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DIFFERENTIAL EQUATIONS 

G. J. ETGEN AND W. E. TAYLOR, JR. 

1. Introduction. This paper is concerned with fourth order dif
ferential equations of the form 

(L) (p(x)y")" - q(x)y" - r(x)y = 0, 

where p, q and r are assumed to be continuous, real-valued functions 
on the interval [a, °° ). In addition, it will be assumed throughout 
that p > 0, q ^ 0 and r ^ O o n [a, o° ), with r not identically zero on 
any subinterval. If q is a (non-negative) constant, then (L) is self-
adjoint; otherwise (L) is non-self-adjoint. 

The objective of the paper is to study the oscillatory behavior of the 
solutions of (L). A non-trivial solution y is oscillatory if the set of 
zeros of y is not bounded above. If the set of zeros of y is bounded 
above, which implies y has only finitely many zeros, then y is non-
oscillatory. Hereafter, the term "solution" will be interpreted to mean 
non-trivial solution. 

Various special cases of (L) have been studied in detail. In par
ticular, we refer to the fundamental work of W. Leigh ton and Z. Nehari 
[5, Part I] on the self-adjoint equation 

(1) (P(x)y")" - r(x)y = 0. 

M. Keener [3, Part I] continued the investigation of (1), concentrat
ing on the oscillatory behavior of solutions. S. Hastings and A. Lazer 
[2] considered the self-adjoint equation 

(2) y(4) - r(x)y = 0, 

showing that (2) has a linearly independent pair of bounded oscillatory 
solutions when it is assumed that r E C ' [a, «> ), with r > 0 and r ' ^ 0 
on [a, oo ). S. Ahmad [1] has also studied (2), giving necessary and 
sufficient conditions for the existence of a linearly independent pair of 
oscillatory solutions. Finally, we refer to the work of V. Pudei [6], 
[7] in which the equation 

(3) yW - q(x)y" - r(x)y = 0 

is considered. 
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The results in this paper may be viewed as a continuation of the 
work in [6] and [7] in coordination with the techniques and re
sults in [1], [2], [3] and [5]. In contrast to [3], and [6] and 
[7], where the existence of oscillatory solutions is assumed, we give, 
in § 4, some oscillation criteria for (L). 

2. Preliminary Results. As a notational convenience in discussing 
the solutions of (L), we introduce the differential operators 

D0y(x) = y(x), Diy(x) = y'(x), D2y(x) = p(x)y"(x), 

D3y(x) = [p(x)y"(x)] ', D#(x) = [p(x)y"(x)] ". 

Our first result is essential in the work which follows. Corresponding 
results for (1), (2), and (3) are given in [3], [1] and [7], respective
ly. The proof is straightforward and can be modeled on the proofs of 
Lemmas 2.1, 2.2 in [5]. 

THEOREM 2.1. If y is a solution of (L) such that Djt/(b) è 0 (=0), 
i = 0 ,1 , 2, 3, at some point b^ a, with strict inequaltiy for at least one 
i, then D{y > 0 (<0), i = 0 ,1 , 2,3, D4y ^ 0 (^0) on (b9 oo ) and 

lim Diy(x) = oo ( - oo ), i = 0 ,1 , 2. 

Ifz is a solution of(L) such that ( - l)iDiz(c) è 0(g0), i = 0, 1, 2, 3, at 
some point c> a, with strict inequality for at least one t, then ( — l)*DiZ 
> 0 (<0) , i = 0 ,1 ,2 ,3 , and D4z ^ 0 (^0) on [a, c). 

The behavior of a solution of (L) having a zero of multiplicity greater 
than 1 at some point on [a, oo ) is now an immediate consequence of 
Theorem 2.1. In particular, if y is a solution of (L) with a "triple zero" 
at x = by i.e., D#(fo) = 0, i = 0,1,2, and if D3y(b) > 0, then ( - l) i + 1Dit/ 
> 0, i = 0, 1, 2, 3, on [a, b) (if b > a), and D<y > 0, i = 0, 1, 2, 3, on 
(b, oo ), with limx_>aoDiy(x) = oo? f = 0, 1, 2. If y has a "double zero" 
at x = fo, i.e., Diy(b) = 0, i = 0, 1, and if D2y(b) > 0, then either 
( - lyDy > 0, i = 0 ,1 , 2, 3, on [a, 6) (if fo > a), or D# > 0, i = 0 ,1 , 2, 
3, on (b, oo ), with limx_> 0oDit/(x) = oo, t = 0 ,1 , 2. 

