SOME CONVERGENCE THEOREMS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS IN $\lambda(n, k)$ -PARAMETER FAMILIES

S. UMAMAHESWARAM

1. Introduction. Assume *n* and *k* are integers, $n \ge 2$ and $1 \le k \le n$. Let $\lambda(n, k) = (\lambda(1), \dots, \lambda(k))$ be an ordered *k*-tuple of positive integers satisfying $\lambda(1) + \dots + \lambda(k) = n$, which we call an ordered *k*-partition of *n*. Suppose $\lambda(n, k)$ is a fixed ordered *k*-partition of *n* and $F \subset C^{j}(I)$ where $I \subset R$ is an interval and j > 0 is large enough so that the following definitions make sense.

DEFINITION 1.1. F is said to be a $\lambda(n, k)$ -parameter family on I if for every set of k distinct points $x_1 < x_2 < \cdots < x_k$ in I and every set of n real numbers y_{ir} there exists a unique $f \in F$ satisfying

(1.1)
$$f^{(r)}(x_i) = y_{ir}, r = 0, 1, \cdots, \lambda(i) - 1, i = 1, \cdots, k.$$

Let P(n) denote the set of all ordered k-partitions $\lambda(n, k)$ of n with k varying such that $1 \leq k \leq n$. If $1 \leq m \leq k$ is fixed we shall define $\{\lambda(n, k; m)\} = \{\mu(n, j) \in P(n) : \mu(n, j) \text{ is obtained from } \lambda(n, k) \text{ by writing } \lambda(m) - 1 \text{ in the place of } \lambda(m) \text{ and inserting the integer 1 in any one of the <math>k + 1$ possible places in the ordered array $(\lambda(1), \dots, \lambda(m-1), \lambda(m) - 1, \lambda(m+1), \dots, \lambda(k))\} \cup \{\mu(n, j) \in P(n) : \mu(n, j) \text{ is obtained from } \lambda(n, k) \text{ by writing } \lambda(m) - 1 \text{ in the place of } \lambda(m) \text{ and writing } \lambda(i) + 1 \text{ in the place of } \lambda(i) \text{ for any one } i \neq m, \text{ leaving all the other } \lambda(i)$'s fixed}. (In case $\lambda(m) = 1$, the entry $\lambda(m) - 1 = 0$ is simply deleted so that the first of the two sets above will consist of k-tuples whereas the second one will consist of (k - 1) - tuples).

DEFINITION 1.2. F is said to be a $\{\lambda(n, k; m)\}$ -parameter family in case F is a $\mu(n, j)$ -parameter family for all $\mu(n, j) \in \{\lambda(n, k; m)\}$.

Suppose F is a $\lambda(n, k)$ and also a $\{\lambda(n, k; m)\}$ -parameter family on I = [a, b] and $f_0 \in F$ is determined by the conditions (1.1). Let $\{x_{mj}: 1 \leq j < +\infty\} \subset (x_m, x_{m+1})$ be a strictly decreasing sequence of real numbers such that $x_{mj} \rightarrow x_m$ as $j \rightarrow +\infty$ (we consider in this paper only a strictly decreasing sequence $\{x_{mj}\}$ although similar results can be obtained for a strictly increasing sequence $\{x_{mj}\} \subset$

Received by the editors on July 1, 1975 and in revised form on September 22, 1975.

AMS 1970 Subject Classification: Primary 34B10, 34B15.

Key words and phrases: Convergence, multipoint, boundary value problems.

Copyright © 1976 Rocky Mountain Mathematics Consortium

 (x_{m-1}, x_m) such that $x_{mj} \to x_m$ as $j \to +\infty$.) and $\{\alpha_j : 1 \leq j < +\infty\} \subset R$ be a sequence such that $\alpha_j \to y_{m0}$ as $j \to +\infty$. Also for each $j \geq 1$ let $f_j \in F$ be the unique function determined by

(1.2)
$$f_j(x_{mj}) = \alpha_j$$

and all the conditions of (1.1) except for i = m and $r = \lambda(m) - 1$. We will show in Theorem 2.1 that if the sequence $\{\alpha_j\}$ satisfies certain additional convergence conditions then the sequence $\{f_j\}$ converges to f_0 uniformly on [a, b].

