QUASI-PURE PROJECTIVE AND INJECTIVE TORSION FREE ABELIAN GROUPS OF RANK 2

D. ARNOLD, C. I. VINSONHALER AND W. J. WICKLESS

An abelian group, G, is quasi-pure projective (q.p.p.) if for every pure subgroup, A, of G and every $f \in \text{Hom}(G, G/A)$ there is $g \in \text{Hom}(G, G)$ with $\pi_A g = f$, where $\pi_A \in \text{Hom}(G, G/A)$ is the quotient map. Dually, G is quasi-pure injective (q.p.i.) if for every pure subgroup, A, of G and every $f \in \text{Hom}(A, G)$ there is $g \in \text{Hom}(G, G)$ with $gi_A = f$, where $i_A \in \text{Hom}(A, G)$ is the inclusion map. This paper contains a characterization of q.p.p. and q.p.i. torsion free abelian groups of rank 2; a partial solution to Problem 17 of Fuchs [2].

A torsion free abelian group, G, is homogeneous if any two pure rank 1 subgroups of G are isomorphic and strongly homogeneous if for any two pure rank 1 subgroups of G there is an automorphism of G sending one onto the other.

THEOREM A: If G is a homogeneous reduced torsion free abelian group of rank 2, then

- (1) G is q.p.p. iff G is completely decomposable,
- (2) G is q.p.i. iff G is strongly homogeneous.

A strongly homogeneous group, G, is *special* if p-rank $G \le 1$ for all primes p, where p-rank G is the $\mathbb{Z}/p\mathbb{Z}$ -dimension of G/pG. Special torsion free abelian groups of finite rank have been described by Richman [6]. The next theorem gives a characterization of rank 2 strongly homogeneous groups as well as a method for constructing strongly homogeneous rank 2 groups that are not special.

THEOREM B: If G is a torsion free abelian group of rank 2, then G is strongly homogeneous iff either

- (1) G is homogeneous completely decomposable or
- (2) (a) $Q \otimes_Z \operatorname{End}(G) = Q(\sqrt{N})$ for some square free integer N; (b) NG = G; (c) p-rank $G \leqq 1$ for all primes $p \neq 2$ such that N is a quadratic residue mod p; (d) 2-rank $G \leqq 1$ if N is a quadratic residue mod 8; and (e) if N is not a quadratic residue mod 8, and if $g \in G$, $\alpha \in Q$, with $\frac{1}{2}(g + \alpha \sqrt{N}g) \in G$, then $\frac{1}{2}g \in G$.

A torsion free abelian group, G, is R(G)-locally free if p-rank G=0 or rank G for all primes p.

Received by the editors on September 3, 1974.

Theorem C: If G is a non-homogeneous reduced torsion free abelian group of rank 2, then:

- (1) G is q.p.p. iff G is R(G)-locally free and any two independent elements of G have incomparable type,
- (2) G is q.p.i. iff either $G = A \oplus B$ with $\sup\{\text{type } (A), \text{ type } (B)\} = \text{type } (Q)$ or any two independent elements of G have incomparable type and G is p-reduced for all primes p with $pG \neq G$.

Examples of groups satisfying the hypotheses of Theorem C.1 are given in Section 2. Furthermore, a reduced torsion free abelian group is both q.p.p. and q.p.i. iff either G is homogeneous completely decomposable or G satisfies the condition of Theorem C.1.

Fundamental references are Fuchs [2] and [3] and Reid [5]. Let G be a torsion free abelian group of finite rank and $0 \neq x \in G$. For a prime, p, the p-height of x in G, $h_p(x)$, is i if $x \in p^i G \setminus p^{i+1} G$ and ∞ if no such i exists; H(x) is the sequence $(h_p(x))$ indexed by the primes; if $y \in G$ then H(x) and H(y) are equivalent if $h_p(x) = h_p(y)$ for all but a finite number of primes, q, with $h_q(x) < \infty$ and $h_q(y) < \infty$; the type of x in G, T(x), is the equivalence class determined by H(x); if $X = \langle x \rangle_*$, the pure subgroup of G generated by x, then T(a) = T(b) for all $a, b \in X$, so that the type of X, T(X), is well defined.

Two rank 1 groups A and B are isomorphic iff T(A) = T(B). The typeset of G is $\{T(A) \mid A \text{ is a pure rank 1 subgroup of } G\}$. Thus G is homogeneous iff the typeset of G is a singleton. The inner type of G, IT(G), is $\inf\{\tau \in \text{typeset } G\}$ where the order on the typeset of G is induced by the natural ordering of $\{H(x) \mid x \in G\}$.

