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CONSTRUCTING BEZOUT DOMAINS 
WILLY BRANDAL 

Introduction. Techniques for constructing Bezout domains are 
described and recent examples are given. 

If R is an integral domain, Q the quotient field of R, and U the units 
of R, then (Q — {0})IU is a partially ordered group called the divisi
bility group of R. The emphasis is on constructing a desirable divisi
bility group and then the integral domain from this ordered Abelian 
group. Given a totally ordered Abelian group, W. Krull used a group 
algebra to construct a valuation ring with that divisibility group (also 
known as the value group). I. Kaplansky and P. JafFard generalized 
this so that given a lattice ordered Abelian group there exists an in
tegral domain with that divisibility group. J. Ohm showed that this 
integral domain is a Bezout domain, and he popularized the use of this 
construction for generating examples. Similarly, given a totally or
dered Abelian group there exists a long power series ring with that 
divisibility group, and this long power series ring is a maximally com
plete valuation ring which can be used to generate examples. 

In section one the preliminaries are given. This includes the de
velopment of the Krull-Kaplansky-Jaffard-Ohm construction of Bezout 
domains from lattice ordered Abelian groups and the transferring of 
the properties between a Bezout domain and its divisibility group. In 
section two there is given a brief discussion of long power series rings 
and how they can be used to generate examples. In section three many 
examples of Bezout domains obtained by the Krull-Kaplansky-Jaffard-
Ohm construction appear. Finally in section four related approaches 
to the subject are discussed, and suggestions for future study are indi
cated. 

This paper originated with a series of lectures entitled "The divisi
bility group of an integral domain", presented at Colorado State Uni
versity in the Fall of 1973. The author wishes to thank the referee for 
suggesting many of the changes made from the lecture notes to the 
present form. The author also wishes to thank J. Ohm for several use
ful suggestions. 
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384 W. BRANDAL 

1. Definitions and basic results. All groups will be assumed to be 
Abelian. R will always denote an integral domain, Q the field of frac
tions of R, and U the units of R. A* will denote the non-zero elements 
of A, whenever A has an additive algebraic structure. Z will denote the 
additive group of integers with the usual ordering and N = {1,2, 3, 
• • •} the natural numbers. 

The first few definitions and results are well-known. For more de
tails on ordered groups see [6] or [13], and for more details on valua
tion rings see [36], [1], [29], [6] or [13]. G is a partially ordered 
group if G is a group with a partial ordering ^ such that g=h im
plies g + i ^ h + i for all g, h, i G G. If G is a partially ordered group 
G+ will denote { g £ G : g ^ 0 } . If G and G' are partially ordered 
groups a n d / : G ^> G\ then / i s an order homomorphism if/ is a group 
homomorphism and g= h implies/(g) =f(h) for all g, h G G. With 
the same notation/is an order isomorphism if/ is a group isomorphism 
and both / a n d / - 1 are order homomorphisms. If G is a group with Gx 

and G2 subsets of G, then let Gx + G2 = {gi + g2 G G : gx G G Ì and 
g2 G G2}, and let - G x = {-gi G G : gj G G J . If G is a partially 
ordered group, then (i) 0 G G+, (ii)"G+ + G + C G+, and (iii) G+ H 
(— G+) = {0}. Conversely, if G is a group and F is a subset of G 
satisfying (i), (ii), and (iii) of the last statement, then G is a partially 
ordered group with the ordering ^ given by g ^ h if h — g G P. 

Let G = Q*IU and define aU ^ bU for a, b G Ç* if a~lb G R. Then 
G is a partially ordered group, called the divisibility group of R. If G 
is the divisibility group of R, then G+ = R*IU. G is a totally ordered 
group, or linearly ordered group, if G is a partially ordered group 
whose partial ordering is a total ordering (g ^ h or h ^ g for all g, 
hGG). R is a valuation ring if a | & or b | a for all a, fo G R. If G is a 
totally ordered group and Q is a field, then v : Ç)*—» G is a valuation if 
(i) €?(xt/) = D(X) -I- t?(j/) for all x,y G Q*, and (ii) Ü(JC + t/) ^ inf (t>(x), 
t?(t/)) for all x,y G Q* such that x + t/ / 0. It will always be assumed 
that if t; : Q*—» G is a valuation, then v is surjective, i.e., v(Q*) = G. 
If R is a valuation ring, then the canonical map of Q* onto the divisi
bility group of R is a valuation. On the other hand, if v : Q* —> G is a 
valuation and we let R = {0} U {x G Q* : v(x) ^ 0 } , then R is a 
valuation ring, Ç is the field of fractions of R, and G is order iso
morphic to the divisibility group of R. R is a valuation ring if and only 
if the divisibility group of R is a totally ordered group. Thus if R is a 
valuation ring, the divisibility group of R is the same as the value group 
of the corresponding valuation. If G is a totally ordered group, then 
G is a torsion-free group. 
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THEOREM 1.1 (W. KRULL [17], p. 164). If G is a totally ordered 
group, then there exists a valuation ring whose divisibility group is 
order isomorphic to G. 

