ON GENERATING SUBGROUPS OF THE AFFINE GROUP ON THE PLANE BY PAIRS OF INFINITESIMAL TRANSFORMATIONS*

RICHARD M. KOCH AND FRANKLIN LOWENTHAL

Abstract

Let G be a Lie group with Lie algebra g and let X and Y be elements of g. If every element of G can be written as a product of elements taken alternately from $\exp (t X)$ and $\exp (t Y), X$ and Y are said to generate G. A classification will be obtained here of all Lie subgroups of the affine group acting on the plane; for each such group, necessary and sufficient conditions will be found that a pair of elements in the Lie algebra generate the group. All but three subgroups of the affine group can be so generated.

I. Introduction. The real affine group $\boldsymbol{A}(2)$ acting on the plane is the set of all transformations from R^{2} to R^{2} of the form $v \rightarrow A v+\ell$, where $A \in G L(2, R)$ and $\ell \in R^{2}$. From now on denote such a transformation by $\langle A, \ell\rangle$. Then $\langle A, \ell\rangle \circ\langle B, m\rangle=\langle A B, \ell+A m\rangle$. The Lie algebra $a(2)$ of $A(2)$ consists of all $\langle A, \ell\rangle$ with $A \in M_{2}(R)$ and $\ell \in R^{2} ;[\langle A, \ell\rangle,\langle B, m\rangle]=\langle A B-B A, A m-B \ell\rangle$. We shall determine all Lie subalgebras of $a(2)$ up to conjugacy, and thereby all connected Lie subgroups of $A(2)$ up to conjugacy.

A connected Lie group G is generated by a pair of one-parameter subgroups if every element of G can be written as a finite product of elements chosen alternately from the two one-parameter subgroups. This happens just in case the Lie algebra of G is generated by the corresponding pair of infinitesimal transformations, because the set of all such finite products is an arcwise connected subgroup of G and so a Lie subgroup by Yamabe's theorem [4]. It is known that all connected subgroups of the Moebius group $w=(\alpha z+\beta) /(\nu z+\zeta), \alpha, \beta, \nu$, and ζ complex, can be generated by an appropriate pair of infinitesimal transformations with the exception of the group $w=\alpha z+\beta, \alpha>0$ [2]. This group is also a subgroup of $A(2)$; we will show that all subgroups of $A(2)$, with the exception of this group and two others, can be generated by a suitable pair of infinitesimal transformations.

[^0]
II. Subalgebras of $\boldsymbol{M}_{\mathbf{2}}(\boldsymbol{R})$.

Theorem 1. Let g be a subalgebra of $M_{2}(R)$. Then g is conjugate to precisely one of the following:
(1) $\{0\}$
(3) $R\left(\begin{array}{cc}\lambda & -1 \\ 1 & \lambda\end{array}\right)$ where $0 \leqq \lambda$
(5) $R\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(7) $\left\{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\right\}$
(9) $\left\{\left(\begin{array}{ll}\lambda a & b \\ 0 & (\lambda+1) a\end{array}\right)\right\}$ where $\lambda \in R$
(11) $s \ell(2, R)$
(2) $R\left(\begin{array}{ll}1 & 0 \\ 0 & \lambda\end{array}\right)$ where $|\lambda| \leqq 1$
(4) $R\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
(6) $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\right\}$
(8) $\left\{\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)\right\}$
(10) $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$
(12) $M_{2}(R)$.

Proof. The rational canonical form theorem implies that each onedimensional g is conjugate to an algebra listed in (2) through (5).

Lemma. If $g \subset M_{2}(R)$ is isomorphic to $R \oplus R, g$ contains the identity matrix I.
Proof. Suppose not and let e and f generate g. Choose $h \in M_{2}(R)$ so $\{e, f, I, h\}$ is a basis for $M_{2}(R)$. Then se $(2, R)=\left[M_{2}(R), M_{2}(R)\right]$ is generated by $[e, h]$ and $[f, h]$, although it is three dimensional.

Assume that g is isomorphic to $R \oplus R$ and choose e so e and I generate g; after suitable conjugation we may suppose that e is one of the matrices listed in (2) through (5); after subtracting a suitable multiple of I, we may suppose that e is one of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0-1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Thus g is conjugate to 6,7 , or 8 ; no two of these algebras are conjugate because every matrix in 6 is diagonalizable and every matrix in 7 has at least one real eigenvalue.