If A and B are two pure subgroups of G with $a \in A$, $b \in B$, then $h_p(a+b) \ge \min\{h_p(a), h_p(b)\}$ and equality holds if $h_p(a) < h_p(b)$ or $G = A \oplus B$.

A torsion free abelian group, G, is completely decomposable if G is the direct sum of rank 1 subgroups and strongly indecomposable if whenever $nG \subseteq A \oplus B \subseteq G$ for some non-zero integer n, then either A = 0 or B = 0. The quasi-endomorphism ring of G is $Q \otimes_Z \operatorname{End}(G)$, where $\operatorname{End}(G)$ is the endomorphism ring of G. If G is strongly indecomposable then every $0 \neq f \in \operatorname{End}(G)$ is either a monomorphism or is nilpotent (Reid [5]).

Finally, if p is a prime, then $p^{\omega}G = \bigcap_{i=1}^{\infty} p^{i}G$ is the p-divisible subgroup of G. The group G is p-reduced if $p^{\omega}G = 0$.

§1. R(G)-locally free and strongly homogeneous rank 2 groups. Let G be a torsion free abelian group of rank n. For each maximal independent subset $\{x_1, \dots, x_n\}$ of G define $Y_i = \{q_ix_i \mid q_1x_1 + \dots + q_nx_n \in G \text{ for } q_j \in Q \text{ and } 1 \leq j \leq n\}$ and $X^i = \langle x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n \rangle_*$ (where $\langle S \rangle_*$ denotes the pure subgroup of G generated by S).

Then $G/X' \simeq Y_i$ for $1 \le i \le n$ and G is a subdirect sum of Y_i, \dots, Y_n . (e.g., see Fuchs [2], p. 42.).

The following equivalences are known; their verification is routine.

Lemma 1.1: Let G be a torsion free abelian group of rank n and define X^i and Y_i as above for $1 \le i \le n$. The following are equivalent:

- (a) G is R(G)-locally free;
- (b) $Z_p \otimes_Z G = G_p$ is a free Z_p -module for all primes p with $pG \neq G$, where Z_p is the localization of Z at p;
 - (c) If p is a prime and $pY_i = Y_i$ for some i, then pG = G.

A torsion free abelian group G of rank 2 is a \sqrt{N} -group if $Q \otimes_Z \operatorname{End}(G) = Q(\sqrt{N})$ for some square free integer N. Identify \sqrt{N} with the quasi-endomorphism of G whose square is N. In this case every non-zero endomorphism of G is a monomorphism.

PROOF OF THEOREM B: Homogeneous completely decomposable groups are strongly homogeneous (since every pure subgroup is a summand, e.g., see Fuchs [3] p. 115). Thus we may assume that G is strongly indecomposable since if $G/(A \oplus B)$ is bounded and G is homogeneous then $G \cong A \oplus B$ (Fuchs [3]).

- (\rightarrow) (a) Strongly homogeneous groups are \sqrt{N} -groups (Reid [5]).
- (b) Choose $0 \neq x$ with $\sqrt{N} x \in G$. Since G is strongly homogeneous there is an automorphism $\alpha + \beta \sqrt{N}$ of G with $\alpha, \beta \in Q$ and $(\alpha + \beta \sqrt{N})(x) = \gamma(\sqrt{N}x)$ for $\gamma \in Q$. Now x and $\sqrt{N}x$ are independent so $\alpha = 0$ and $\beta \sqrt{N}$ is an automorphism of G. Write $\beta = c/d$ for relatively prime integers c and d. Then $G = \beta \sqrt{N}(G) = (c/d)\sqrt{N}(G)$ so that $G = (c^2/d^2)NG$, dG = G, cG = G, $\sqrt{N}G = G$, and NG = G. Note that \sqrt{N} is, in fact, an automorphism of G.
- (c) and (d) Assume that p-rank G = 2 and choose $0 \neq x \in G$. Define ℓ to be $\sup\{h_p(bx + \sqrt{N}x) \mid b \text{ is an integer relatively prime to } p\}$. If $\ell = \infty$ then the p-height of $\sqrt{N}x + \langle x \rangle_*$ in $G/\langle x \rangle_*$ is ∞ so that p-rank $G \leq 1$, a contradiction. Thus ℓ is finite.