We point out here that the results in [5, §§2 and 3] concerning (1) 
do not depend on the form of the equation, but rather on the fact that 
the analogue of Theorem 2.1 holds. Thus the results contained in 
Lemma 2.1 through Theorem 3.8 of [5], giving separation properties 
of zeros of solutions and a characterization of the conjugate points of a, 
are also valid for (L). 

It is clear from Theorem 2.1 that (L) has unbounded, non-oscillatory 
solutions. In fact for any point b on [a, oo )? the four solutions y^x, b), 
i = 0 ,1 , 2,3, determined by the initial conditions 
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i,j = 0 ,1 ,2 ,3 , 

are monotone increasing (on [b, <»)), unbounded solutions, forming a 
solution basis for (L); a so-called canonical basis. 

The next theorem provides the existence of a bounded, non-oscilla
tory solution. The technique employed in establishing this result is 
well-known (see [4, Theorem 1.1] or [1, Theorem 2]) and, conse
quently, the proof is omitted. 

THEOREM 2.2. There exists a solution w(x) of(L) such that 
WU* DM*) ?0 on [a, co)y 

(ii) sgn D0w = sgn D2w ^ sgn Dxw = sgn D3w on [a, oo ), 
(iii) limx^ „DM*) = 0, i = 1,2,3, limx^ OO|D0M;(X)| = k è 0. 

3. Properties of Non-Oscillatory Solutions. In this section we pre
sent three Lemmas which describe the behavior of non-oscillatory solu
tions of (L). 

LEMMA 3.1. If y is a non-oscillatory solution of (L), then \\. A y 
^ 0on [c, oo )for some c^ a. 

PROOF. Let y be a non-oscillatory solution of (L) and assume y > 0 
on [b, oo ), b i^ a. It is sufficient to show that D2y has at most a finite 
number of zeros on [fo, °° ). Put J(x) = D2y(x) -D3y(x). Differentiating 
/ and integrating the result from s to t, b S s ë t, we obtain 

J(t) = /(*) + P {[D3y]2 + D2y[qy" + ry]} 
J S 

= J(s) + f {[D,y]2 + pq[y"]2 + ry D2y}. 

Now, if we regard s and t as being consecutive zeros of D2y, then it 
follows that D2y < 0 on (s, t). Theorem 2.1 rules out the possibility of 
D2y having infinitely many "double zeros," and the lemma is proved. 

LEMMA 3.2. Assume that (L) has an oscillatory solution and let y 
be a non-oscillatory solution. If u is an oscillatory solution, and if 
there is a point b,b^ a, such that Diy(b) = DiU(b) = 0, for some i, 
0 =i i ^ 3, then there exists a point c, c ^ b, such that sgn D0y = 
sgn Dxy = sgnD2y = sgn D3y on [c, oo), and limx__>„\Djy(x)\ = oo, 
j = 0 , l , 2 . 
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PROOF. Assume that y(x) / 0 for all x G [d, oo ), d^b. Since u 
oscillates and y does not, there exists a linear combination z(x) = y(x) 
— ku(x) which has a double zero at some point e G (d, oo ) [5, Lemma 
1.2]. Since D(Z(b) = 0, it follows from Theorem 2,1 that the functions 
DjZ,j = 0, 1, 2, 3, all have the same sign on (e, oo ), and the functions 
DjZ, j = 0, 1, 2, are unbounded. The lemma now follows using Lemma 
3.1 and the fact that u is oscillatory. 

LEMMA 3.3. If (L) has an oscillatory solution, and if y is a non-
oscillatory solution, then there exists a point b, b^ a, such that 
s g n ! / = sgn D2y on [b, oo ). 

