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QUASI-PURE PROJECTIVE AND INJECTIVE 
TORSION FREE ABELIAN GROUPS OF RANK 2 

D. ARNOLD, C. I. VINSONHALER AND W. J. WICKLESS 

An abelian group, G, is quasi-pure projective (q.p.p.) if for every 
pure subgroup, A, of G and every / G Hom(G, Gl A) there is g G 
Hom(G, G) with nAg = / , where ITA G Hom(G, Gl A) is the quotient 
map. Dually, G is quasi-pure injective (q.p.i.) if for every pure sub­
group, A, of G and e v e r y / G Hom(A, G) there is g G Hom(G, G) with 
giA = / , where iA G Horn (A, G) is the inclusion map. This paper con­
tains a characterization of q.p.p. and q.p.i. torsion free abelian groups 
of rank 2; a partial solution to Problem 17 of Fuchs [2]. 

A torsion free abelian group, G, is homogeneous if any two pure 
rank 1 subgroups of G are isomorphic and strongly homogeneous if for 
any two pure rank 1 subgroups of G there is an automorphism of G 
sending one onto the other. 

THEOREM A: If G is a homogeneous reduced torsion free abelian 
group of rank 2, then 

(1) G is qpp- iff G is completely decomposable, 
(2) G is q.p.i. iff G is strongly homogeneous. 

A strongly homogeneous group, G, is special if p-rank G ̂  1 for all 
primes p, where p-rank G is the Z/pZ-dimension of GIpG. Special tor­
sion free abelian groups of finite rank have been described by Rich-
man [6]. The next theorem gives a characterization of rank 2 strongly 
homogeneous groups as well as a method for constructing strongly 
homogeneous rank 2 groups that are not special. 

THEOREM B: If Gis a torsion free abelian group of rank 2, then G is 
strongly homogeneous iff either 

(1) G is homogeneous completely decomposable or 
(2) (a) Ç ® z End(G) = Q(VN) for some square free integer N; 

(b) NG = G; (c) p-rank G e l for all primes p ^ 2 such that N is a 
quadratic residue mod p; (d) 2-rank G S 1 if N is a quadratic residue 
mod 8; and (e) if N is not a quadratic residue mod 8, and if g G G, 
a G Ç, with ìi(g + a VÏVg) G G, then Kg G G 

A torsion free abelian group, G, is R(G)-locally free if p-rank G = 0 
or rank G for ail primes p. 
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THEOREM C: If Gis a non-homogeneous reduced torsion free abelian 
group of rank 2, then: 

(1) G is q.p.p. iff G is R(G)4ocally free and any two independent 
elements of G have incomparable type, 

(2) G is q.p.i. iff either G = A © B with sup {type (A), type (B)} = 
type (Q) or any two independent elements of G have incomparable 
type and G is p-reducedfor all primes p with pGj^ G. 

Examples of groups satisfying the hypotheses of Theorem C.l are 
given in Section 2. Furthermore, a reduced torsion free abelian group 
is both q.p.p. and q.p.i. iff either G is homogeneous completely decom­
posable or G satisfies the condition of Theorem C.l. 

Fundamental references are Fuchs [2] and [3] and Reid [5]. Let 
G be a torsion free abelian group of finite rank and 0 / x E G. For 
a prime, p, the p-height ofx in G, hp(x), is i if x G plG\pi + lG and oo if 
no such i exists; H(x) is the sequence (hp(x)) indexed by the primes; if 
y G G then H(x) and H(y) are equivalent if hp(x) = hp(y) for all but a 
finite number of primes, q, with hq(x) < °° and hq(y) < » ; the type 
of x in G, T(x), is the equivalence class determined by H(x); if X = 
(x)*, the pure subgroup of G generated by x, then T(a) = T(b) for all 
a,b G X, so that the type ofX, T(X), is well defined. 

Two rank 1 groups A and B are isomorphic iff T(A) = T(B). The 
typeset of G is {T(A) \ A is a pure rank 1 subgroup of G}. Thus G is 
homogeneous iff the typeset of G is a singleton. The inner type of G, 
IT(G), is inf{r G typeset G} where the order on the typeset of G is 
induced by the natural ordering of {H(x) \ x G G}. 