PROOF. Let k be a field and let S be the group algebra k[G\. Let Q 
be the field of fractions of S, and define v : Q* —» G by 

X i=l i = l ' 

= inf(gi : i = 1,2, • • -, m) - inf(& ' : ; = 1,2, • • -, n), 

where it is assumed that c{ G fc* for all i = 1, 2, • • •, m and gf ^ g,- if 
i 7̂  j , and similarly for the expression in the denominator, v is a valua
tion. If R is the valuation ring associated to v (see the last paragraph), 
then R is the desired valuation ring. 

Alternate proofs use S = fc[G+] as in [1], p. 107, or S = fc[Xg : g G 
G\, where Xg are indeterminants over k, as in [6], 18.5. 

G is a lattice ordered group if G is a partially ordered group such 
that inf(g, h) and sup(g, h) exist in G for all g, h G G. If G is a partially 
ordered group and sup(g, h) exist in G for all g, ft G G, then G is a 
lattice ordered group because inf(g, h) = — sup( —g, —ft). Similarly a 
partially ordered group in which infs always exist is a lattice ordered 
group. If G is a lattice ordered group and X^sa subset of G, then X is 
a sublattice of G if infx(x, y) = ink(x, y) and supx(x, y) = supG(x, y) for 
all x , y £ X . If G and G' are lattice ordered groups a n d / : G -» G' , 
then fis a lattice homomorphism iff is a group homomorphism and 
/(inf(g, ft)) = inf(j{g),f(h)) for all g, ft G G. Clearly such an /wi l l also 
satisfy /(sup(g, ft)) = sup(/(g),/(ft)) for all g, ft G G, / is an order 
homomorphism, and/ (G) is a sublattice of G' . In an obvious manner 
one defines lattice isomorphism, lattice embedding, etc. If G is a 
lattice ordered group, then G is a torsion-free group [6], 15.7 or [13], 
Corollary p. 10. 

Two types of orderings on the product of partially ordered groups 
appear often. First, if Ga is a partially ordered group for a G T, then 
the product G = f | Ga can be ordered as follows: for (xa), (ya) G G, 
then (xa) i= (ya) if : „ A ya for all aGF. This is called the product 
ordering on G and makes G a partially ordered group. If each of the 
Ga is a lattice ordered group, then the product is also a lattice ordered 
group. Secondly, suppose Ga is a partially ordered group for a G F and 
suppose the index set T is well ordered. Then G = Y\«^r Q* c a n be 
ordered as follows: for (xj , (t/J G G, then (x j ̂  (ytt) if (xtt) = (t/J or 
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otQ = inf{a £ r : x a / y j implies xaQ > yao. This is called the lexico
graphic ordering on G and makes G a partially ordered group. If each 
of the Ga is a totally ordered group, then the product with the lexico
graphic ordering is also a totally ordered group. However, if each of 
the Ga is a lattice ordered group, then the product with the lexico
graphic ordering need not be a lattice ordered group. As a special 
case of the lexicographic ordering, take Z2 = Z © Z with (a, b) i? (c, d) 
if a> c or (a = c and b ^ d). Any subgroup of a partially ordered 
group is a partially ordered group. Thus the product ordering on a 
direct sum of partially ordered groups is the ordering obtained by con
sidering the direct sum as a subgroup of the product with the product 
ordering. 

R is a Bezout domain if every finitely generated ideal of R is a 
principal ideal of R. Thus R is a Bezout domain if and only if for all 
a,b G R there exists g £ f l such that Rg = Ra + Rfc. In this case g is 
a greatest common divisor of a and b, so a Bezout domain is an inte
gral domain in which such a gcd g always exists and g is an R-linear 
combination of a and b. 

It has been noticed that valuation rings are characterized by their 
divisibility group being a totally ordered group. Similarly R is a 
unique factorization domain if and only if the divisibility group of R is 
order isomorphic to a direct sum of copies of Z with the product order
ing. Also the divisibility group of R is a lattice ordered group if and 
only if the intersection of two principal ideals of R is a principal ideal 
of R, i.e., for all a,bGR there exists £ G R such that RI = Ra D Rb. 
In this case £ is a least common multiple of a and b, so these are 
integral domains in which lcm's always exist. 

If R is a Bezout domain, then the divisibility group of R is a lattice 
ordered group. For the existence of gcd s in R corresponds to the 
existence of infs in the divisibility group of R, and a partially ordered 
group in which infs always exist in a lattice ordered group. Con
sequently, if R is a Bezout domain, then the intersection of two prin
cipal ideals of R is a principal ideal of R. The converse is not true. 
For if R = k [ X, Y], a polynomial ring in two variables over a field, 
then R is not a Bezout domain, yet the intersection of two principal 
ideals of R is a principal ideal of R. 

The relationship between ideals of R and subsets of the divisibility 
group of R will now be discussed. Given a lattice ordered group G, / 
is an ideal of G if (i) 7 C G+*, (ii) x G 7, y G G, and y > x implies 
y Gl, and (iii) x, y G I implies inf(x, y) G I. 7 is a prime ideal of G if 
7 is an ideal of G and G+ — 7 is a semigroup, i.e., x,y G G+ — I im
plies x + y G G+ — 7. Note that 0 is always a prime ideal of G. 7 is 
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a maximal ideal ofGif I is a maximal element of the set of all ideals of 
G under the operation of set inclusion. 