PROOF. Assume that y is eventually positive. By Lemma 3.1, there 
exists b,b^ a, such thatYl i = 0 D{y ^ 0 on [bt oo). Suppose D2y < 0 
on [b, » ). Then Dxy > 0 on [b, oo )? for otherwise Dxy < 0 on [b, oo ) 
implying l i m ^ *>y{x) = — oo. Let w be the non-oscillatory solution 
established by Theorem 2.2. It is easily seen that the Wronskian of y 
and w, W[y, w] = D0wDiy " D0yDiW > 0 on [b, oo )? and thus every 
non-trivial linear combination of y and w is non-oscillatory. To obtain 
the desired contradiction let u be an oscillatory solution of (L) with a 
zero at x = c, c = a, choose a linear combination of y and u> which 
vanishes at x = c and apply Lemma 3.2. 

4. Oscillatory Solutions. Our first result gives a necessary and suf
ficient condition for the existence of oscillatory solutions of (L). 
Ahmad [1, Theorem 3] established this result for (2). By using the 
Lemmas of the previous section, Ahmad's proof is valid for (L). 

THEOREM 4.1. The following two statements are equivalent: 
(a) (L) has an oscillatory solution. 
(b) If y is a non-oscillatory solution of(L), then either 

(i) there exists a point b,bì^ a, such that sgn D0y = sgn Dxy = 
sgn D2y = sgn D3y and limx^ aa\Diy(x)\ = oo ? f = 0,1,2, 

or (ii) (f.= 0 D#(x) ^ 0 for all x on [a, oo ) and sgn D0t/ = 
sgn D2y ^ sgn D ^ = sgn D3y on [a, oo ). 

EXAMPLE. The differential equation 

r 6 + *Hx) I „ _ r * 2 - 6 -i 
y Lx 2 [ l + x2ln(x)] J y U 2 [ l + x2ln(x)] J * 

on [ V6, oo ) has y(x) = ln(x) and z(x) = e* as solutions. Since j / is a 
non-oscillatory solution satisfying D0y > 0, D ^ > 0, D2y < 0, and 
D3y > 0 on [ V6, oo), We can conclude, from Theorem 4.1, that all 
solutions of the equation are non-oscillatory. 



OSCILLATION OF DIFFERENTIAL EQUATIONS 75 

We now present two sets of hypotheses, each of which is sufficient 
for the existence of oscillatory solutions. The approach is through 
Theorem 4.1. 

(Hi) JZ[llp(x)] dx= ooy q bounded on [a, oo), J^r(x)dx = oo. 
(H2) JZ[Hp(x)] dx = oo, q > 0 on [a, oo), limx^ Jnf p-rlq = m 

> 0, and either / • [q(x)lp(x)] dx = oo or J* jcr(x) dx = oo . 

THEOREM 4.2. Eac/i of (Hx) and (H2) implies (b) of Theorem 4.1. 
Consequently, if either ( H J or (H2) holds, then (L) /ias an oscillatory 
solution. 

PROOF. Suppose (H^ holds. Let y be a non-oscillatory solution of 
(L) and assume y > 0 on [fo, oo ), fo g; a. By Lemma 3.1 we may also 
assume that Dxy and D2y are non-zero on [fo, oo ). 

We show first that D2y > 0 on [fo, oo). Assume, therefore, that 
D2y < 0 on this interval. Then y" < 0 and DYy > 0 on [b, oo ). Let 
M be an upper bound of q on [a, °° ) and integrate qy" from b to JC to 
obtain the inequality 

f" q(s)y"(s) ds ^ M J* y"(s) ds = M[Diy(x) - Diy(b)]. 
J b J b 

Since limÄ_>oo Diy exists, we conclude that / £ q(s)y" ds is finite. Inte
grating (L) from b to x and using the fact that y is increasing on 
[b, oo ), we have 

D3y(x) - D3y(b) = J* q(s)y" (s) ds + J"* r(s)y(s) ds 

^ \* q(s)y"(s)ds + y(b)\Xr(s)ds. 
J b J b 

Since f%r(s)ds= oo? it follows that limx_+ooD3y(x) = oo. But this 
implies limx_+ *>D2y(x) = oo , contradicting our assumption. Thus 
D 2 t / > 0 o n [&, oo). 