Thus in hypothesizing that $\{x_{mj}\} \to x_m$ as $j \to +\infty$ we treat in this theorem a situation of degeneracy of boundary conditions that is not covered by Tornheim's convergence theorem (Theorem 5 of [5]) for *n*-parameter families. Moreover if we have an *n*-th order differential equation of the form $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$ satisfying the assumed uniqueness and existence conditions, this theorem illustrates how a solution to a *k*-point boundary value problem can be approximated by a solution to a (k + 1)-point boundary value problem with suitably chosen boundary values. We also give in Theorem 2.3 an alternate set of sufficient conditions that will guarantee that $f_j \to$ f_0 as $j \to +\infty$ uniformly on [a, b]. There are several papers in the literature concerning $\lambda(n, k)$ -parameter families or their special cases and [1]-[5] are a few such references.

2. Main results. We shall introduce the following notations concerning sequences of points in $R \times R$ in order to simplify the statement of our main theorem.

If $\{(t_j, \alpha_j) : 1 \leq j < +\infty\} \subset R \times R$ is a sequence of points such that $(t_j, \alpha_j) \rightarrow (t_0, c_0) \in R \times R$ as $j \rightarrow +\infty$ with $\{t_j\}$ strictly decreasing and $c_i \in R$, $i = 1, \dots, r$ are given, then define $D^i \alpha_j$, $i = 0, 1, \dots, r$ recursively as follows:

$$egin{aligned} D^0 \, oldsymbol{lpha}_j &\equiv oldsymbol{lpha}_j \ D^i \, oldsymbol{lpha}_j &\equiv (D^{i-1} \, oldsymbol{lpha}_j - c_{i-1}/(i-1)!)/(t_j - t_0). \end{aligned}$$

The following remarks which are easy consequences of the above definitions will be useful in the proof of our main theorem.

REMARK 1. If $\lim_{j\to+\infty} D^i \alpha_j$ exists and = a constant d then $\lim_{j\to+\infty} D^p \alpha_j = c_p/p!, p = 0, 1, \dots, i-1.$

REMARK 2. If $t_0 \in (a, b)$ and $g \in C^n[a, b]$ is such that $g^{(p)}(t_0) = c_p$, $p = 0, 1, \dots, r(\leq n)$ and $g(t_j) = \alpha_j$, $j \geq 1$ then $\lim_{j \to +\infty} D^p \alpha_j = c_p/p!$, $p = 0, 1, \dots, r$.

REMARK 3. If $\{(t_j, \beta_j) : 1 \leq j < +\infty\} \subset R \times R$ is such that $\alpha_j \leq \beta_j$ for all $j \geq 1$, $\lim_{j \to +\infty} D^p \alpha_j = \lim_{j \to +\infty} D^p \beta_j = c_p/p! \ p = 0, 1, \dots, r-1$ and $\lim_{j \to +\infty} D^r \alpha_j$ and $\lim_{j \to +\infty} D^r \beta_j$ exist, then $\lim_{j \to +\infty} D^r \alpha_j \leq \lim_{j \to +\infty} D^r \beta_j$.

We are now ready to state our main theorem.