PROPOSITION 1.2. Let G be the divisibility group of R, let n : Ç* 
—» Q*IU = G be the canonical map, and suppose R is a Bezout do
main. Then there is a one-to-one order preserving correspondence 
between the set of all proper ideals of R and the set of all ideals of G. 
A proper ideal J of R corresponds to the ideal 7r(J*) of G. Under this 
correspondence prime ideals of R correspond to prime ideals of G and 
maximal ideals ofR correspond to maximal ideals ofG. 

PROOF. Straightforward, or see [31], 2.2. 

J. Mott [26] 2.1. generalized the one-to-one correspondence for the 
prime ideals. If G is a lattice ordered group with only one maximal 
ideal, then G is a totally ordered group. A consequence is the well-
known result that a Bezout domain with only one maximal ideal is a 
valuation ring. 

PROPOSITION 1.3. Let G be the divisibility group of R, let n : Q* > 
—» Q*IU = G be the canonical map, and suppose R is a Bezout 
domain. Let P be a prime ideal of R. Define H to be the subgroup of 
G generated by G+ — 7r(P*), i.e., 

H= { £ n i & G G : g i G G + - 7 r ( P * ) a n d n i G z ) 

= {gl - g2 G G : gh g2 G G+ - TT(P*)}. 

Then GIH is a lattice ordered group with the ordering given by gl + 
H è g2 + H if there exists h G H such that gx — g2 + h == 0. More
over, the divisibility group ofRP is lattice isomorphic to GIH. 

PROOF. If h G H+, then h $ TT(P*). If h £ H + , g £ G , a n d / i è g è 
— h, then g £ H, i.e., H is a convex subgroup of G. To show that GIH 
is a lattice ordered group the only non-trivial part is the antisymmetry. 
Suppose g! + Hiï g2 + H and g 2 + H ê g ! + lï. Then gx — g2 + 
h ^ 0 and g2 — gl + h ' ^ 0 for some h,h' G H. By adding to h and 
h ' terms of the form n ^ where g G G+ — TT(P*) and nf G Z+ , we may 
assume h = h ' i= 0. Hence h è gl — g2 è — h, gx — g2 G H, and so 
gx 4- H = g2 + H, showing GIH is a lattice ordered group. Iff: G —> 
GIH is the canonical homomorphism, then / ° TT is a valuation with cor
responding valuation ring RP. Thus GIH is lattice isomorphic to the 
divisibility group of RP. 
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PROPOSITION 1.4. Let G be a lattice ordered group, let S be a sub-
semigroup of G+(i.e., s , « ' E S implies s + s' GS), and let I be an 
ideal of G such that / f l S = 0 . Then there exists a maximal element 
under the operation of set inclusion of {J G G: J is an ideal ofG,JZ) 
I, and / D S = 0 }, and every such maximal element is a prime ideal 
ofG. 

PROOF. Zorn's Lemma gives the existence of a maximal element, and 
a straightforward computation shows that every such maximal ele
ment is a prime ideal of G. 

PROPOSITION 1.5. Let {Ga}aGr be a family of lattice ordered groups, 
let G = © 2e*er Ga have the product ordering, and let rra : G -» Ga 

be the projection homomorphism for a E T. If P is a prime ideal of 
G, then P = 0 or there exists a E T and a prime ideal Pa of Ga such 
thatP= G+ flir«-1^«). 

PROOF. Straightforward [8], Lemma 1. 

THEOREM 1.6 (P. LORENZEN [19] ). Every lattice ordered group can 
be lattice embedded into a direct product of totally ordered groups 
with the product ordering. 

PROOF ([13], Theorem 2, p. 37). Let G be a lattice ordered group 
and let T be the set of maximal ideals of G. For M G T let HM = {gi — 

g 2 E G : gi>g2 ^ G+ — M}, and define GM = GIHM where GM is 
given the ordering gx + HM ^ g2 + HM if gx — g2 +h ^ 0 for some 
h G HM(see 1.3). Define fM : G—» GM to be the projection homo
morphism. fM is a lattice homomorphism and/M(M) is the only maxi
mal ideal of GM, so GM is a totally ordered group. Then JJMGr fM : G 
—> Y\ MGr GM is the required embedding, where of course the last group 
has the product ordering. 

The reader is referred to [5] for a discussion of related embeddings. 

THEOREM 1.7 (I. KAPLANSKY AND P. JAFFARD). If G is a lattice ordered 
group, then there exists an integral domain whose divisibility group is 
lattice isomorphic to G. 