We now have y > 0 and j / " > 0 on [b, oo ). From (L), D4t/ è 0 on 
[b, oo ). Th u s £)3y is eventually of one sign. If D3y > 0 on [c, «> ), 
c ^ fo, then limx_ ooD2t/ = oo 9 and, in particular, D2y = p(x)yn(x) ^ 1 
on [d, oo ), rf ̂  c. Therefore 

Diy(x) - Diy(d) = p y"(*)<fe£ [* l<p(«)A, 

and we conclude l i m ^ toDìy(x) = limx_» ooD0y(x) = oo, implying that 
(i) of Theorem 4.1 (b) holds. If D3y < 0 on [c, oo), c g &, then we 
claim that DYy < 0 on [b, oo ). For if Dxj/ > 0 on [b, oo ), then t/ is 
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increasing on [fo, oo ), and, from (L), 

D4y(x) = q(x)y"(x) + r(x)y(x) g y(b)r(x). 

Integrating this inequality, we obtain 

D3y(x)-D3y(b)^y(b)\X r(s) ds, 
J b 

so that limx^„D3y(x) = oo which contradicts D3y < 0 on [c, oo). 
Thus D3y < 0 on [c, oo )? implies that the inequalities D0y > 0, DYy < 
0, D2y > 0, D3y < 0 hold on [c, oo ). From Theorem 2.1, these same 
inequalities must also hold on [a, c), so that we have (ii) of Theorem 
4.1 (b). 

Suppose (H2) holds. Let y be a non-oscillatory solution of (L) such 
that Y\ i=0 Dit/(x) ^ 0 for all x on [b, oo ), fo ^ a, with t / > 0 o n this 
interval. As in the first part of the proof, we want to show that D2y > 0 
on [b, oo ). Assume, therefore, that D2y < 0 and DYy > 0 on [b, oo ). 
We claim that D3y is eventually of one sign. Suppose, to the contrary, 
that D3y changes sign infinitely many times on [b, oo ). Then D2y has 
infinitely many maxima on [b, oo ), and, since D2y < 0 lim supx_> «>D2t/ 
^ 0. In particular, if lim supx_> *>D2y < 0, then there exist numbers 
e < 0 and c^b such that p(x)y"(x) ^ e on [c, oo ), and 

D#(x) - D i ; /(C) = \" y"(s) ds^e\X l/p(«) ds. 

But this implies l i m ^ 00D1j/(x) = — °°, a contradiction. Thus 
lim supx_> ooD2y = 0, and there exists a sequence {xn} of maxima of 
D2y such that xn—> oo and D2t/(xn)-> 0 as n-> oo. Now write (L) in 
the form 

(4) D ) „ W . ^ [ D 2 , W + M , W ] . 

Since y is increasing on [b, °° ) and lim inf^« [p-rlq] = m > 0, we 
can choose n large enough such that D4y(xn) = [D2t/(xn)] " < 0, con
tradicting the fact that xn is a relative maximum of D2y. Thus D3y 
cannot change sign infinitely many times on [b, oo )? and because D2t/ 
< 0 it is easy to see that D3y must, in fact, be non-negative on [c, oo ) 
for some ci^b. We can now conclude that limx_>«>D2y(x) = 0. But, 
from (4), it follows that D4y(x) > 0 on some interval [d, oo )? d ^ c. 
Thus D4y(x) > 0 and D3y(x) > 0 on [d, oo), which implies 
limÄ_>OOD2J/(JC) = oo and contradicts D2y < 0 on [b, oo). Consequent
ly D2y > Oon [b, oo). 
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Now y > 0, D2y > 0 on [b, » ) implies D4y § 0 on [fo, » ). If y is 
bounded, then, as in the first part of the proof, we must have D3y < 0 
and Diy < 0 on some interval [c, oo ), c = h, which implies that the 
inequalities y > 0, DYy < 0, D2y > 0, D3 < 0 must hold on [a, °° ) 
and (ii) of Theorem 4.1 (b) holds. If, on the other hand, y is not 
bounded, then Dxy > 0 on [b, oo ), and, using (L), it is readily verified 
that either of the conditions ÎZ[q(x)lp(x)] dx = oo or J* aXr(:r) dx 
= oo yields limx_* ^D3y(x) = oo. Thus y unbounded implies (i) of 
Theorem 4.1 (b) holds. This completes the proof of the theorem. 