The hypotheses on p guarantee that N is a quadratic residue mod p^i for all $i \geq 3$. Consequently, there is $b \in Z$ with $b^2 \equiv N \pmod{p^{2\,\ell+1}}$. Since \sqrt{N} is an automorphism of G, $h_p(\sqrt{N}\,x) = h_p(x)$ and $h_p(x) \leq h_p((b+\sqrt{N})(x)) \leq \ell$ (it is sufficient to assume that b is relatively prime to p since otherwise p divides N and by (b), pG = G a contradiction).

Since G is strongly homogeneous there is an automorphism $\alpha + \beta \sqrt{N}$ of G with $\alpha, \beta \in Q$; $(\alpha + \beta \sqrt{N})(b + \sqrt{N})(x) = m\sqrt{N}x$ for some $m \in Z$; and $p^{k+1} \not/ m$ (since $h_p(bx + \sqrt{N}x) \leq k$). But G is a \sqrt{N} -group so that every non-zero endormorphism is monic. Thus $(\alpha + \beta \sqrt{N})(b + \sqrt{N}) = m\sqrt{N}$. Multiply both sides of the preceding

equations by $b-\sqrt{N}$ to see that $\alpha=-mN/(b^2-N)$ and $\beta=(mb)/(b^2-N)$. Let $g=(\alpha+\beta\sqrt{N})(\sqrt{N}\,x)\in G$ so that $(b^2-N)g=-mN(-bx+\sqrt{N}\,x)$, a contradiction (since $p^{2\,\ell+1}\mid b^2-N;\ p\not\mid N;\ p^{\,\ell+1}\not\mid m;$ and $h_p(-bx+\sqrt{N}\,x)\leqq \ell$).

- (e) Assume N is not a quadratic residue mod 8. Let $g \in G$, $\alpha \in Q$ be such that $x = \frac{1}{4}(g + \alpha \sqrt{N}g) \in G$ but $\frac{1}{2}g \notin G$. By (b) 2 / N and, since \sqrt{N} is an automorphism of G, $h_2(\sqrt{N}g) = h_2(g) = 0$. It follows that $\alpha = c/d$, c, $d \in Z$, with d odd. Thus, by adding a suitable integral multiple of $\sqrt{N}g$ to x, we see that $\frac{1}{4}(g + a\sqrt{N}g) \in G$ with a an odd integer. Now define a map from $(y = g + (a 2)\sqrt{N}g)_*$ into $(g)_*$ sending g into g for suitable odd g. Note that g into g short computation shows that no endomorphism of g lifts the above map.
- (\leftarrow) Since G is a \sqrt{N} -group, G is homogeneous (Reid [5]). Thus it is sufficient to prove that if $g_1,g_2\in G$ with $h_p(g_1)=h_p(g_2)$ for all primes p then there is $\alpha+\beta\sqrt{N}\in \operatorname{End}(G)$ with $\alpha,\beta\in Q$ and $(\alpha+\beta\sqrt{N})$ $(g_1)=g_2$ (to see that $\alpha+\beta\sqrt{N}$ is an automorphism construct the inverse sending $g_2\to g_1$ and note that every non-zero endomorphism is a monomorphism).

We may assume that $g_1 = ax + b\sqrt{N}x$ and $g_2 = cx + d\sqrt{N}x$ for some $0 \neq x \in G$, $a, b, c, d \in Z$ (clear denominators if necessary). There is a unique $\alpha + \beta\sqrt{N} \in Q \otimes \operatorname{End}(G)$ with $(\alpha + \beta\sqrt{N})(g_1) = g_2$, i.e., $(\alpha + \beta\sqrt{N})(a + b\sqrt{N}) = c + d\sqrt{N}$. The only problem is in proving that $\alpha + \beta\sqrt{N} \in \operatorname{End}(G)$.

Regard G as a subgroup of $Q \otimes G$ with $G \subseteq G_p \subseteq Q \otimes G$ so that $G = \bigcap_p G_p$ (where $G_p = Z_p \otimes_Z G$, and Z_p is the localization of Z at the prime p). With this convention, it is enough to show that $(\alpha + \beta \sqrt{N})(G_p) \subseteq G_p$ for all primes p.

Multiplying the defining equation for $\alpha + \beta \sqrt{N}$ by $a - b\sqrt{N}$ shows that $\alpha = (ac - bdN)/(a^2 - b^2N)$ and $\beta = (ad - bc)/(a^2 - b^2N)$.