PROOF (J. OHM [28], p. 589). By 1.6 there exists a lattice embedding 
/ : G —• G' = f i M er GM where GM is a totally ordered group for all 
M G r and G ' has the product ordering. Let TTU : G ' —• GM be the 
canonical projection for M E T . Let k be a field and let {Yg : g E G } 
be a set of indeterminants over k indexed by G. Let Q = k( {Yg : g G 
G}). To define <\>M : Q*—• GM, first consider monomials in fc[{Yg : 
g G G}] *. Let <McYg%2 • • • Y%) = 2 ï - i Wu • /(&) where c G fc*, 
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giGG, and n{ G Z+. For p G k[{Yg :g G G}] *, let <Mp) = 
inf{«£M(mj) : »Wj are the distinct monomials appearing in p}. Then for 
p,p' Gfc[{Y g :gGG}]*let<Mp/pO = « M p ) - < M p ' ) . Thisdefines 
<fof: Ç*—* GM and by [1] , Lemma 1 and obvious generalization, p. 
160, <f>M is a valuation. Define <f> : Q* —» G ' by <£ = J | M e r <£M. Then </> 
satisfies for q, q ' G Ç-*,«#<7<7 ') = ^(9) + <f>(q ') and »̂(9 + </') = 
infiWç), # 7 ')) if ? + q ' ? 0. Let R = {0} U {x G Ç* : <£(*) ̂  0}. 
Then R is an integral domain with quotient field Q and divisibility 
group # 0 * ) . For g G G, 0(Yg) = / (g) so /(G) C # Ç * ) . By the 
definition of <f>, <f>(Q*) is the sublattice of G' generated by/(G). f{G) is 
a sublattice of G ' since / is a lattice homomorphism, and so </>(Ç*) = 
/(G). Thus the divisibility group of R is lattice isomorphic to G, as 
desired. 

PROPOSITION 1.8 (J. OHM). If G is a lattice ordered group and R is an 
integral domain whose divisibility group is lattice isomorphic to G and 
is obtained as in the proofof1.7, then Risa Bezout domain. 

PROOF. Slight modification of proof given in [6], 18.6 or [8], p. 
1370. 

W. Krull first proved 1.7 for G a totally ordered group (1.1), and P. 
Jaffard first published 1.7 as stated. I. Kaplansky also obtained 1.7 in 
his thesis at Harvard University, 1941, although it was never pub
lished. His proof uses the theorem of Lorenzen (1.6), so presumably it 
is the same as the one given above. P. Jaffard's proof of 1.7 is not as 
elegant as the proof given above [6] 18.6 or [13] Theorem 3, p. 78. 
J. Ohm noticed that the integral domain obtained in 1.7 is a Bezout 
domain (1.8). This is summarized in the following theorem. 

THEOREM 1.9 (KRULL-KAPLANSKY-JAFFARD-OHM). If G is a lattice 
ordered group, then there exists a Bezout domain whose divisibility 
group is lattice isomorphic to G. 

2. Constructing valuation rings. In section one, the Krull Theorem 
(1.1) was generalized to 1.9 by allowing the group to be lattice ordered 
instead of totally ordered. In this section another approach is briefly 
explored. Some of the following appears in 0. Schilling's text [29], 
although it is quite difficult to read. 

Let k be a field and let G be a totally ordered group. Define Q to 
be the set of all elements ^ aGr cgXga where T is the set of all ordinals 
less than some fixed ordinal (the fixed ordinal varying with different 
elements of Ç>), ga G G, a < ß implies ĝ  < gß, and cga £ k. Let R be 
the subset of Q consisting of all the elements with the added restriction 
that & i= 0 for all a £ T . H is called the long power series ring relative 
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to k and G. The name long power series ring was suggested by L. S. 
Levy. With the standard operations R is a valuation ring and Q is its 
field of fractions. 

A valuation ring R is maximally complete if whenever R is em
bedded into another valuation ring R', then this embedding is an 
isomorphism or either the divisibility group of R ' or the residue field 
of R' is strictly larger than that of R via the induced embeddings. 
According to [14] this definition is due to F. K. Schmidt but first 
published by W. Krull in 1932. By Zorn's Lemma it follows that any 
valuation ring can be embedded into a maximally complete valuation 
ring with isomorphic divisibility group and residue fields via the in
duced embeddings [29], Theorem 5, p. 38. I. Kaplansky [14] showed 
that if R is a valuation ring this maximal completion is unique up to 
isomorphism if the characteristic of the residue field is zero, and by an 
example this maximal completion need not be unique up to isomor
phism if the characteristic of the residue field of R is not zero. Also 
studied is the question of when a maximally complete valuation ring is 
a long power series ring. 

An R-module M is linearly compact if given {Mi}iGI a set of sub-
modules of M, and {Xi}iel C M, then the whole family of congruences 
{x = Xi mod Mi}iG7 is solvable whenever every finite subfamily of the 
congruences is solvable. R is a maximal integral domain if R is a 
linearly compact R-module. Then for R a valuation ring, R is maxi
mally complete if and only if R is maximal [29]. It is reasonably 
straightforward to show that every long power series ring is maximal, 
and so is maximally complete. This is the property that makes long 
power series rings so desirable. 

A long power series ring is now used to construct an example of a 
ring of type I due to B. Osofsky [22], p. 76 or [23], p. 119-120. R is a 
ring of type I if (i) R has exactly two maximal ideals Mx and M2, (ii) 
Mi H M2 does not contain a non-zero prime ideal of R, and (iii) RMl 

and RM2 are maximal valuation rings. This definition is due to E. 
Matlis [22], p. 76 or [23], p. 119. If R is a ring of type I, R = RMi n 
RM2 and so R is a Prüfer domain [6], 22.8, and a Prüfer domain with 
only finitely many maximal ideals is a Bezout domain [ 12], Corollary 
5. Rings of type I are used to characterize another type of ring, called 
rings with property D [22] or [23]. 

To construct a ring of type I, begin with R the long power series 
ring relative to C and G, where C is the field of complex numbers and 
G is the additive group of rationals with the standard total ordering. 
Let Q be the field of fractions of R. One can show that Ç is an alge
braically closed field. Hence one can construct an automorphism/: 
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Q -» Ç fixing the coefficients C, and such that/(X) = 1 — X where X 
is shortened notation for 1X1? the element of R. One sees that R H 
f(R) is the desired ring of type I. 