The case p(x) = 1, q(x) = 0 yields the equation (2) studied by 
Hastings and Lazer [2]. Hypothesis (H :) is weaker than the hypo
theses which they use to establish the existence of oscillatory solutions 
[2, Theorem 1]. 

The next theorem provides additional information concerning the 
behavior of bounded non-oscillatory solutions. 

THEOREM 4.3. Let either (Hx) or (H2) hold. If y is a bounded non-
oscillatory solution of (L) (e.g., the solution w specified in Theorem 
2.2), then limx_> *y(x) = 0. 

PROOF. Let (Hx) hold and suppose y is a bounded non-oscillatory 
of (L). Then from Theorem 4.1, we may assume y > 0, Dxy < 0, 
D2y > 0, D3y < 0 on [a, oo ). If l i m y(x) = k > 0, then y(x) > k for 
all x on [a, °° ). Thus upon solving (L) for D4y(x) and integrating, we 
get 

D3y(x) - D3y(a) = {* q(s)y"(s)ds + \* r(s)y(s) ds 
Ja Ja 

è k r(s) ds, 
J a 

which implies limx_> *D3y(x) = oo y a contradiction. 
Now suppose that (H2) holds, and that 1/ is a bounded non-oscillatory 

solution of (L) with y > 0, DYy < 0, D2y > 0, D3y < 0 on [a, oo ) and 
lim*.* oot/(x) = k > 0. Since lim infx_> «prA/ = m > 0, there exists a 
point b,biz a, such that p(x) -r(x)lq(x) è m/2 on [&, oo ). 

If we assume that Jô[g(*)/p(x)] dx = °o, then integrating (L) from 
b to x yields 

D3!/(x) - D3j/(fo) = £ [<?(%"(«) + r(s)y(s)] ds 
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- ^ f W to(*)/p(*)]<fe-
Therefore limx^ ooD3y(x) = oo, a contradiction. 

Finally, assuming that j * jcr(x) dx = oo? multiply (L) by x and inte
grate to obtain 

[ t • D4y(t) dt= f* t • q(t)y"(t) dt + f* * • r(%(*) d* 
Ja Ja J 0 

^ fc P t • r(t) d*. 
J a 

Integrating the left-hand side of this inequality by parts, we get 

xD3y(x) - aD3y(a) - D2y(x) + D2y(a) è k \* tr(t) dt; 
J a 

which implies limx^ooX-D3j/(x) = oo and contradicts the fact that 
D3y < 0 on [a, oo ). 

The next result is an immediate extension of [1, Theorem 4] and 
[3, Theorem 3.3]. 

THEOREM 4.4. Assume that (L) has oscillatory solutions and let 
b^a. Then 

(i) for each integer j , 0 = j^3, there exists a pair of linearly 
independent oscillatory solutions ujf Vj of (L) such that DjUj(b) = 
DjVj(b) = 0, the zeros of u^ and Vj separate on (b, oo ), and every linear 
combination ofuj and Vj is oscillatory; and 

(ii) there exist three linearly independent oscillatory solutions of 

(L). 

The final theorem of this section provides a characterization of the 
oscillatory solutions of (L). Keener [3, Theorems 4.4, 4.5 and 4.7] 
established similar results for (1) under the assumption that all oscilla
tory solutions are bounded. 

THEOREM 4.5. Assume that (L) has oscillatory solutions. Let w be 
the bounded non-oscillatory solution of (L) whose existence is guar
anteed by Theorem 2.2, let b^ a, and let u,v be a linearly indepen
dent pair of oscillatory solutions of(L) such that (i) Dju(b) = Djv(b) = 
0 for some j , 0 ^ j' ^ 3, (ii) their zeros separate on (b, oo ), and (iii) 
every linear combination ofu and v is oscillatory. Then the following 
are equivalent-. 
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(a) Every oscillatory solution zof(L) such that DjZ(b) = 0 is a linear 
combination ofu and v. 

(b) Every oscillatory solution of (L) is a linear combination ofu, v 
andw. 