If A and B are two pure subgroups of G with a G A, b G B, then 
hp(a + fa) ^ min{/ip(a), hp(b)} and equality holds if /ip(a) < hp(fo) or 
G = A © B. 

A torsion free abelian group, G, is completely decomposable if G is 
the direct sum of rank 1 subgroups and strongly indecomposable if 
whenever nG Q A © B Ç G for some non-zero integer n, then either 
A = 0 or B = 0. The quasi-endomorphism ring of G is Q (8>z End(G), 
where End(G) is the endomorphism ring of G. If G is strongly in­
decomposable then every 0 ^ / G End(G) is either a monomorphism 
or is nilpotent (Reid [5] ). 

Finally, if p is a prime, then pU)G= Hi=i p{G is the p-divisible sub­
group ofG. The group G is p-reduced if pwG = 0. 

§1. R(G)-locally free and strongly homogeneous rank 2 groups. Let 
G be a torsion free abelian group of rank n. For each maximal in­
dependent subset {x1? • • -, xn} of G define Y* = { g ^ | qxxY + • • • + 
qnxn G G for qj G Ç and 1 ^g j ^ n} and X{ = (x b • • -, x^l9 xi+l, - * -, 
*n)* (where (S)* denotes the pure subgroup of G generated by S). 
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Then G/X' ~ Y{ for 1 S i g n and G is a subdirect sum of Yh • • -, Yn. 
(e.g., see Fuchs [2], p. 42.). 

The following equivalences are known; their verification is routine. 

LEMMA 1.1: Let G be a torsion free abelian group of rank n and 
define X{ and Y{ as above for 1 ^ i ^ n. The following are equivalent. 

(a) G is R(G)-locally free; 
(b) Zp <8>z G = Gp i s a free Zp-module for all primes p with pG ^ G, 

where Zp is the localization ofZ at p; 
(c) Ifp is a prime and pY* = Yifor some i, then pG = G. 

A torsion free abelian group G of rank 2 is a VN-group if Q 
® z End(G) = Q(VN) for some square free integer N. Identify VN 
with the quasi-endomorphism of G whose square is N. In this case 
every non-zero endomorphism of G is a monomorphism. 

PROOF OF THEOREM B: Homogeneous completely decomposable 
groups are strongly homogeneous (since every pure subgroup is a sum-
mand, e.g., see Fuchs [3] p. 115). Thus we may assume that G is 
strongly indecomposable since if GI(A®B) is bounded and G is 
homogeneous then G ~ A © B (Fuchs [3] ). 

(—») (a) Strongly homogeneous groups are VN-groups (Reid [5] ). 
(b) Choose 0 ^ x with VN x G G. Since G is strongly homogeneous 

there is an automorphism a + ßVN of G with a,ß G Q and (a + 
ßVN)(x) = y(y/Nx) for y G Q. Now x and V N * are independent so 
a = 0 and ß V N is an automorphism of G Write ß = eld for relatively 
prime integers c and d. Then G = ßVN(G) = (cld)VN(G) so that 
G = (c2ld2)NG, dG = G, cG= G, VÎVG = G, and NG = G. Note 
that VN is, in fact, an automorphism of G. 

(c) and (d) Assume that p-rank G = 2 and choose 0 ^ x G G. De­
fine £ to be sup{/ip(bx + VN X) \ b is an integer relatively prime to p}. 
If £ = oo then the p-height of VN x + (x)* in G/(x)* is oo so that 
p-rank G â l , a contradiction. Thus £ is finite. 

The hypotheses on p guarantee that N is a quadratic residue mod p* 
for all i ^ 3. Consequently, there is b G Z with b 2 = N(modp2j l + 1). 
Since VN is an automorphism of G, hp(VNx) = ftp(*) and /ip(x) ^ 
hp((fo 4- VN)(X)) ê £ (it is sufficient to assume that b is relatively 
prime to p since otherwise p divides N and by (b), pG = G a con­
tradiction). 