Let p be a prime divisor of $a^2 - b^2 N$. If p divides N then pG = G, by (b) so that $(\alpha + \beta \sqrt{N})(G_p) \subseteq G_p$. Otherwise N is a quadratic residue mod p. If $p \neq 2$ or if p = 2 and N is a quadratic residue mod p then p-rank p = 1. Suppose that p-rank p = 1.

Then G_p is homogeneous; reduced, hence strongly indecomposable; $qG_p = G_p$ for all primes $q \neq p$, and p-rank $G_p = 1$. Thus G_p is strongly homogeneous (e.g., see Murley [4]). It follows that $(\alpha + \beta \sqrt{N})(G_p) \subseteq G_p$ (e.g., regard g_1, g_2 as elements of G_p and use the uniqueness of $\alpha + \beta \sqrt{N}$).

Now assume that p is a prime and does not divide $a^2 - b^2N$. Then $a^2 - b^2N$ is a unit in G_p so that $(\alpha + \beta \sqrt{N})(G_p) \subseteq G_p$.

We are left with the case that p=2, $2G \neq G$ (in particular, N is odd), N is not a quadratic residue mod 8, and $a^2 \equiv b^2 N \pmod{2}$. Choose $0 \neq g \in G$ such that $h_2(g) = 0 = h_2(\sqrt{N}g)$. Then by condition (e), any element x in G_2 can be written in the form $x = (u/2) g + (v/2) \sqrt{N}g$ where $u, v \in Z_2$. A direct computation shows $(\alpha + \beta \sqrt{N})x \in G_2$.

PROPOSITION 1.2: Let G be a \sqrt{N} -group. If p is a prime such that $p \not\mid N$ and if N is not a quadratic residue mod p, then p-rank G = 0 or 2.

PROOF: Assume that p-rank G=1 and that k is the least positive integer with $k\sqrt{N}\in \operatorname{End}(G)$. The minimality of k guarantees the existence of $x\in G$ with $h_p(k\sqrt{N}\,x)=0=h_p(x)$. Now x+pG generates $G/pG\simeq Z/pZ$ so there is $y\in G$ and an integer, c, relatively prime to p with $py=cx+k\sqrt{N}\,x$. Multiplying by $c-k\sqrt{N}$ yields $p(c-k\sqrt{N})(y)=(c^2-k^2N)(x)$. Thus $c^2\equiv k^2N(\operatorname{mod} p)$ a contradiction to the assumption that N is not a quadratic residue $\operatorname{mod} p$.

Corollary 1.3: If G is a special $qpi \sqrt{N}$ -group, then pG = G for all primes p such that $p \mid N$ or N is not a quadratic residue mod p.

COROLLARY 1.4: Let G be a torsion free abelian group of rank 2. If G is R(G)-locally free and strongly homogeneous, then G is completely decomposable.

PROOF: The only other possibility is that G is a strongly indecomposable \sqrt{N} -group (Reid [5]). But G is R(G)-locally free so by Theorem B, pG = G for all primes p such that $p \mid N$ or N is a quadratic residue mod p.

Let A be a pure rank subgroup of G and $B = \sqrt{N}(A)$, a pure rank 1 subgroup of G since \sqrt{N} is an automorphism of G (see proof of Theorem B). It is sufficient to prove that the p-component of $G(A \oplus B)$ is zero for all primes p such that $p \not\mid N$ and N is not a quadratic residue mod p.

Let $g \in G$ and $pg = a + b \in A \oplus B$. If $h_p(a) > 0$ or $h_p(b) > 0$ then $g \in A \oplus B$. So suppose that $h_p(a) = h_p(b) = 0$. Then $b = (m/n)\sqrt{N}a$ for some relatively prime integers m and n, i.e., $pg = (1 + m/n\sqrt{N})(a)$ and $png = (n + m\sqrt{N})(a)$. Multiplying by $n - m\sqrt{N}$ shows that $pn(n - m\sqrt{N})g = (n^2 - m^2N)(a)$. But $h_p(a) = 0$ so $n^2 \equiv m^2N(\text{mod }p)$; $nb = m\sqrt{N}(a)$; $h_p(b) = 0$; and g.c.d.(m, n) = 1 guarantees that $p \not\mid m$. Also $p \not\mid N$ so N is a quadratic residue mod p. It follows that G is completely decomposable, a contradiction.