(c) If z is an oscillatory solution of(L) and y^x, c), 0 ̂  i ^ 3, c ̂  a, 
is a member of the canonical basis for (L) at x = c, then z + ky{ is 
non-oscillatory for every non-zero real number k. 

PROOF. (a)=>(b). Let z be an oscillatory solution of (L). If Djz(b) 
= 0, then z is a linear combination of u and v. If Djz(b) ^ 0, then 
there exists a number e such that Djz(b) — e'DjW(b) = 0. Put y(x) 
= z(x) — ew(x). If y is non-oscillatory, then, since Djy(b) = 0, 
limx_>»\y{x)| = » , by Theorem 4.1. But the fact that z is oscillatory 
and w is bounded produces a contradiction. Thus y is a linear combina
tion ofu and ü, and (b) holds. 

(b) =>(c). Let z be an oscillatory solution of (L), let c ^ a , and let 
t/j(x, c) be one of the members of the canonical basis for (L) at x = c. 
Let fc ^ 0 and put t/(x) = z(x) + fct/j(x, c). If y is oscillatory, then 
t/ = cYu + c2v + c3w. Also, since z is oscillatory, z = dxu + d2ü + 
d3w. Thus, we have 

fct/i(:x:,c) = (cl - d X x ) + (c2 - d2)ü(x) + (c3 - d3)w(x). 

But, since (cx — di)u + (c2 — d2)v is oscillatory (or identically zero) 
and w is bounded, we have a contradiction. Thus y = z + ky{ is non-
oscillatory and (c) holds. 

(c) =>(a). Let yi(x, b) be a member of the canonical basis at x = b 
such that Djyi(b, b) = 0, and w, v and t/» are linearly independent. If 
z is an oscillatory solution of (L) such that DjZ(b) = 0, then 

z(x) = cxu(x) + C2Ü(X) H- c3yi(x, b). 

Since CiW 4- c2t> is oscillatory, we conclude, by (c), that c3 = 0 and 
(a) holds. 

REMARK. If it is assumed that all oscillatory solutions of (L) are 
bounded (cf., Keener [3, § 4] ), then it is easy to show that either 
(a), or (b), or (c) of Theorem 4.5 holds (and, consequently, all three 
statements hold). This characterization of the oscillatory solutions of 
(L) extends Keener's results. 

5. Boundedness of Oscillatory Solutions. The question of the bound-
edness of oscillatory solutions of (L) is somewhat complicated. Hast
ings and Lazer [2, Theorem 2] show that if r(x) > 0, r '(x) ^ 0 and 
limx_> oor(oc) = oo, then all oscillatory solutions of 
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(2) yW - r(x)y = 0 

have limit zero. All oscillatory solutions of the equation 

(5) yw-y = o 

are bounded, and no oscillatory solution has a limit at oo . Finally, the 
set of solutions of 

(6) yW - ley» -&y = 0 

is given by 

(7) y(x) = cxx® + c2x~2 + c3xsin[ln(x2)] + c4x cos [ ln(x2)], 

where c1? c2, c3 and c4 are arbitrary constants, so that all oscillatory 
solutions of (6) are unbounded. 

The following sets of hypotheses provide sufficient conditions for the 
oscillatory solutions of (L) to be bounded. 

(H3) p, q, f £ C ' [ f l , oo), w i t h p ' ( x ) ^ 0 , q'(x)^0, r ' ( x ) g 0 , and 
limx_ oof(x) ^ 0. 

(H4) p, q, r £ C ' [ a , » ) , with r (a) > 0, p ' ( x ) ^ 0 , q'(x)^0 and 
r ' ( x ) ^ 0 . 

THEOREM 5.1. Assume fhaf (L) has oscillatory solutions and let either 
(H3) or (H4) TioZd. TTien aZZ oscillatory solutions of(L) are bounded. 

PROOF. For any solution y of (L), define G[t/] by 

G[y(*)] = p(x)[«/"(*)]2 + q(x)[y '(*)] 2 

+ r(x)y2(x)-2;/'(x)D3«/(x). 