Since G is strongly homogeneous there is an automorphism a + 
ßVN of G with a ,0 G Ç; (a -h ßVN)(b + V N ) ( X ) = mVÏVx for 
some m G Z; and p £ + 1 / m (since /ip(fox + VN x) ^ £). But G is a 
VN-group so that every non-zero endormorphism is monic. Thus 
(a + ßVN)(b + VN) = mVN. Multiply both sides of the preceding 
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equations by b—VN to see that a = —mNI(b2—N) and ß = 
(mb)l(b2 - N). Let g = (a + ßVN)(VNx) G G so that (b2 - N)g = 
— mN( — bx+ V N X ) , a contradiction (since p2l+1 \b2 — N; p /N; 
pi + iym;andhp(-bx+ VNx)^Si). 

(e) Assume N is not a quadratic residue mod 8. Let g G G, a G Ç> 
be such that x = K (g + aVÎVg) G G but X g $ G. By (b) 2/N and, 
since VN is an automorphism of G, h2( VNg) = h2(g) = 0. It follows 
that a = cid, c,d G Z, with d odd. Thus, by adding a suitable integral 
multiple of VN g to x, we see that )i (g + a V N g) G G with a an odd 
integer. Now define a map from (y = g + (a — 2) VÏVg)* into (g)* 
sending y into 2mg for suitable odd m G Z. Note that h2(t/) = 1. A 
short computation shows that no endomorphism of G lifts the above 
map. 

(«—) Since G is a VN-group, G is homogeneous (Reid [5] ). Thus it 
is sufficient to prove that if gu g2 G G with hp(gx) = hp(g2) for all 
primes p then there is a + ßVN G End(G) with a,ßEQ and 
(a + ßVN) (gi) = g2 (to see that a + ß V N is an automorphism 
construct the inverse sending g2 —» gi and note that every non-zero 
endomorphism is a monomorphism). 

We may assume that gY = ax + bVN x and g2 = ex + dVN x for 
some 0 / x G G , f l , i , c , ( f E Z (clear denominators if necessary). 
There is a unique a 4- ßVÏV G Q ® End(G) with (a + 0VNXgJ = 
g2, i.e., (a + ßy/N)(a -h foVN) = c + dV??. The only problem is in 
proving tha t a + /3VNGEnd(G) . 

Regard G as a subgroup of Q ® G with G C Gp C Ç) ® G so that 
G = flp Gp (where Gp = Zp ® z G, and Zp is the localization of Z at 
the prime p). With this convention, it is enough to show that (a + 
ßVN)(Gp) C Gp for all primes p. 

Multiplying the defining equation for a + ß VN by a — fo VN shows 
that a = (oc - bdN)l(a2 - b2N) and/3 = (ad - foc)/(a2 - fo2N). 

Let p be a prime divisor of a2 — b2N. If p divides IV then pG = G, 
by (b) so that (a + ßVN)(Gp) Ç Gp. Otherwise N is a quadratic 
residue mod p. If p ^ 2 or if p = 2 and N is a quadratic residue mod 8 
then p-rank G ̂  1. Suppose that p-rank G = 1. 

Then Gp is homogeneous; reduced, hence strongly indecomposable; 
qGp = Gp for all primes q ̂  p, and p-rank Gp = 1. Thus Gp is 
strongly homogeneous (e.g., see Murley [4] ). It follows that (a + 
ßVN)(Gp)Q Gp (e.g., regard g1? g2 as elements of Gp and use the 
uniqueness of a + ßVN). 

Now assume that p is a prime and does not divide a2 — b2N. Then 
a2 - b2N is a unit in Gp so that (a + ßVN)(Gp) C Gp. 
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We are left with the case that p = 2, 2G ^ G (in particular, N is 
odd), N is not a quadratic residue mod 8, and a2 = b2N(mod 2). 
Choose 0 / g E G such that h2(g) = 0 = h2(VNg). Then by condi­
tion (e), any element x in G2 can be written in the form x = (u/2) g + 
(Ü/2) VNg where « , Ü E Z 2 . A direct computation shows (a + ßVN)x 
E G , 

PROPOSITION 1.2: Le£ G be a y/N-group. If p is a prime such that 
p/N and ifN is not a quadratic residue mod p,then p-rank G = 0 or 2. 