Remarks: (1) The hypothesis that rank G = 2 is not necessary for Corollary 1.4.(E. L. Lady, private communication).

(2) Theorem B can be used to construct examples of strongly homogeneous strongly indecomposable rank 2 groups that are not special. If $G \subset Q(\sqrt{N})$ is a rank 2 special group then $H = G \cap (\bigcap_{p \in S} H_p)$ is strongly homogeneous where S is a set of primes, H_p is a free Z_p -module and $2 \neq p \in S$ is a prime such that N is not a quadratic residue mod p or p = 2 and N is not a quadratic residue mod 8.

§2. Quasi-pure-projective groups of rank 2.

Theorem 2.1: Let G be a strongly indecomposable q.p.p. torsion free abelian group of finite rank. Then G is R(G)-locally free.

PROOF: Assume that G is not R(G)-locally free and let p be a prime with 0 < p-rank G < rank <math>G. Choose a p-basic subgroup, B, of G (e.g., see Fuchs [2], Chapter VI) and let C be the pure subgroup of G generated by B. It follows that G/C is a non-zero p-divisible group and that $(1/p)\pi_C$ is a well defined map from G to G/C.

Since G is q.p.p. there is $g \in \operatorname{End}(G)$ with $\pi_C g = (1/p)\pi_C$. Let h = pg-1 so that $h(G) \subseteq C$ and $\ker h \subseteq p^\omega G$. Since C is pure in G and $p^\omega C = 0$, $h: C \to C$ is a monomorphism. Choose a positive integer n with $nC \subseteq h(C) \subseteq C$ (since h is a monomorphism, h is a unit in $Q \otimes_Z \operatorname{End}(C)$, Reid [5]). A short computation shows that $nG \subseteq p^\omega G \oplus C \subseteq G$, contradicting the assumption that G is strongly indecomposable.

Lemma 2.2: If G is a torsion free abelian group of rank 2 with pure rank 1 subgroups A and B, then $T(A) \leq T(B)$ iff $T(G/B) \leq T(G/A)$.

PROOF: Suppose that $A \neq B$ and choose non-zero elements x_1 and x_2 in A and B respectively. Then $\{x_1, x_2\}$ is a maximal independent subset of G. Using the notation preceding Proposition 1.1, $X^1 = B$, $X^2 = A$, $G/X^1 \simeq Y_1 \supseteq A$; and $G/X^2 \simeq Y_2 \supseteq B$. But $Y_1/A \simeq Y_2/B$ (Fuchs [2], p. 42) so that $T(Y_1) + T(B) = T(Y_2) + T(A)$ with $T(A) \leq T(Y_1)$ and $T(B) \leq T(Y_2)$. Consequently, $T(A) \leq T(B)$ iff $T(Y_1) \leq T(Y_2)$.

Lemma 2.3: If G is a reduced q.p.p. torsion free abelian group of rank 2 with $IT(G) \in \text{typeset } G$, then G is homogeneous.

PROOF: Let A be a pure rank 1 subgroup of G with T(A) = IT(G) and let B be another pure rank 1 subgroup of G. Now $T(A) \leq T(B)$, so by Lemma 2.2, there is $0 \neq f : G/B \to G/A$. Since G is q.p.p. there is $g \in \text{Hom}(G, G)$ with $f\pi_B = \pi_A g$. But $g(B) \subseteq A$ so the proof is conplete if $g(B) \neq 0$ (i.e., $T(B) \leq T(A)$).

Suppose that g(B) = 0, i.e., $\ker g = B$ and that T(A) < T(B). Then $g(G) \subseteq \langle g(A) \rangle_*$. Furthermore, assume that $\langle g(A) \rangle_* = B$. Since G is reduced there is a prime p with $pB \neq B$ and it is sufficient to assume

that $g(G) \subseteq pB$. Choose $x \in G$ with $h_p(g(x)) = 0$, in particular $x \notin B$, and define $C = \langle px - g(x) \rangle_*$. It follows that $(1/p)\pi_C g$ is a well defined element of $\operatorname{Hom}(G,G/C)$. Since G is q.p.p. there is $h \in \operatorname{Hom}(G,G)$ with $\pi_C h = (1/p)\pi_C g$. Now $h(B) \subseteq C$ and B is fully invariant (since T(A) < T(B)) so that $h(B) \subseteq B \cap C = 0$. Moreover, $ph - g \in \operatorname{Hom}(G,G)$ and $h(G) \subseteq \langle h(A) \rangle_* \neq B$ (for if $h(G) \subseteq B$ then $(ph - g)(G) \subseteq B \cap C = 0$, a contradiction to the assumption that $h_p(g(x)) = 0$).