Differentiating G[y(x)] and integrating the result between b and JC, 
for any b^ a, we obtain 

G[y(x)] = G[«/(fc)] 
(9) 

+ J* {r'(s)j/
2(s) + ^ '(s)[t/'(s)] 2 - p'(S)[;/"(S)]2}cfo. 

Let z be an oscillatory solution of (L) and let {bn} be the increas
ing sequence of zeros of z ' on [a, oo ). 

Assume (H3) holds, and let fo = a in (9). Then G[z(x)] is a non-
increasing function on [a, oo ), and 

r(fon)z
2(fon) ^ p(b„) [«"(&„)] 2 + 9(6.) [*'(*„)] 2 + r(fc„)22(fo„) 

= G[z(b„)]SG[z(f l )] . 
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Therefore 

z%bn)^G[z(a)]lr(bn). 

and, since r(x) -fi 0 as x —> oo, we can conclude that z is bounded. 
Now assume that (H4) holds and let b = blin (9). Then, from (9), 

(10) G[z(x)] £ G[zib{)] + f" r'(s)z%s)ds. 

Choose any positive integer n > 1, and let x be the point on [bu bn] 
at which z2(x) achieves its maximum value. We claim 

Recall r(a) > 0 and r'(x) è 0 implies r(bY) > 0. Since z'fa) = z'(bn) 
= 0, it follows that z'(x) = 0. If x = bx, then, clearly, (11) holds. If 
x ^ bi9 then, from (10), 

G[z(x)] g G[z(b!)] + z*(x)[r(x) - rib,)]. 

Using (8), we have 

p(l)[*"(*)] 2 + r(l)*a(l) â pibJlz"^)* + ribàzHJbà + 

+ z 2 ( ï ) [ f (x ) - r (b 1 ) ] 

and (11) follows. Finally, since bn may be chosen arbitrarily large on 
[a, oo ), we conclude that z is bounded. 

6. The Adjoint of (L). The adjoint of (L) is the equation 

(L*) [p(x)y" - q(x)y] " - r(x)y = 0, on [a, » ). 

It is convenient to introduce the differential operators 

A>*«/(*) = y(x), Di*!/(x) = y'(x), D2*y(x) = p(x)y"(x) - q(x)y(x), 

D3*y(x) = [p(x)y"(x) - q(x)y(x)] ',D4*y(x) = [p(x)y"(x) - q(x)y(x)]". 

As in the case of (L), it can be verified that the analogues of 
Theorems 2.1 and 2.2 hold for (L*). Thus the results in [5, Lemma 
2.1 — Theorem 3.9] can also be established for (L*). 

Pudei [6, Theorem 55] has shown that (3) is oscillatory if and only 
if its adjoint 

(12) [y" - q(x)y]" - r(x)y = 0 

is oscillatory. With obvious modifications, his proof can be extended to 
the case of (L) and (L*). An alternative proof of this fact can be accom-
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plished by showing that the nth conjugate point of a with respect to 
(L) coincides with the nth conjugate point of a with respect to (L*), and 
using [5, Theorem 3.8]. Therefore, if it is assumed that either (H^ or 
(H2) holds, then we can conclude that each of (L) and (L*) is oscil
latory. 

In coordination with Theorem 4.2 and the remarks above, our final 
theorem shows that the solutions of (L) and (L*) have essentially 
the same behavior. 

THEOREM 6.1. Let either (Hx) or (H2) hold. If y is a non-oscillatory 
solution of (L*), then y satisfies exactly one of the following two condi
tions: 

(i) There is a point b,b^ a, such that 

sgn D0*y(x) = sgn DY*y(x) = sgn D2*y(x) = sgn D3*y(x) 

on [b, oo ), and limx_* oo\D^y(x)\ = » , t = 0 ,1 , 2. 