THEOREM 2.1. Let F be a $\lambda(n, k)$ and also a $\{\lambda(n, k; m)\}$ -parameter family on an interval [a, b] for some fixed integer $m, 1 \leq m \leq k$. Let $\alpha \leq x_1 < x_2 < \cdots < x_k < b$ and $y_{ir} \in R$ be arbitrary for $r = 0, 1, \cdots$, $\lambda(i) - 1, i = 1, \cdots, k$. Let $\{(x_{mj}, \alpha_j) : 1 \leq j < +\infty\} \subset (x_m, x_{m+1}) \times R$ be a sequence of points such that i) $(x_{mj}, \alpha_j) \rightarrow (x_m, y_{m0})$ as $j \rightarrow +\infty$ with x_{mj} strictly decreasing (in case m = k interpret $x_{k+1} = b$) and ii) $D^r \alpha_j \rightarrow y_{mr}/r!$ as $j \rightarrow +\infty$, $r = 0, 1, \cdots, \lambda(m) - 1$. Also suppose $f_0 \in F$ is the unique function determined by (1.1) and for $j \geq 1$, $f_j \in F$ is the unique function determined by (1.2) and all conditions of (1.1) except for i = m and $r = \lambda(m) - 1$. Then $f_j \rightarrow f_0$ as $j \rightarrow +\infty$ uniformly on [a, b].

PROOF: If the sequence $\{f_j\}$ is such that $f_j \equiv f_{j+1}$ for all $j \ge q$ where q is a fixed positive integer, then we claim $f_j^{(\lambda(m)-1)}(x_m) = y_{m,\lambda(m)-1}, j \ge q$. Setting $f_j \equiv g$ for $j \ge q$ we have by virtue of our hypothesis and remark 2 that $g^{(\lambda(m)-1)}(x_m) = (\lambda(m)-1)! \lim_{j\to +\infty} D^{\lambda(m)-1} \alpha_j = y_{m,\lambda(m)-1}$. Consequently $f_j \equiv f_0, j \ge q$ and we are done. Now pick a sequence $\{n(i)\}$ of positive integers so that n(1) = 1 and for each $i \ge 2, f_j \equiv f_{i-1}$ for $i-1 \le j < n(i)$ and $f_{n(i)} \ne f_{i-1}$. The sequence $\{f_{n(j)}\}$ clearly converges uniformly if and only if the sequence $\{f_j\}$ converges uniformly, so for simplicity of notation, we relabel $f_{n(j)}$ as $f_j, \alpha_{n(j)}$ as α_j and $x_{mn(j)}$ as x_{mi} . Then we have $f_i \ne f_{i+1}$ for each $j \ge 1$.

Further, for each $j \ge 1$, $f_j - f_{j+1}$ has $\lambda(1), \dots, \lambda(m-1), \lambda(m) - 1$, $\lambda(m+1), \dots, \lambda(k)$ zeros at x_1, \dots, x_k respectively on [a, b] and hence cannot have any more zeros on [a, b]. Thus $f_j - f_{j+1}$ must keep a constant sign on each of the intervals $(x_i, x_{i+1}), i = 0, 1, \dots, k$ (where $x_0 = a$) and consequently $\{f_j\}$ is pointwise monotone on each of the intervals $(x_i, x_{i+1}), i = 0, 1, \dots, k$. We can further assume without loss of generality that $f_j^{(\lambda(m)-1)}(x_m) \neq y_{m\lambda(m)-1}, j \ge 1$ for if equality holds for some j = J then $f_j \equiv f_0$ and we can suppress f_j from $\{f_j\}$. Now at least one of the following two cases must occur.

Case 1: There exists an infinite number of functions f_j such that $f_j (\lambda(m)-1)(x_m) < y_{m,\lambda(m)-1}$.

Case 2: There exists an infinite number of functions f_j such that $f_j^{(\lambda(m)-1)}(x_m) > y_{m,\lambda(m)-1}$.