As a consequence of the preceding remarks, we need only consider the case that g(B) = 0, T(A) < T(B) and $\langle g(A) \rangle_* \neq B$. But g is a non-zero endomorphism of G that is neither monic nor nilpotent so G cannot be strongly indecomposable (Reid [5]).

Choose pure rank 1 subgroups D and E and a non-zero integer n with $nG \subseteq D \oplus E \subseteq G$. Since G is not homogeneous we may assume that either T(D) < T(E) or T(D) and T(E) are incomparable. Now G is reduced so there is a prime p with $pE \neq E$. Choose non-zero elements d and e in D and E, respectively, with $h_p(e) = 0$. Define $H = \langle p^{k+1} d + e \rangle_*$ where $n = p^k \ell$ and g.c.d. $(p, \ell) = 1$. It follows that the p-height of x + H in G/H is $\geq k + 1$ for all $x \in E$. Let $f' \in Hom(G G/H)$ be the composite of $G \xrightarrow{n} D \oplus E \to E \to (E + H)/H \subseteq G/H$ and define $f = (1/p^{k+1})f'$. In particular, $f(e) = (n/p^{k+1})(e + H) = (\ell/p)(e + H)$.

Since G is q.p.p. there is $g \in \text{Hom}(G, G)$ with $\pi_H g = f$. By the hypotheses, E is fully invariant. But $g(e) + H = f(e) = \ell/p(e+H)$ so that $(pg - \ell)(e) \in E \cap H = 0$. Thus $pg(e) = \ell(e)$ with g.c.d. $(p, \ell) = 1$, a contradiction to the assumption that $h_p(e) = 0$. The proof is now complete.

Proof of Theorem A.1: (\leftarrow) Homogeneous completely decomposable groups are q.p.p. since every pure subgroup is a summand (Fuchs [3]).

 (\rightarrow) It is sufficient to show that if G is strongly indecomposable then a contradiction occurs (since if G is quasi-isomorphic to a homogeneous completely decomposable group then G is homogeneous completely decomposable Fuchs [3]).

Now G is R(G)-locally free (Theorem 2.1). Thus if G is strongly homogeneous, then, by Corollary 1.4, G is completely decomposable giving the desired contradiction.

Let A and B be two pure rank 1 subgroups of G with $A \cap B = 0$. By Lemma 2.2 there is an isomorphism $f: G/A \to G/B$. Since G is q.p.p. there are $g, h \in \text{Hom}(G, G)$ with $\pi_B g = f \pi_A$ and $\pi_A h = f^{-1} \pi_B$. But $\pi_B g h = f \pi_A h = f f^{-1} \pi_B$ so that $g h - 1 \in \text{Hom}(G, B)$. Since every non-zero endomorphism of G is a monomorphism g h = 1.

Similarly, hg = 1, so g is an automorphism of G with g(A) = B; i.e., G is strongly homogeneous.

PROOF OF THEOREM C.1: Let G be a torsion free abelian group of rank 2. Then $IT(G) \not \in \text{typeset } (G)$ iff any two independent elements of G have incomparable type (use the fact that $T(A \oplus B) \ge \min\{T(A), T(B)\}$).

- (\rightarrow) By Lemma 2.3, $IT(G) \notin \text{typeset } G$. Thus G is strongly indecomposable and Theorem 2.1 applies.
- (\leftarrow) Let $f \in \operatorname{Hom}(G, G/A)$, where A is a pure rank 1 subgroup of G, and let $B = \ker f$. Now $T(G/B) \leqq T(G/A)$ so by Lemma 2.2, $T(A) \leqq T(B)$. If $A \cap B = 0$ then $T(A) = IT(G) \in \operatorname{typeset}(G)$ (if $x \in G$, $mx \in A \oplus B$ for some $0 \neq m \in Z$ so that $T(x) \geqq \min \{T(A), T(B)\} = T(A)$), a contradiction. Thus A = B and f induces $f' = c/d \in \operatorname{Hom}(G/A, G/A)$ for some relatively prime integers c and d. Now d(G/A) = G/A so dG = G by Proposition 1.1. Thus $c/d \in \operatorname{End}(G)$ and G is q.p.p.