(ii) Xl^Dfyix) ? Von [a, <*), and 

sgn D0*y(x) = sgn D2*y(x) ^ sgn D^y(x) = sgn D3*y(x) 

on [a, oo ). 
Moreover, if y satisfies (ii), then limx^ *y(x) = 0. 
PROOF. Suppose (Hx) holds. Let y be a non-oscillatory solution of 

(L*) and assume y > 0 on [b,<*>)9b^a. Then D4*y ^ 0 on [b, oo ) 
and is not identically zero on any subinterval. Therefore D3*y has one 
sign on [c, oo ) for some c^b. If D3*y > 0 on [c, oo )? then, as in the 
proof of Theorem 4.2, it is easily verified that D2*y > 0, Dx*y > 0 on 
[d, oo ), d^ c, and (i) of the theorem holds. If, on the other hand, 
D3*y < 0 on [c, oo )? then D2*y has one sign on [d, oo ), di^ c. We 
want to show that D2*y > 0 on [d, oo ), and so we shall assume 
D2*j/ < 0 on this interval. It is easy to see that lim infx_> «y(x) = 0, 
for otherwise the fact that fi r(x) dx = oo would imply limx_> aoD3*y(x) 
= oo. Suppose y ' = Dx*y has infinitely many changes in sign on 
[d, 0° ). Then there is a sequence {xn} such that limn_> ooXn = °° ,y has 
a relative minimum at xn, and limn_> *y(xn) = 0. Now, since D3*y < 0 
and D2*y < 0 on [d, oo ), it follows that 

(13) D2*y(x) = p W ( x ) - q(x)y(x) ^ß<0 on [d, oo ). 

But, since 9 is bounded and limn^ <*y(xn) = 0, we can choose n large 
enough such that q(xn)y(xn) < — ß, which implies y"(xn) < 0 at a rela
tive minimum of y, a contradiction. Thus y ' cannot change sign infin
itely many times on [d, 00). If y' is non-negative on [e, 00 ), e^ d, 
then y ^ y > 0 on [e, 00 ) and J " r(x) dx = 00 yields limx^ ooD3*t/(jc) 
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= oo, a contradiction. Therefore y ' ^ O o n [e, oo), and lim^«{/(x) 
= 0. But, from (13), we can conclude that y" < 0 on [/, °° ) for some 

/ S e, and t / " < 0 , t / ' ^ 0 implies limx_>*y(x) = — oo, a contradiction. 
We now have y > 0, D4*t/ ^ 0, D3*j/ < 0, D2*t/ > 0 on some inter

val [b, » ), fo ^ a. Since D2*t/ > 0, y" > 0 on [b, oo ), and so y' = 
Di*j/ has one sign on [c, oo), c ^ fo. Since t/' > 0 would lead to 
linv*aoD3*j/(x) = oo, we must have y' < 0 on [c, oo ), from which it 
follows that (ii) of the theorem holds. 

Suppose (H2) holds. Let y be a non-oscillatory solution of (L*) and 
assume y > 0 on [b, oo ), b ^ a. Then D4*t/ §£ 0 on [b, oo ) from which 
we conclude that D3*f/ has one sign on [c, °°) for some c è f o . The 
assumption D3*t/ > 0 yields (i) of the theorem. Suppose, therefore, 
that D3*y < 0 on [c, oo ). Since 

D3*!/(X) - D 3 V f l ) = r r w>dt 

and limx_,ooD3*t/ exists, we have î^r(t)y(t) dt < oo. Moreover, from 
the hypothesis (H2), 

r- q(*)y(x)dx = f• </(*) . r ( x ) (x ) d x < J f00 r ( x w x ) <&<«>. 
Ja p(x) Ja p(x)r(x) v ' * w mJfl /:7V 

Now consider D2*y. If D2*t/ < 0 on [d, oo ), d g; c, then 

p<*)y''(*)-«/<%(*) ^ 0 < O , 
or 

Therefore 

and we conclude that linv^ooDi*^*:) = l i n v ^ t / ^ x ) = — 00, contra
dicting y > 0 on [fo, 00 ). It now follows that D2*y > 0 and y" > 0 on 
[d> 00 ). If j / ' > 0 on [e, 00) for some e^ d, then the hypothesis 
S™xr(x)dx= 00 yields lim*_> *>D3*y(x) = 00. Since this contradicts 
our assumption, we must have y1 < 0 on [e, °o), and (ii) of the 
theorem holds. 

Finally, if y is a bounded non-oscillatory solution of (L*), then the 
fact that lim*., »y(x) = 0 follows exactly as in Theorem 4.3. 
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