbitrary forr= 0,1, -
ANi)—1,i=1,- -k Let {(xp;a):1=j< +°°}C(xm,xm+1)XR
be a sequence of points such that i) (X, &) = (X, Ymo) as j = +©
with x,,; strictly decreasing (in case m = k interpret x;,, = b) and ii)
D aj—> yplrlasj — +o,r=0,1, -, Nm) — 1. Also suppose f, €
F is the unique function determined by (1.1) and for j= 1, f; €E F is
the unique function determined by (1.2) and all conditions of (1.1) ex-
cept for i = m and r = A\(m) — 1. Then f;— f; as j — + ®© uniformly
on [a, b].

Proor: If the sequence {f;} is such that f;= f;,, for all j = q where
q is a fixed positive integer, then we claim £ -U(x ) =y, m_,,
J= q. Setting f; = g for j = g we have by virtue of our hypothesis and
remark 2 that g(*('”)‘”(xm) = (A(m) — D!lim;,, .DX™ Loy =y, ).
Consequently f; = f,,j= q and we are done. Now pick a sequence
{n(i )} of positive integers so that n(1) = 1 and foreach i = 2, ;= f;_,
for i — 1 =j < n(i) and f,;, # fi_,. The sequence {f,;,} clearly con-
verges uniformly if and only if the sequence {f;} converges uniformly,
so for simplicity of notation, we relabel f,,(j) as f;, a,;) as a5 and X, ;)
as x,,.. Then we have ﬁ # f,,1 for eachj =

Further, for each j= 1, f; — f;,; has A(1 ) o AMm— 1), A\(m) — 1,
Am + 1), - -+ A(k) zeros at x,, - - -, x, respectively on [a,b] and
hence cannot have any more zeros on [a, b]. Thus f; — f +1 must keep
a constant sign on each of the intervals (x;, x;,;),i = 0,1, - - -, k (where
xo = a) and consequently { ﬁ} is pointwise monotone on each of the
intervals (x;, x;.;), i=0,1, - - -, k. We can further assume without
loss of generality that f;om)- ” m) # Ymaem—1> j = 1 for if equality
holds for some j = J then f; = fo and we can suppress f; from {f;}.
Now at least one of the following two cases must occur.

Case 1: There exists an infinite number of functions f; such that
f & (m)— 1)(xm) < ym,}‘(m) 1

Case 2: There exists an infinite number of functions f; such that

=D m) > Ymaim-1-
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Because of the similarity of the proofs involved we shall consider
only the first case. In this case we claim that we can find a sub-
sequence {f; )} C {fj} such that fAm™~V(x,) < 5"V (xp) <
Ymam)—1- Forletj(1) be any integer such that fA™ = (x,) < Yo my—1-
Then there must exist an integer j(2) > j(1) such that f"‘(’") Dix,,) <
FS (k) < Ymaem—1- If not, for every j>j(1) we will have
[0 =D () < A7 (%m) < Ympmy—1- This implies by virtue of our
hypothesis on F that f;(x) < f;y) (x) < fo(x) for all x, x,, < x < x4y
and all j> j(1). In particular g < f;)(xm;) < fo(xm;),j > j(1). Con-
sequently, in view of remarks 2 and 3 we have y,, , ;n)—1 = (A(m) — 1)!
limj_,+ me(m)—laj = ()\(m) — 1)1 lirnj—»+°° Dx(m)—lf;,(l)(xmj) = J.)Zir)n)—l)
(%m) < Ymy(m—1- This contradiction proves our claim.

For convenience of notation we shall now denote the subsequence
{fim} by {fi} and set s;= =1+ X7 ;i  A(p), i=0,1,---,m—1
and $;=%"_ . A(p), i=m, -,k (where S, =0). Now the se-
quence{f;} has the property that {( 1y:f;} is pointwise monotone
increasing on (x;,x;,,), i=10,1, -, m — 1 and { 1)%i £} is point-
wise monotone increasing on (x;, x,H) i=m, - - -, k. Furthermore

—1)%(fo — f;)} is positive on (x;, %), i=0, 1, -++,m—land

—1)5(fo — f;)} is positive on (x;, ;11),i = m, * = -, k.