Because of the similarity of the proofs involved we shall consider only the first case. In this case we claim that we can find a subsequence $\{f_{j(p)}\} \subset \{f_j\}$ such that $f_{j(1)}^{(\lambda(m)-1)}(x_m) < f_{j(2)}^{(\lambda(m)-1)}(x_m) < \cdots$ $y_{m,\lambda(m)-1}$. For let j(1) be any integer such that $f_{j(1)}^{(\lambda(m)-1)}(x_m) < y_{m,\lambda(m)-1}$. Then there must exist an integer j(2) > j(1) such that $f_{j(1)}^{(\lambda(m)-1)}(x_m) < f_{j(2)}^{(\lambda(m)-1)}(x_m) < y_{m,\lambda(m)-1}$. If not, for every j > j(1) we will have $f_j^{(\lambda(m)-1)}(x_m) < f_{j(1)}^{(\lambda(m)-1)}(x_m) < y_{m,\lambda(m)-1}$. This implies by virtue of our hypothesis on F that $f_j(x) < f_{j(1)}(x) < f_0(x)$ for all $x, x_m < x < x_{m+1}$ and all j > j(1). In particular $\alpha_j < f_{j(1)}(x_{mj}) < f_0(x_{mj}), j > j(1)$. Consequently, in view of remarks 2 and 3 we have $y_{m,\lambda(m)-1} = (\lambda(m) - 1)!$ $\lim_{j\to +\infty} D^{\lambda(m)-1} \alpha_j \leq (\lambda(m) - 1)!$ $\lim_{j\to +\infty} D^{\lambda(m)-1} f_{j(1)}(x_{mj}) = f_{j(1)}^{(\lambda(m)-1)}$.

For convenience of notation we shall now denote the subsequence $\{f_{j(p)}\}$ by $\{f_j\}$ and set $s_i = -1 + \sum_{p=i+1}^{m} \lambda(p), i = 0, 1, \dots, m-1$ and $S_i = \sum_{p=m+1}^{i} \lambda(p), i = m, \dots, k$ (where $S_m = 0$). Now the sequence $\{f_j\}$ has the property that $\{(-1)^{s_i}f_j\}$ is pointwise monotone increasing on $(x_i, x_{i+1}), i = 0, 1, \dots, m-1$ and $\{(-1)^{S_i}f_j\}$ is pointwise monotone increasing on $(x_i, x_{i+1}), i = m, \dots, k$. Furthermore $\{(-1)^{s_i}(f_0 - f_j)\}$ is positive on $(x_i, x_{i+1}), i = m, \dots, k$.

We now claim $\lim_{j\to+\infty} f_j(x) = f_0(x), a \leq x \leq b$. We will first show $\lim_{j\to+\infty} f_j^{(\lambda(m)-1)}(x_m) = y_{m,\lambda(m)-1}$. By our choice of $\{f_j\}$ it is clear that $L \equiv \lim_{j\to+\infty} f_j^{(\lambda(m)-1)}(x_m) \leq y_{m,\lambda(m)-1}$. Suppose $L < y_{m,\lambda(m)-1}$. Let $g \in F$ be determined by $g^{(\lambda(m)-1)}(x_m) = L$ and all the conditions in (1.1) except for i = m and $r = \lambda(m) - 1$. Then $f_j(x) < g(x) < f_0(x)$ for all $x, x_m < x < x_{m+1}$ and all $j \geq 1$. In particular, $\alpha_j < g(x_{mj}) < f_0(x_{mj})$ and as a result of remarks 2 and 3 it follows that $y_{m,\lambda(m)-1} = (\lambda(m) - 1)!$ $\lim_{j\to+\infty} D^{\lambda(m)-1} \alpha_j \leq g^{(\lambda(m)-1)}(x_m) < y_{m,\lambda(m)-1}$, a contradiction. Hence $L = y_{m\lambda(m)-1}$.