PROOF: Assume that p-rank G = 1 and that k is the least positive 
integer with kVN G End(G). The minimality of k guarantees the 
existence of x G G with hp(kVN x) = 0 = hp(x). Now x + pG gen­
erates GIpG =* Z/pZ so there is y G G and an integer, c, relatively prime 
to p with pt/ = ex + ky/N x. Multiplying by c — ky/N yields p(c — 
kVN)(y) = (c2 - k2N)(x). Thus c2 = fc2N(mod p) a contradiction to 
the assumption that N is not a quadratic residue mod p. 

COROLLARY 1.3: If G is a special qpi VN-group, then pG = G for all 
primes p such that p \NorNis not a quadratic residue mod p. 

COROLLARY 1.4: Let G be a torsion free abelian group of rank 2. If 
G is R(G)-locally free and strongly homogeneous, then C is completely 
decomposable. 

PROOF: The only other possibility is that G is a strongly indecom­
posable VN-group (Reid [5]). But G is R(G)-locally free so by 
Theorem B, pG = G for all primes p such that p | N or N is a quadratic 
residue mod p. 

Let A be a pure rank subgroup of G and B = VN( A), a pure rank 1 
subgroup of G since VN is an automorphism of G (see proof of Theo­
rem B). It is sufficient to prove that the p-component of GI(A © B) is 
zero for all primes p such that p/N and N is not a quadratic residue 
mod p. 

Let g G G and pg = a + b G A © B. lîhp(a) > 0 or fcp(fe) > 0 then 
g G A © B. So suppose that hp(a) = hp(b) = 0. Then b = 
(m/n)\rN a for some relatively prime integers m and n, i.e., pg = 
(1 + mlnVN)(a) and png = (n + mVN)(fl). Multiplying by n — 
raVN shows that pn(n — mVN)g = (n2 — m2N)(a). But /IP(Ö) = 0 so 
n2 = m2N(modp); nfo = mVN(a); hp(b) = 0; and g.c.d.(m, n) = 1 
guarantees that p /m. Also p/f N so N is a quadratic residue mod p. 
It follows that G is completely decomposable, a contradiction. 

REMARKS: (1) The hypothesis that rank G = 2 is not necessary for 
Corollary 1.4.(E. L. Lady, private communication). 

file:///NorNis
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(2) Theorem B can be used to construct examples of strongly homo­
geneous strongly indecomposable rank 2 groups that are not special. 
If G C Q(VN) is a rank 2 special group then H = G Pi (C]PGSHP) is 
strongly homogeneous where S is a set of primes, Hp is a free Zp-module 
and 2 ^ p G S is a prime such that N is not a quadratic residue mod p 
or p = 2 and N is not a quadratic residue mod 8. 

§2. Quasi-pure-projective groups of rank 2. 

THEOREM 2.1: Le£ G be a strongly indecomposable q.p.p. torsion 
free abelian group of finite rank. Then G is R(G)~locally free. 

PROOF: Assume that G is not R(G)-locally free and let p be a prime 
with 0 < p-rank G < rank G. Choose a p-basic subgroup, B, of G (e.g., 
see Fuchs [2], Chapter VI) and let C be the pure subgroup of G gen­
erated by B. It follows that GIC is a non-zero p-divisible group and 
that (l/pVc is a well defined map from G to G/C. 

Since G is q.p.p. there is g G End(G) with 7TCg = (Hp)nc. Let 
ft = pg-1 so that h(G) Ç C and ker ft Ç pwG. Since C is pure in G and 
pwC = 0, ft : C —» C is a monomorphism. Choose a positive integer n 
with n C Ç ft(C) C C (since ft is a monomorphism, ft is a unit in 
Ç) ® z End(C), Reid [5]). A short computation shows that n G C 
pwG © C Ç G, contradicting the assumption that G is strongly in­
decomposable. 

LEMMA 2.2: If Gis a torsion free abelian group of rank 2 with pure 
rank 1 subgroups A and B, then T(A) ^ T(B) iffT{GIB) g T(G/A). 