A generalization of this appears in the paper by T. Shores and R. 
Wiegand [32], Section 4, namely if n è 2, n E N, then there exists a 
Bezout domain R with exactly n maximal ideals and every localization 
at a maximal ideal of R is a maximal valuation ring of Krull dimension 
one. These are also examples of what G. Klatt and L. S. Levy call pre-
self-injective rings [ 16], 3.5. P. Vamos has recently generalized these 
examples [34], Proposition 12, namely there exists a Bezout domain R 
with infinitely many maximal ideals such that every localization at a 
maximal ideal of R is a maximal valuation ring of Krull dimension one 
and every non-zero element of R is an element of only a finite number 
of maximal ideals of R. 

3. Examples of Bezout domains. This section is devoted to giving 
examples of Bezout domains by the Krull-Kaplansky-Jaffard-Ohm con
struction, 1.9. Thus appropriate lattice ordered groups will be con
structed, and using 1.9 a Bezout domain with that divisibility group 
exists. Then one translates the built-in properties of the lattice ordered 
group to the appropriate desired properties of the Bezout domain. 
Most of the examples given are counterexamples to disprove con
jectures made in the literature, although a few are used in existence 
proofs to indicate that a ring with desired properties does exist, as in 
Lewis' example 3.4. Often the examples desired are not necessarily 
Bezout domains, it is just noted that the construction 1.9 gives Bezout 
domains. Much of the credit for popularizing this technique goes to 
J. Ohm, through his papers and the students who studied under him. 
The early examples appeared in the middle 1960's and had to do with 
the complete integral closure of an integral domain. These are dis
cussed first. 

If x €E Q, then x is almost integral over R if there exists j £ R * such 
that yxn ë R for all n GN. The set of all elements of Q almost in
tegral over R is called the complete integral closure of R and is de
noted Re. It is trivial to check that Rç is a subring of Q containing R. 
Rc2 will be used for (RJC and inductively Rc„+i for (Rc«)c where n€zN. 
R is said to be completely integrally closed if R = R̂ ,. If x G Q and x 
is integral over R, then x is almost integral over R. The converse is not 
true. For if R is a valuation ring with divisibility group order isomor
phic to Z2 ordered lexicographically, and XELQ whose image in Z2 

via the canonical map is (0, — 1), then x is almost integral over R, yet 
x is not integral over R. If R is a valuation ring, then Re is easily seen 
to be Q if R has no minimal non-zero prime ideal, and R^ = RP if P is 
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the minimal non-zero prime ideal of R. Thus i^ is completely inte
grally closed, i.e., Rc* = Re if R is a valuation ring. 

The problem of characterizing the completely integrally closed do
mains led to several questions. One question that arose: is R<, com
pletely integrally closed for all R? This is not true, with the first ex
ample of an integral domain R such that Rcz ^ f̂  being given in [7], 
Example 1, p. 354, although this example is not a Prüfer domain, and 
hence not a Bezout domain. This naturally led to the question: if R 
is a Prüfer domain, is Rc completely integrally closed? Again the 
answer is no, with the counterexample due to W. Heinzer [9] or [6] , 
19.13. The construction uses 1.9, and gives a Bezout domain with in
finite Krull dimension. This led to the question: if R is a Prüfer do
main of finite Krull dimension, is i^ completely integrally closed? The 
answer is still no, with the counterexample due to P. Sheldon [31], 
Example 1. The construction uses 1.9, and gives a Bezout domain R 
of Krull dimension two, the smallest possible, for which Rc is not com
pletely integrally closed. 

The last two examples have the property that R Ç RçÇR^ = Rc3, 
i.e., Rc2 is completely integrally closed. This led to the question: is 
Rc2 always integrally closed? The answer is no with the counter
example due to P. Hill [11], Theorem 1. Using the construction of 1.9, 
he shows that for n E l V there exists a Bezout domain R such that 
RQ RcÇ ' ' ' Ç Ren == Rcn+i- This leads easily to another example 
by P. Hill that there exists a Bezout domain R such that Rc* Ç Rc„+i 
for all n G N. 

Before giving these examples, a method for determining when R is 
completely integrally closed in terms of its divisibility group is dis
cussed. If G is a lattice ordered group and g G G, then g is bounded 
if g G G+ and there exists h G G such that ng ^ h for all n G N. Let 
B(G) denote the subgroup of G generated by the bounded elements of 
G, i.e., B(G) = {gi — g2 G G : gj and g2 are bounded elements of G}. 
If R is a Bezout domain with divisibility group G, then it is easily seen 
that the divisibility group of R̂ , is order isomorphic to GIB(G) where 
GIB{G) is ordered by gx + B(G) ^ g2 + B(G) if there exists b G B(G) 
such that gx — g2 + b = 0. Thus if R is a Bezout domain with divisi
bility group G, then RÇ Rc if and only if B(G) ^ {0}. This gen
eralizes to a criterion for deciding whether Rc„ Ç Rc„+i for n G N by 
looking at B(G), B(GIB(G)), B((GIB(G))IB(GIB(G))), etc. 