Now suppose if possible $\lim_{j\to +\infty} f_j(x') \neq f_0(x')$ for some $x', x_t < x' < x_{t+1}$ where t is some fixed integer $0 \leq t \leq k$. Without loss of generality we can assume $m \leq t \leq k$ since the proof will be similar if $0 \leq t \leq m-1$. So there exists an $\epsilon > 0$ and a subsequence of $\{f_j\}$ which we again call $\{f_j\}$ such that $|f_j(x') - f_0(x')| > \epsilon$. In particular $(-1)^{S_t}(f_0(x') - f_j(x')) > \epsilon$ for all $j \geq 1$. Now choose $z' \in R$ such that $(-1)^{S_t}f_0(x') - \epsilon/2 > z' > (-1)^{S_t}f_j(x') + \epsilon/2$ and let $h \in F$ be the unique function determined by h(x') = z' and all the conditions of (1.1) except for i = m and $r = \lambda(m) - 1$. Then by our hypothesis on F we must have $f_j^{(\lambda(m)-1)}(x_m) < h^{(\lambda(m)-1)}(x_m) < y_{m\lambda(m)-1}$. This contradicts our earlier assertion that $f_j^{(\lambda(m)-1)}(x_m) \to y_{m\lambda(m)-1}$ as $j \to +\infty$. Hence $\lim_{j\to +\infty} f_j(x) = f_0(x)$, $a \leq x \leq b$.

Now by Dini's theorem it follows that $\lim_{j\to+\infty} f_j(x) = f_0(x)$, uniformly on [a, b]. Since from every subsequence of the original sequence $\{f_j\}$ we can extract by the above process a further subsequence that converges to f_0 uniformly on [a, b], it follows that $\{f_j\}$ converges to f_0 uniformly on [a, b].

This completes the proof of the theorem.

COROLLARY 2.2. Let $p(x) = \sum_{r=0}^{\lambda(m)-1} (x - x_m)^r y_{mr}/r!$ and $(x_{mj}, \alpha_j) \rightarrow (x_m, y_{m0})$ along the arc of the polynomial p(x). Let $f_j(x)$ and $f_0(x)$ be as defined in Theorem 2.1. Then $f_j(x) \rightarrow f_0(x)$ as $j \rightarrow +\infty$ uniformly on [a, b].

In the next theorem we shall give an alternate set of sufficient conditions that will ensure the uniform convergence of f_i to f_0 on [a, b].

THEOREM 2.3. Assume F, f_0 and $\{x_{mj}\}$ are as in Theorem 2.1. Let $\{\alpha_j : 1 \leq j < +\infty\} \subset R$ be a sequence such that $\alpha_j \rightarrow y_{m0}$ and $(\alpha_j - f_0(x_{mj}))/(x_{mj} - x_m)^{\lambda(m)-1} \rightarrow 0$ as $j \rightarrow +\infty$. For each $j \geq 1$, let $f_j \in F$ be determined as in Theorem 2.1. Then $f_j \rightarrow f_0$ as $j \rightarrow +\infty$ uniformly on [a, b].

PROOF. If
$$\{f_j\}$$
 is such that $f_j \equiv f_{j+1}$ for all $j \ge q$ then we claim $f_j^{(\lambda(m)-1)}(x_m) = f_0^{(\lambda(m)-1)}(x_m), j \ge q$ for setting $f_j \equiv g, j \ge q$ we have
 $(\alpha_j - f_0(x_{mj}))/(x_{mj} - x_m)^{\lambda(m)-1} = (g^{(\lambda(m)-1)}(x_m) - f_0^{(\lambda(m)-1)}(x_m))/(\lambda(m-1)! + \underline{o}(1).$

On taking the limit as $j \to +\infty$ we obtain $g^{(\lambda(m)-1)}(x_m) = f_0^{(\lambda(m)-1)}(x_m)$ and consequently $f_j \equiv g \equiv f_0, j \ge q$ and we are done.