PROOF: Suppose that Aj^B and choose non-zero elements xY and 
x2 in A and B respectively. Then {3C1? x2} is a maximal independent 
subset of G. Using the notation preceding Proposition 1.1, X1 = B, 
X2 = A, G/X1 ^ Yi D A; and G/X2 ^ Y 2 D B . But YJA =* Y2/B (Fuchs 
[2], p. 42) so that r(Yx) + T(B) = T(Y2) + T(A) with T(A) ^ T ^ ) 
and T(B) ^ T(Y2). Consequently, T(A) g T(B) iff T(YL) ^ T(Y2). 

LEMMA 2.3: If G is a reduced q.p.p. torsion free abelian group of 
rank 2 with IT(G) E. typeset G, then G is homogeneous. 

PROOF: Let A be a pure rank 1 subgroup of G with T(A) = IT(G) 
and let B be another pure rank 1 subgroup of G. Now T(A) ^ T(B), 
so by Lemma 2.2, there is 0 ^ / : GIB —> G/A. Since G is q.p.p. there is 
g G Hom(G, G) with /7TB = ?rAg. But g(B) Ç A so the proof is con-
plete if g(B) ^ 0 (i.e., T(B) ^ T(A)). 

Suppose that g(B) = 0, i.e., ker g = B and that T(A) < T(B). Then 
g(G) C (g(A))*. Furthermore, assume that (g(A))J|e = B. Since G is 
reduced there is a prime p with pB ^ B and it is sufficient to assume 
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that g(G) <J pB. Choose x G G with hp(g(x)) = 0, in particular x ^ B, 
and define C = (px — g(x))#. It follows that (l/pVcg is a well de­
fined element of Hom(G, GIC). Since G is q.p.p. there is h G 
Hom(G, G) with irch = (l/p)7rcg. Now h(B)C C and B is fully in­
variant (since T(A) < 7(B)) so that fc(B) C B H C = 0. Moreover, 
p / i - g G Hom(G, G) and h(G) C (h(A))+ f B (for if h(G) C B then 
(ph — g)(G) C B H C = 0, a contradiction to the assumption that 

Mg(*)) = o). 
As a consequence of the preceding remarks, we need only consider 

the case that g(B) = 0, T(A) < T(B) and <g(A)>s|B 7̂  B. But g is a 
non-zero endomorphism of G that is neither monic nor nilpotent so G 
cannot be strongly indecomposable (Reid [5] ). 

Choose pure rank 1 subgroups D and E and a non-zero integer n 
with nGÇ. D © EG. G. Since G is not homogeneous we may assume 
that either T(D) < T(E) or T(D) and T(E) are incomparable. Now G 
is reduced so there is a prime p with pE / E. Choose non-zero ele­
ments d and e in D and E, respectively, with /ip(e) = 0. Define H = 
(pk + l d 4- e)% where n = pkl and g.c.d.(p,£) = 1. It follows that the 
p-height of x + H in GIH is ^k + 1 for all x Ë E . Let / ' G 
Hom(G G/H) be the composite of G^D®E^>E-*(E+ H)IH Ç 
G/tf and def ine/= (llpk + i)f. In particular,/^) = (n/p*"+1)(e + H) = 
(£/p)(e + tf). 

Since G is q.p.p. there is g G Hom(G, G) with 7rHg = / By the 
hypotheses, E is fully invariant. But g(e) + H = f(e) = £/p(e + H) so 
that (pg - £)(e) G E Pi H = 0. Thus pg(e) = £(e) with g.c.d.(p,£) = 
1, a contradiction to the assumption that hp(e) = 0. The proof is now 
complete. 

PROOF OF THEOREM A.l: (<—) Homogeneous completely decom­
posable groups are q.p.p. since every pure subgroup is a summand 
(Fuchs [3] ). ' 

( —> ) It is sufficient to show that if G is strongly indecomposable 
then a contradiction occurs (since if G is quasi-isomorphic to a homo­
geneous completely decomposable group then G is homogeneous 
completely decomposable Fuchs [3] ). 

Now G is R(G)-locally free (Theorem 2.1). Thus if G is strongly 
homogeneous, then, by Corollary 1.4, G is completely decomposable 
giving the desired contradiction. 