Example 3.1 (P. Hill [11], Theorem 2). There exists a Bezout do
main R such that Rc« Ç. Rcn+i for all n E N . 

Let H = Z2 be ordered lexicographically. View an element Hz* as 



CONSTRUCTING BEZOUT DOMAINS 393 

( • • -, (fl_i, b_i), (fli, &i), • • • ) or simply ((an, bn)) where an, b n £ Z for 
n G Z*. Define Gx = {((an, foj) G Hz* : an = 0 if n < 0, an = 0 for 
all but finitely many n G Z*, and bn = 0 for all but finitely many n < 0, 
n G Z*}. Giving Hz* the product ordering and viewing Gx as a sub
group, Gx becomes a lattice ordered group. Let {Nk}keN be a count-
ably infinite partition of N such that Nk is infinite for all k G N. De
fine G2 = {((tfn, frn)) S GÌ : fon is constant on Nk for all but finitely 
many k £ N ; and for all fc G N there exists a, fo G Z such that bn = 
na+b for all but finitely many n G N k } , Let K— {((an, bn)) G 
d : an = 0 for all n G Z * , i n = 0 for all n < 0, n G Z*, and bn = 0 for 
all but finitely many n G Z*}. Then G2 D K are subgroups of Gx and 
G2IK is ordered b y g + K è g ' + K i f there exists k G K such that 
g — g ' -h fc ̂  0. Although not obvious, G2IK turns out to be order 
isomorphic to Gv Let ß : G2—> Gx be the composition of the natural 
projection G2 —» G2/K and the isomorphism G2/K —» G^ Inductively 
for n G N, n ^ 2, define Gn+1 = ß-^GJ. One sees that Gn+1/K = Gn 

and B(Gn + 1 )= K for all nGN, and so Gn+lIB(Gn+l) = Gn. Also 
B(GlIB(Gl))=B(BlIK)/ {0} and B((G1/K)/B(G1/K)) = {0}. 

For n G N, n > 2, if one uses 1.9 to construct a Bezout domain R 
with divisibility group lattice isomorphic to Gn_1? then by induction 
one easily sees that RÇ RcÇ • • • Ç Rcn = Kc„+i getting the earlier 
example of P. Hill mentioned. Let G = © ^neN Gn with the product 
ordering. Using 1.9, if R is a Bezout domain with divisibility group 
lattice isomorphic to G, then it easily follows that RcnÇ: Rcn+i for all 
n ELN, and this is the desired example 3.1. 

The problem of characterizing the completely integrally closed 
domains led to other questions. W. Krull conjectured that R is a com
pletely integrally closed domain if and only if R is the intersection of 
valuation overrings of Krull dimension one or less, i.e., R = H {V : V 
is a valuation ring, K dim V ^ 1, and R C V C Q}. T. Nakayama 
showed this conjecture to be false. An easier example is due to J. Ohm 
[6] , 19.12, namely there exists a Bezout domain R, Rjï Q, which is 
completely integrally closed and does not admit a Krull dimension one 
valuation overring. Ohm's example uses the construction of 1.9 and 
yields a Bezout domain of infinite Krull dimension. This led to the 
question of whether this is possible for a domain with finite Krull 
dimension. The answer is yes, with the following being a minimal 
example in the sense that the Krull dimension is as small as possible, 
two. 

Example 3.2 (P. Sheldon [31] Example II). There exists a Bezout 
domain R of Krull dimension two, completely integrally closed, but R 
is not the intersection of Krull dimension one valuation overrings. 
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Let G0 be the set of all functions / : [0,1] —» Z where we identify 
two functions if they agree on all but finitely many points. Actually G0 

is Z [ 0 1 ] modulo an equivalence relation, but an element of G0 will 
be written as a function / : [0,1] —» Z, the function being any 
representative of the equivalence class. Let F be the set of all step 
functions of G0, i.e., F = {/G G0 : there exists0 = a0 < ax < • • • < an 

= 1 such that for all but finitely many x, y G (ah ai+l) one has 
/(*) = f(y)h F o r b G [0,1] define hb : [0,1] ^ Z by hb(b) = 1 and 
hb(x) = ||l/(x - b)2\\ for all x G [0,1] - {b}, where || • • • || denotes 
the greatest integer function. Let G be the subgroup of G0 

generated by F U {^}bG[o,i]- Thus a typical element of G is of 
the form / + nlhhi + • • • + n r ^ r /or / G F, n* G Z, and 6, G [0,1] . 
G is ordered by g ^ g ' if g(x) è g ' ( x ) for all but finitely many x G 
[0,1] . Then G is a lattice ordered group. Use 1.9 to obtain a Bezout 
domain R whose divisibility group is lattice isomorphic to G. 
{g G G+ : hb appears with a non-zero coefficient in the expression of 
g}. For b G (0,1] define Pb ' = {g G G+ : there exists c G [0, b) such 
that g(x) > 0 for all but finitely many x G (c, b)}. For b G [0,1) de
fine Pb = {g G G+: there exists c G (b, 1] such that g(x) > 0 for all 
but finitely many x G (b, c)}. Then the complete set of prime ideals of 
Gis { 0 } U {Pb : b G [0,1] } U {Pb' : fo G (0,1] } U{PB" : f c £ [ 0 , 1 ) } 
and the only containment relation amongst the primes are 0 Ç Ffo Ç 
P b ' , Fb C Pfo" [31], Example II. Thus K dim R = 2 by 1.2. Le t / 0 G 
F f l G + * and choose x0 G Ç>* such that 7r(x0) = — fo- If V is a valua
tion ring, K dim V = 1 , K C V C Ç > , and m(V) is the maximal ideal of 
V, then n(m(V) D R*) = Pfo for some fo G [0,1] [6], p. 334. Thus x0 

G V. Hence x0 G Pi {V : V is a valuation ring, K dim V = 1, and R C 
V C Ç } - R, and so R is not an intersection of Krull dimension one 
valuation overrings, as desired. 