Otherwise, arguing as in the proof of Theorem 2.1, we can assume without loss of generality that $f_j \not\equiv f_{j+1}$ for all $j \geq 1$. Then for each $j \geq , f_j - f_{j+1}$ has $\lambda(1), \dots, \lambda(m-1), \lambda(m) - 1, \lambda(m+1), \dots, \lambda(k)$ zeros at x_1, \dots, x_k respectively and hence cannot have any more zeros on [a, b] and also must keep a constant sign on each of the intervals $(x_i, x_{i+1}), i = 0, 1, \dots, k$. Further, we can assume without loss of generality as in the proof of Theorem 2.1 that $f_j^{(\lambda(m)-1)}(x_m) \neq y_{m,\lambda(m)-1}, j \geq 1$. Now at least one of the following two cases must hold.

Case 1: There exists an infinite number of functions f_j such that $f_j^{(\lambda(m)-1)}(x_m) < y_{m,\lambda(m)-1}$.

Case 2: There exists an infinite number of functions f_j such that $f_j^{(\lambda(m)-1)}(x_m) > y_{m,\lambda(m)-1}$.

We shall consider only Case 1 since the proof for Case 2 is similar. We claim we can find a subsequence $\{f_{j(p)}\} \subset \{f_j\}$ such that $f_{j(1)}^{(\lambda(m)-1)}(x_m) < f_{j(2)}^{(\lambda(m)-1)}(x_m) < \cdots < y_{m,\lambda(m)-1}$, for let j(1) be any integer such that $f_{j(1)}^{(\lambda(m)-1)}(x_m) < y_{m,\lambda(m)-1}$. Then there exists an integer j(2) > j(1) such that $f_{j(1)}^{(\lambda(m)-1)}(x_m) < f_{j(2)}^{(\lambda(m)-1)}(x_m) < y_{m,\lambda(m)-1}$. If not, for all j > j(1) we will have

(A)
$$f_{j^{(\lambda(m)-1)}}(x_m) < f_{j(1)}^{(\lambda(m)-1)}(x_m) < f_0^{(\lambda(m)-1)}(x_m)$$

We also have

$$(\alpha_j - f_0(x_{mj})) / (x_{mj} - x_m)^{\lambda(m)-1} = (f_j^{(\lambda(m)-1)}(x_m) - f_0^{(\lambda(m)-1)}(x_m)) / (\lambda(m) - 1)! + \underline{o}(1).$$

On taking the limit as $j \to +\infty$ by virtue of our hypothesis we obtain that $f_j^{(\lambda(m)-1)}(x_m) \to f_0^{(\lambda(m)-1)}(x_m)$ as $j \to +\infty$, a contradiction to assertion (A). This proves our claim.

For convenience of notation we shall again denote the subsequence $\{f_{j(p)}\}$ by $\{f_j\}$. Now the sequences $\{f_j\}$ and $\{f_o - f_j\}$ have the properties of monotonicity and positiveness respectively on the intervals $(x_i, x_{i+1}), i = 0, 1, \dots, k$ as in the proof of Theorem 2.1. Also from our choice of $\{f_j\}$ it follows that $\lim_{j\to+\infty} f_j^{(\lambda(m)-1)}(x_m) = f_0^{(\lambda(m)-1)}(x_m)$. The rest of the proof is similar to that of Theorem 2.1 and is omitted.

This completes the proof of the theorem.

References

1. P. Hartman, On N-parameter families and interpolation problems for nonlinear ordinary differential equations, Trans. Amer. Math. Soc. 154(1971), 201–226.

2. —, Unrestricted n-parameter families, Rend. Circ. Mat. Palermo (2) 7(1959), 123-142.

3. R. M. Mathsen, $\lambda(n)$ -parameter families, Canad. Math. Bull. 12(1969), 185-191.

4. S. Umamaheswaram, $\lambda(n, k)$ -parameter families and associated convex functions, (to appear).

5. L. Tornheim, On n-parameter families of functions and associated convex functions, Trans. Amer. Math. Soc. (1950), 457-467.

INDIAN INSTITUTE OF SCIENCE, BANGALORE 560012, INDIA