EXAMPLE: There is a non-homogeneous q.p.p. reduced torsion free abelian group of rank 2. Let $V = Qx \oplus Qy$ be a Q-vector space of dimension 2 and $S = \{x, y\} \cup \{ax + by \mid a, b \in Z \text{ and g.c.d.}(a, b) = 1\}$. Write P, the set of primes of Z, as a disjoint union of countably many infinite subsets, say $P = \bigcup_{i=1}^{\infty} P_i$. Enumerate the elements of S and define G to be the subgroup of V generated by $\{s_i | p_i \mid s_i \in S, p_i \in P_i\}$.

If $g \in G$ then mg = ns for some integers m and n and $s \in S$. Thus typeset $(G) = \{T(s) \mid s \in S\}$. It follows that $h_p(s_i) = 0$ if $p \notin P_i$ and 1 if $p \in P_i$. Thus $IT(G) \notin$ typeset G since IT(G) = T(Z). Furthermore, G is R(G)-locally free so G is q.p.p. by Theorem C.1.

§3. Quasi-pure-injective groups of rank 2.

PROOF OF THEOREM A.2: (\rightarrow) If G is homogeneous completely decomposable then every pure subgroup of G is a summand (Fuchs [3]) so that G is strongly homogeneous. Otherwise, $\operatorname{End}(G)$ is a subring of an algebraic number field (Beaumont-Pierce [1]) and every non-zero endomorphism of G is a monomorphism (Reid [5]).

Let A and B be two pure rank 1 subgroups of G. Since G is homogeneous there is an isomorphism $f: A \to B$. Furthermore, G is q.p.i. so there is $g \in \operatorname{Hom}(G,G)$ with $gi_A = f(\text{where } i_A \in \operatorname{Hom}(A,G)$ is the inclusion map). Similarly, choose $h \in \operatorname{Hom}(G,G)$ with $hi_B = f^{-1}$. Then $hgi_A = hf = hi_Bf = 1_A$ and $hg = 1_G$ (hg - 1) is not a monomorphism so hg - 1 = 0). Similarly, gh = 1 so that g is an automorphism of G with g(A) = B.

(\leftarrow) Let A be a pure rank 1 subgroup of G and $i_A \in \operatorname{Hom}(A,G)$ the inclusion map. If $f \in \operatorname{Hom}(A,G)$ then $B = \langle f(A) \rangle_*$ is a pure rank 1 subgroup of G. Now G is strongly homogeneous so choose an automorphism α of G with $\alpha(A) = B$. But αi_A and f are elements of the rank 1 group $\operatorname{Hom}(A,B)$, hence $c\alpha i_A = df$ for some relatively prime integers c and d. Consequently, $cB = c\alpha i_A(A) = df(A) = dB$ and dB = B. Since G is homogeneous, dG = G, $c(\alpha/d) \in \operatorname{End}(G)$ and $f = c(\alpha/d)i_A$, as desired.

Proposition 3.1: Let G be a non-homogeneous reduced torsion free abelian group of rank 2 with pure rank 1 subgroups A and B such that $G/(A \oplus B)$ is bounded. Then G is q.p.i. iff T(A) and T(B) are incomparable and max $\{T(A), T(B)\} = T(Q)$. In this case $G \cong A \oplus B$.

- (\leftarrow) Note that p-rank $G \leq 1$ for all primes p so that $G \simeq A \oplus B$ (e.g., see Murley [4] or Beaumont-Pierce [1]). Assume that $G = A \oplus B$, and let C be a pure rank 1 subgroup of G and $f \in \text{Hom}(C, G)$. By using the projection maps of G onto A and B one can verify that there is $g \in \text{Hom}(G, G)$ with $gi_c = f$, i.e., G is q.p.i.
- (\rightarrow) Since G is non-homogeneous either T(A) < T(B) or T(A) and T(B) are incomparable. In either case, B is fully invariant. Suppose that $\max\{T(A),T(B)\} \neq T(Q)$. Choose elements a and b of A and B, respectively, with $h_p(a) = h_p(b) = 0$. Then $h_p(pa+b) = h_p(b) = 0$ $\leqq h_p(a+b)$. Since $G/(A \oplus B)$ is bounded there is an integer k, relatively prime to p, and a homomorphism $f: \langle pa+b \rangle_* \to G$ with f(pa+b) = k(a+b). Choose $g \in \operatorname{Hom}(G,G)$ with $gi_c = f$, where $C = \langle pa+b \rangle_*$. Then $g(a) = \alpha a + \beta b$ and $g(b) = \gamma b$ for some α , β , $\gamma \in Q$. Moreover, $g(pa+b) = p\alpha a + p\beta b + \gamma(b) = k(a+b)$ and $\alpha a = (k/p)(a) \in G$, contradicting the assumption that $h_p(a) = 0$. Thus $\max\{T(A), T(B)\} = T(Q)$.