Another example involving the complete integral closure has to do 
with power series rings. X will denote an indeterminant over the ap
propriate ring. If R and S are valuation rings with the same quotient 
field and such that R,, = Sc, then the quotient fields of R[ [X] ] , 
S[ [X] ] , and Rc[ [X] ] are all the same [30], 4.1. In other words the 
complete integral closure of R determines the quotient field of R[ [X] ] 
if R is a valuation ring. Is this true for any domain R? The answer is 
no, with the counterexample due to P. Sheldon [30], 4.8, namely there 
exists a Bezout domain R such that R Ç R̂ , = Rc* Ç. Ç>, i.e., R and Re 
have the same complete integral closure, yet the quotient fields of 
^ [ [ ^ ] ] an (^ B c [ [ ^ ] are not equal. 1.9 is used to construct this 
example. 

Two other examples are briefly mentioned without elaborating on 
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the history or the definitions. Let it suffice to say that each answers an 
earlier conjecture and each uses the construction of 1.9. The first, due 
to W. Heinzer [8] , shows that for each n G N there exists a / -
Noetherian domain of/-dimension n with 1 in the stable range. The 
second, due to J. Brewer, P. Conrad, and P. Montgomery [4], shows 
that there exists an elementary divisor ring R such that R is not 
adequate, yet every non-zero prime ideal of R is a subset of only one 
maximal ideal of R. 

A commutative ring with identity is locally Noetherian if all its 
localizations at maximal ideals are Noetherian. W. Heinzer and J. Ohm 
studied locally Noetherian rings in [ 10]. The obvious conjecture that 
a locally Noetherian ring is Noetherian is false. Although quite in
volved, the standard example of a locally Noetherian ring which is not 
Noetherian is given in [27] and involves the integral closure of the 
ring of integers in the field gotten by adjoining for all prime integers p 
a primitive pth root of unity to the rationals. The following is a much 
simpler example of the same property. 

Example 3.3 (W. Heinzer and J. Ohm [10], 2.2). There exists a 
domain which is not Noetherian, yet all its localizations at maximal 
ideals are Noetherian valuation rings. 

View an element of ZN as (zÌ9 z2, • • •) or simply (zn) where z „ £ Z 
for all nGN. Let G = {(zn) G Zn : there exists k G Z such that zn = k 
for all but finitely many n E N } , Let ZN have the product ordering 
and G the induced ordering as a subgroup of ZN. Then G is a lattice 
ordered group. Using 1.9, there exists a Bezout domain R whose 
divisibility group is lattice isomorphic to G. Let IT : Q*—» G be the 
canonical map. For i G IV let Mi = {0} U {r G R* : if ir(r) — (zn), 
then Zi > 0}. Let M» = {0} (J {r G R* : if n(r) = (zn\ then zn > 0 
for all but finitely many n G N}. Then the complete set of maximal 
ideals of R is {MÌ}ÌGNU{«»}. Using 1.3, it follows that the divisibility 
group of RM. is order isomorphic to Z, for all i G N U {<» }, and thus 
RM. is a Noetherian valuation ring (discrete rank one valuation ring). 
M« is an ideal of R which is not finitely generated, so R is not 
Noetherian, as desired. 

In trying to characterize the integral domains R with the property 
that all finitely generated R-modules are a direct sum of cyclic sub-
modules, partial results led to Bezout domains with the property that 
one maximal ideal is contained in the union of the rest of the maximal 
ideals [3]. The question arose as to whether this was related to the 
Krull dimension of the domain. The following two examples indicate 
that this is not the case. The first, [3], Example 17, shows that there 
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exists a Bezout domain R with the complete set of maximal ideals of 
R being {Mn}nGN\j{œ}i, M « C \JUEN Mn, and K dim RMn = 1 for all 
n G N U {oo }. The R constructed is the same as the R in example 3.3, 
which of course uses 1.9. The second example, [3], Example 18, shows 
that there exists a Bezout domain R with maximal ideals M«, Ml5 

M2, • • • such that M . C U „ E N Mn, K dim RMn = 1 for all n G N, and 
K dim RMoo = 0°. This example is obtained using 1.9 by letting R be a 
Bezout domain whose divisibility group is lattice isomorphic to ZN with 
the product ordering. 