We now claim lim,_,, . f;(x) = fo(x),a = x = b. We will first show
lim;_, , of;*™=V(x,,) = 4, m)—1. By our choice of {f; }itisclear that L =
lim;,  ofi%™ =D (x0) = Yy (m)—1- Suppose L < 4,y m)—1. Let g € F be
determined by g®™)-1(x,,) = L and all the conditions in (1.1) except
for i = m and r = A(m) — 1. Then fi(x) < g(x) < fy(x) for all x, x,,, <
x < %y, and all j= 1. In particular, a5 < g(xm;) < fo( xm]) and as a
result of remarks 2 and 3 it follows that y,,m-; = (A\(m) — 1)!
lim; ,, DAm)~lg; = g0 =D (x,) < y,),(m)—1, @ contradiction. Hence
L= ymam-1-

Now suppose if possible lim;, , of; (x') # fo(x') for somex’, x, < x' <
x;+, Where t is some fixed integer 0 = ¢t = k. Without loss of gen-
erality we can assume m = t = k since the proof will be similar if
O0=t=m — 1. So there exists an € > 0 and a subsequence of {f;}
which we again call {f;} such that | f (x") = fo(x")| > €. In particular

—1S:(folx") — fi(x")) > € forallj= 1. Now choose z’ € R such that
—1Pf(x") —el2> 2" > (—1)0%f;(x') + €/2 and let h €EF be the
unique function determined by h(x’) = z’ and all the conditions of
(1.1) except for i = m and r = A(m) — 1. Then by our hypothesis on
F we must have f;0m-1(x,) < h0™m-D(x, ) <y, m-1. This con-
tradicts our earlier assertion that f;*™ =1 (x,) — ¢, (m)—1 a5j = + .
Hence lim;_, . .fi(x) = fo(x),a = x = b.
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Now by Dini’s theorem it follows that lim;,, .fi(x) = fo(x), uni-
formly on [a,b]. Since from every subsequence of the original se-
quence {f; } we can extract by the above process a further subsequence
that converges to fo uniformly on [a, b], it follows that {f;} converges
to fo uniformly on [a, b].

This completes the proof of the theorem.

CoroLLARY 2.2. Let p(x) = A" (x = %) Ypmelr! and (xpy, 05) —
(%m> Ymo) along the arc of the polynomial p(x). Let fi(x)and fo(x) be as
defined in Theorem 2.1. Then f;(x) — fo(x) as j — + = uniformly on
[a, b].

In the next theorem we shall give an alternate set of sufficient con-
ditions that will ensure the uniform convergence of f; to fo on [a, b].

TueoreM 2.3. Assume F, fo and {x,,} are as in Theorem 2.1. Let
{g:1=j< +x}C R be a sequence such that aj— y,o and
& = foxXmi) (X — X -1—>0asj— +. Foreachj=1,let f; €
F be determined as in Theorem 2.1. Then f;— f, as j —> + ® uni-

formly on [a, b].

Proor. If {f;} is such that f;=f;,, for all j= g then we claim
f;0m=D(x,,) = fodm=D(x,),j= q for setting f; = g,j = g we have
(@ = folm (g = En ™1 = (ghim=D(x,)

= fo* =D (xn))(Nm — 1) +0(1).
On taking the limit as j — + % we obtain g*™) =1 (x,,,= fo®m=1(x, )
and consequently f; = g = f,, j = q and we are done.

Otherwise, arguing as in the proof of Theorem 2.1, we can assume

without loss of generality that f; f;,, for all j= 1. Then for each
=, f;— fis1 has A(1), -+, A(m — 1), A(m) — 1, A(m + 1), - - -, A(k)

zeros at x)," * -, x; respectively and hence cannot have any more zeros
on [a, b] and also must keep a constant sign on each of the intervals
(% xip1), i=0,1, - -+ k. Further, we can assume without loss of

generahty as in the proof of Theorem 2.1 that ;& =1(x,)) # . m_1,
j = 1. Now at least one of the following two cases must hold.
Case 1: There exists an infinite number of functions f; such that
[0 =D (%) < Ymrmy—1-
Case 2: There exists an infinite number of functions f; such that
f;’o‘(m)_l)(xm) > ym,A(m)—l'
We shall consider only Case 1 since the proof for Case 2 is similar.
We claim we can find a subsequence {fim} C {fi} such that fA-D
) < 1 xn) < < Ymaem-1» fOr let j(1) be any mteger ‘such
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that f3("~D(x,,) < ymrem)—1- Then there exists an integer j(2) > j(1)
such thatf‘“'"’ D(x,n) <f(*('"’ D(xm) < Ymam)—1- 1f not, for all] > (1)
we will have ;

- A(m)—1) _
(A) [0 =D(xy) < fi) (xm) < fo* ™1 (xm)

We also have

(0 = folm) (g — i1 =
(™) = fob ™D ) A(m) — 1)! + o(1).

On taking the limit as j — + ® by virtue of our hypothesis we obtain
that f0m=D(x, ) — fo0m-U(x,) as j — + @, a contradiction to as-
sertion (A). This proves our claim.

For convenience of notation we shall again denote the subsequence
{fim} by {fi}+ Now the sequences {f;} and {f, — f;} have the
properties of monotonicity and positiveness respectively on the in-
tervals (x;,x;,,), 1= 0,1, - - -, k as in the proof of Theorem 2.1. Also
from our choice of {f;} it follows that lim,_,, ;0™ =1 (x,,) = fo0m-1
(xp). The rest of the proof is similar to that of Theorem 2.1 and is
omitted.

This completes the proof of the theorem.
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