Let A and B be two pure rank 1 subgroups of G with A fi B = 0. 
By Lemma 2.2 there is an isomorphism/ : Gl A —> GIB. Since G is q.p.p. 
there are g, /1 G Hom(G, G) with -nBg — fwA and 7rAh = f~hrB-
But 7TBgh = fnAh = ff~hrB so that gh — 1 G Horn (G,B). Since 
every non-zero endomorphism of G is a monomorphism gh = 1. 
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Similarly, hg = 1, so g is an automorphism of G with g(A) = B; i.e., G 
is strongly homogeneous. 

PROOF OF THEOREM C.l: Let G be a torsion free abelian group of 
rank 2. Then IT(G) (f typeset (G) iff any two independent elements 
of G have incomparable type (use the fact that T(A © B) ^ min{T(A), 
T(B)}). 

( -> ) By Lemma 2.3, IT(G) $ typeset G. Thus G is strongly inde­
composable and Theorem 2.1 applies. 

(<—) L e t / G Hom(G, G/A), where A is a pure rank 1 subgroup of 
G, and let B = ker/. Now T(G/B) g T(GIA) so by Lemma 2.2, T(A) g 
T(B). If A H B = 0 then T{A) = 7T(G) G typeset (G) (if JC G G, 
rax G A © B for some O ^ m E Z s o that T(x) ^ min {T(A), T(B)} = 
T(A)), a contradiction. Thus A = B and / induces / ' = eld Œ 
Hom( G/A, Gl A) for some relatively prime integers c and d. Now 
d(GIA) = Gl A so dG = G by Proposition 1.1. Thus eld G End(G) and 
G is q.p.p. 

EXAMPLE: There is a non-homogeneous q.p.p. reduced torsion free 
abelian group of rank 2. Let V = Qx © Qy be a Ç-vector space of 
dimension 2 and S = {x, t/}U {ax + fot/ | a, b G Z and g.c.d.(a, b) = 
1}. Write P, the set of primes of Z, as a disjoint union of countably 
many infinite subsets, say P = U °i=i Pi- Enumerate the elements of S 
and define G to be the subgroup of V generated by {sjpi | ̂  G S, 

Pi e Pi}. 
If g G G then mg = ns for some integers m and n and s G S. Thus 

typeset (G) = (T(s) | 5 G S}. It follows that hp(Si) = 0 if p $ ^ and 1 
if p G Pi. Thus JT(G) $ typeset G since ZJT(G) = T(Z). Furthermore, 
G is R(G)-locally free so G is q.p.p. by Theorem C.l. 

§3. Quasi-pure-injective groups of rank 2. 

PROOF OF THEOREM A.2: (—>) If G is homogeneous completely de­
composable then every pure subgroup of G is a summand (Fuchs [3] ) 
so that G is strongly homogeneous. Otherwise, End(G) is a subring of 
an algebraic number field (Beaumont-Pierce [1] ) and every non-zero 
endomorphism of G is a monomorphism (Reid [5] ). 

Let A and B be two pure rank 1 subgroups of G. Since G is homo­
geneous there is an isomorphism/: A —> B. Furthermore, G is q.p.i. 
so there is g G Hom(G, G) with giA = / (where iA G Hom(A, G) is the 
inclusion map). Similarly, choose /i £ Hom(G, G) with hiB=f~1. 
Then hgiA = hf= hiBf= 1A and hg = 1G (hg — 1 is not a mono­
morphism so hg — 1 = 0). Similarly, gh = 1 so that g is an auto­
morphism of G with g( A) = B. 
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( <— ) Let A be a pure rank 1 subgroup of G and iA G Hom(A,G) 
the inclusion map. I f / G Hom(A, G) then B = (/(A))* is a pure rank 
1 subgroup of G. Now G is strongly homogeneous so choose an auto­
morphism a of G with a(A) = B. But odA and / are elements of the 
rank 1 group Hom(A, B), hence caiA = d / for some relatively prime 
integers c and d. Consequently, cB = cmA(A) = df(A) = dB and 
dB = B. Since G is homogeneous, dG = G, c(a/d) G End(G) and 
/ = c(ald)iA, as desired. 