The final example to be presented is perhaps the best example, due 
to W. J. Lewis. By this example the spectrum of Bezout domains and 
Prüfer domains are characterized. If S is a commutative ring with 
identity, let spec S denote the set of all prime ideals of S considered as 
a partially ordered set under set inclusion. If X is a partially ordered 
set, the following two conditions are of interest: 
(Kl) Every chain of X has a supremum and an infimum. 
(K2) If x, y G X, x <y, then there exist xl9 yx G X such that x ^ xY g 
t/i = y and there does not exist an element of X properly between xx 

and yv In condition (K2) xx and yY are called immediate neighbors 
and this is donated xx <K yv If S is a commutative ring with identity, 
then spec S satisfies (Kl) and (K2) [15], Theorems 9 and 11. A par
tially ordered set X is a tree if x, y, z G X, x ^ z, and y=z implies 
x ^ y or y ^ x. If R is a Prüfer domain or a Bezout domain, then spec 
R is a tree, since P G spec R implies RP is a valuation ring. Thus if R 
is a Prüfer domain or a Bezout domain, then spec R is a tree satisfying 
(Kl), (K2), and spec R has a unique minimal element. 

Example 3.4 (W. J. Lewis [18], 3.1). If X is a tree satisfying (Kl), 
(K2), and X has a unique minimal element, then there exists a Bezout 
domain R such that spec R is order isomorphic to X. 

Let the X be given. Define Y = {y G X : there exists z G X such 
that z « t/}, with Y having the induced ordering from X. Let G = 
{/: Y - • Z :/((/) = 0 for all but finitely many y G Y}. With pointwise 
addition G is a group. F o r / G G let AfS(/) = {t/ G Y :/(t/) f 0 and 
/(*) = 0 for all s G Y, s < y}. Let G+ = { / G G :/(t/) > 0 for ail 
y G MS(f)}. Then G+ is the set of positive elements for a partial 
ordering of G, and in fact this makes G a lattice ordered group. Using 
1.9, let R be a Bezout domain whose divisibility group is lattice iso
morphic to G. That R has the required properties is proved in [18], 
p. 431-33. Since every Bezout domain is a Prüfer domain, it follows 
from the above that the spectrum of a Bezout domain and a Prüfer 
domain is characterized by these conditions. 
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4. Additional comments. In this section related approaches to the 
subject are discussed and suggestions for future study are indicated. 
The first and most obvious suggestion is to find more examples of 
Bezout domains using 1.9. 

The second suggestion involves generalizing the long power series 
ring. By KrulFs construction, 1.1, given a totally ordered group one 
can construct a valuation ring whose divisibility group is the given 
one. However, one can also construct a long power series ring whose 
divisibility group is the given one, and this long power series ring has 
desirable properties, namely it is maximally complete. Is it possible to 
generalize this construction of long power series rings to get a Bezout 
domain when the given group is lattice ordered? Is there an ap
propriate generalization of maximally complete for Bezout domains? 
It is known that if R is a maximal integral domain, then R has only 
one maximal ideal [37], Proposition 14. Thus a useful generalization 
of maximally complete will not be equivalent to being maximal. A 
partial result along these lines and related to 3.4 is due to S. Wiegand 
[35], namely if X is a finite tree with a unique minimal element, then 
X is order isomorphic to spec R for some Bezout domain R such that 
every localization of R at a prime ideal is a maximal valuation ring. 

A more homological approach might be preferable. R is a maximal 
valuation ring if and only if R is a valuation ring complete in the valua
tion topology and QIR is an injective R-module [20], Theorem 9. The 
R-topology of an integral domain generalizes the valuation topology 
for a valuation ring, and if R is an integral domain, then R is complete 
in the R-topology if and only if R = HomR(Ç>/R, QIR) [23], Theorem 
10 or [21], 6.4. Thus R is a maximal valuation ring if and only if R is 
a valuation ring such that R = HomR(Ç>/R, QIR) and QIR is an in
jective R-module. How do these concepts carry over to arbitrary 
integral domains? 

Related to this discussion is the following definition: R is almost 
maximal if every proper homomorphic image of R is a linearly com
pact R-module, i.e., cyclic torsion modules are linearly compact. If R 
is a valuation ring, then R is almost maximal if and only if QIR is an 
injective R-module if and only if every finitely generated R-module is 
a direct sum of cyclic submodules. See [2] for references, more 
equivalences, and generalizations of the last statement. 

Starting with lattice ordered groups, 1.9 is used to construct Bezout 
domains. In other words, using properties of groups one derives 
properties of integral domains. Turning this around, properties of 
integral domains can be used to derive properties of ordered groups. 
This is the interest in [24], where also a good historical description of 
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the group of divisibility is given. In [25] there is an example of how 
1.9 is used to derive a fact about ordered groups. 

The Krull-Kaplansky-Jaffard-Ohm Theorem, 1.9, is very useful for 
generating examples. Can this be generalized? For example, is there 
a larger class of partially ordered groups than the lattice ordered 
groups for which this construction can be performed? If so, what kind 
of domain is constructed? This was studied by J. Ohm [28] with 
several open questions remaining, and generalized by his student D. 
Spikes [33] to commutative rings possibly with zero divisors. Related 
is the question of extension of semi-valuations. If one has a valuation 
v : Q* —> G and F is a field extension of Q, then in some cases one can 
extend v to a valuation v ' : F* —» G [36] or [1]. If R is an integral 
domain with divisibility group G, TT : Q* —> G the canonical map (TT is 
then a semi-valuation), and F is a field extension of Q, then can TT be 
extended to an appropriate TT ' : F* —* G? 
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