Since G is reduced, T(A) < T(B) is impossible.

Proposition 3.2: Suppose that G is a non-homogeneous strongly indecomposable torsion free abelian group of rank 2. Then G is q.p.i. iff $IT(G) \notin typeset\ G$ and $p^{\omega}G = 0$ or G for all primes p.

- **PROOF:** (\leftarrow) In this case any two distinct pure rank 1 subgroups have incomparable type. Thus if A is a pure rank 1 subgroup of G and $f: A \rightarrow G$ then f is multiplication by m/n, where m and n are relatively prime integers. Consequently, nA = A, nG = G, and $m/n \in \text{End}(G)$.
- (\rightarrow) Suppose that there is a prime p with $p^{\omega}G = A$, a pure rank 1 subgroup of G. Then $1/p \in \text{Hom}(A, G)$. Since G is q.p.i. there is $f \in \text{Hom}(G, G)$ with $f_A = 1/p$. But G is strongly indecomposable so f is a monomorphism (f is either a monomorphism or nilpotent; the lat-

ter is impossible). Furthermore, (pf-1)(A)=0 so that pf-1 is nilpotent. Thus 1+(pf-1)=pf is an automorphism of G so that pG=G, a contradiction. Consequently, $p^{\omega}G=0$ or G for all primes p.

Assume that $IT(G) \in \text{typeset }(G)$ and choose pure rank 1 subgroups A and B of G with T(A) < T(B). There is $0 \neq f \in \text{Hom}(A, B)$ so (since G is q.p.i.) there is $0 \neq g \in \text{Hom}(G, G)$ with $gi_A = f$. But B is fully invariant so $g(G) \subseteq B$, i.e., g is not a monomorphism. Thus g is nilpotent since G is strongly indecomposable. By Reid [5], $Q \otimes_Z \text{End}(G) = Q \oplus Qg$.

Since $G \neq A \oplus B$ there is $0 \neq x \in G$ and a prime p with $px = a + b \in A \oplus B$ and $h_p(a) = h_p(b) = 0$ (otherwise, $A \oplus B$ is p-prime in G for all primes p, hence pure). Consequently, there is $f: A \to G$ with f(a) = mx for some integer m relatively prime to p. But G is q.p.i. so choose $h \in \text{Hom}(G, G)$ with $hi_A = f$. Now $h = \alpha + \beta g$ for some $\alpha, \beta \in Q$ and $h(a) = (\alpha + \beta g)(a) = (m/p)(a + b) \in G$. Since $g(G) \subseteq B$, $\alpha a = (m/p)(a)$ and $\alpha = m/p$. On the other hand, $h(b) = (\alpha + \beta g)(b) = \alpha(b) = (m/p)(b) \in G$ (since g is nilpotent and $g(G) \subseteq B$) a contradiction to the assumption that $h_p(b) = 0$. The proof is now complete.

The proof of Theorem C.2 is now a consequence of the results of this section.

References

- 1. R. A. Beaumont and R. S. Pierce, Torsion Free Groups of Rank Two. Amer. Math. Soc. Mem. 38, Amer. Math. Soc., Providence, R.I., 1961.
 - 2. L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
 - 3. —, Infinite Abelian Groups, Vol II. Academic Press, New York, 1973.
- 4. C. E. Murley, The Classification of Certain Classes of Torsion Free Abelian Groups, Pacific J. Math. 40(1972), 647-665.
- 5. J. D. Reid, On the Rings of Quasi-endomorphisms of a Torsion-free Group, Topics in Abelian Groups, 51-68, Chicago, 1963.
- 6. F. Richman, A Class of Rank Two Torsion Free Groups. Studies on Abelian Groups, Springer-Verlag, 1968.
- 7. R. B. Warfield, Homomorphisms and Duality for Torsion Free Groups. Math. Z. 107, 189-200.

New Mexico State University, Las Cruces, New Mexico 88003 University of Connecticut, Storrs, Connecticut 06268