PROPOSITION 3.1: Let G be a non-homogeneous reduced torsion free 
abelian group of rank 2 with pure rank 1 subgroups A and B such that 
GI(A © B) is bounded. Then G is q.p.i. iff T(A) and T(B) are incom­
parable and max{T(A), T(B)} = T(Q). In this case G— A® B. 

(<—) Note that p-rank G â 1 for all primes p so that G— A® B (e.g., 
see Murley [4] or Beaumont-Pierce [1] ). Assume that G— A® B, and 
let C be a pure rank 1 subgroup of G a n d / G Hom(C, G). By using 
the projection maps of G onto A and B one can verify that there is 
g G Hom(G, G) with gic = / i.e., G is q.p.i. 

( -> ) Since G is non-homogeneous either T(A) < T(B) or T(A) and 
T(B) are incomparable. In either case, B is fully invariant. Suppose 
that max {T(A), T(B)} ^ T(Q). Choose elements a and b of A and B, 
respectively, with ftp(a) = hp(b) = 0. Then hp(pa + b) = /ip(b) = 0 
ê /ip(a + b). Since GI(A © B) is bounded there is an integer fc, rela­
tively prime to p, and a homomorphism f\{pa+b)%^>G with 
/ (pa + b) = fc(a + b). Choose g G Hom(G, G) with gic = / where 
C = (pa + b)*. Then g(a) = aa + ßb and g(b) = yb for some a, 
ß,y G Ç). Moreover, g(pa 4- b) = paa + pßb -h y(b) = k(a + b) 
and aa = (klp)(a) G G, contradicting the assumption that /ip(a) = 0. 
Thus max {T(A)9 T(B)} = T(Q). 

Since G is reduced, T(A) < T(B) is impossible. 

PROPOSITION 3.2: Suppose that Gis a non-homogeneous strongly in­
decomposable torsion free abelian group of rank 2. Then G is q.p.i. iff 
IT(G) ($E typeset G and p^G = 0 or G for all primes p. 

PROOF: ( «— ) In this case any two distinct pure rank 1 subgroups 
have incomparable type. Thus if A is a pure rank 1 subgroup of G and 
f:A-+G t hen / i s multiplication by min, where m and n are relatively 
prime integers. Consequently, nA = A, nG = G, and min G End(G). 

(-») Suppose that there is a prime p with p^G = A, a pure rank 1 
subgroup of G. Then 1/p G Hom(A, G). Since G is q.p.i. there is 
/ G Hom(G, G) with^iA = 1/p. But G is strongly indecomposable s o / 
is a monomorphism ( / is either a monomorphism or nilpotent; the lat-
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ter is impossible). Furthermore, (pf" 1)(A) = 0 so that pf— I is 
nilpotent. Thus 1 4- (pf— 1) = pf is an automorphism of G so that 
pG = G, a contradiction. Consequently, pwG = 0 or G for all primes 

Assume that IT(G) £ typeset (G) and choose pure rank 1 subgroups 
A and B of G with T(A) < T(B). There is 0 f / E Hom(A, B) so (since 
G is q.p.i.) there is 0 / g G Hom(G, G) with giA =f But B is fully 
invariant so g(G) C B, i.e., g is not a monomorphism. Thus g is nil-
potent since G is strongly indecomposable. By Reid [5], Ç ® z End(G) 

Since Gj£ A® B there is 0 / x £ G and a prime p with pjc = 
a + b E; A® B and ftp(a) = hp(b) = 0 (otherwise, A © B is p-prime 
in G for all primes p, hence pure). Consequently, there is f: A —» G 
with / (a) = rax for some integer ra relatively prime to p. But G is 
q.p.i. so choose h G Hom(G, G) with hiA = f Now h = a + /3g for 
some a,j8 6 Ç and /i(a) = (a + /3g)(a) = (mlp)(a + b) G G. Since 
g(G) Ç ß , a ö = (mlp)(a) and a = ra/p. On the other hand, h(fo) = 
(a + ßg)(b) = a(fo) = (mlp)(b) G G (since g is nilpotent and g(G) Ç. 
B) a contradiction to the assumption that hp(b) = 0. The proof is now 
complete. 

The proof of Theorem C.2 is now a consequence of the results of this 
section. 
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