If g is two dimensional and non-abelian, g has a basis $\{e, f\}$ so $[e, f]=e$. Notice that $\operatorname{tr} e=0$; after suitable conjugation, then, $e=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, or $\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$. Let $f=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) ; \quad[e, f]$ is then $\left(\begin{array}{cc}0 & 2 b \\ -2 c & 2 b \\ b & 0\end{array}\right)$, $\left(\begin{array}{cc}-b-c & a-d \\ a-d & b+c\end{array}\right)$, or $\left(\begin{array}{cc}c & d-a \\ 0 & -c\end{array}\right)$; this can equal e only if $e=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$ and $f=\left(\begin{array}{cc}a & b \\ 0 & b \\ 0\end{array}\right)$, so g is conjugate to an algebra listed in (9). Distinct λ 's give distinct conjugacy classes of algebras, for if g is conjugate to $\left.\left\{\begin{array}{cc}\lambda a & b \\ 0 & (\lambda+1) a\end{array}\right)\right\}, g$ contains an element with two distinct eigenvalues one unit apart, and these eigenvalues must be λ and $\lambda+1$.

Suppose $\operatorname{dim} g=3$ and $I \notin g$. Then $g \oplus R I=M_{2}(R)$ and sl($2, R$) $=\left[M_{2}(R), M_{2}(R)\right] \subset[g, g] \subset g$, so $s l(2, R)=g$.
Finally suppose $\operatorname{dim} g=3$ and $I \in g$. Then $s \ell(2, R) \cap g$ is a two dimensional Lie algebra and so conjugate to one of $6,7,8,9$; since any algebra conjugate to $\operatorname{sl}(2, R) \cap g$ is contained in sl $(2, R)$, sl $(2, R) \cap g$ is conjugate to ($\left(\begin{array}{cc}-a / 2 & b \\ 0 & a / 2\end{array}\right)$ and g is conjugate to 10 .

Theorem 2. Every connected Lie subgroup of $G L(2, R)$ is conjugate to precisely one of the following:
(1) $\{I\}$
(3) $\left\{e^{\lambda t}\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)\right\}$
(2) $\left\{\left(\begin{array}{ll}e^{t} & 0 \\ 0 & e^{\lambda t}\end{array}\right)\right\}$ where $|\lambda| \leqq 1$
(4) $\left\{\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)\right\}$
where $0 \leqq \lambda$
(5) $\left\{e^{t}\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)\right\}$
(6) $\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a>0, b>0\right\}$
(7) $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a>0\right\}$
(8) $\left\{\left.a\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right) \right\rvert\, a>0\right\}$
(9) $\left\{\left.\left(\begin{array}{ll}a^{\lambda} & b \\ 0 & a^{\lambda+1}\end{array}\right) \right\rvert\, a>0\right\}$
(10) $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, a>0, d>0\right\}$
where $\lambda \in R$
(11) $\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=1\right\}$
(12) $\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c>0\right\}$.

Proof. An immediate consequence of Theorem 1.
III. Subalgebras of $a(\mathbf{2})$. Let g be a subalgebra of $a(2)$; define $g_{0}=$ $\left\{A \in M_{2}(R) \mid\right.$ there exists $\ell \in R^{2}$ such that $\left.\langle A, \ell\rangle \in g\right\}$ and $V=$ $\left\{\ell \in R^{2} \mid\langle 0, \ell\rangle \in g\right\}$. Then g_{0} is a subalgebra of $M_{2}(R)$ and V is a subspace of $R^{2} ; g_{0}(V) \subset V$ because $[\langle A, \ell\rangle,\langle 0, m\rangle]=\langle 0, A m\rangle$. The following sequence is exact:

$$
0 \rightarrow V \rightarrow g \rightarrow g_{0} \rightarrow 0
$$

Notice that conjugation of $\langle A, \ell\rangle \in a(2)$ by $\langle B, m\rangle \in A(2)$ yields $\left\langle B A B^{-1}, B l-B A B^{-1} m\right\rangle$. In particular g_{0} becomes $B g_{0} B^{-1}$ and V becomes $B V$.

Theorem 3. The pair $\left\{g_{0}, V\right\}$ is conjugate to precisely one of the following:
(a) $\left\{g_{0},\{0\}\right\}$ where g_{0} is one of the algebras listed in Theorem 1
(b) $\left\{g_{0}, R^{2}\right\}$ where g_{0} is one of the algebras listed in Theorem 1
(c) $\left\{g_{0}, R\binom{1}{0}\right\}$ where g_{0} is one of $\{0\}, R\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), R\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right), R\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $\left.\boldsymbol{R}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\right\},\left\{\left(\begin{array}{cc}a & b \\ 0 & (a+1) a\end{array}\right)\right\},\left\{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\right\},\left\{\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$
(d) $\left\{\boldsymbol{R}\left(\begin{array}{ll}1 & 0 \\ 0 & \lambda\end{array}\right), \boldsymbol{R}\binom{1}{0}\right\}$ or $\left\{\boldsymbol{R}\left(\begin{array}{ll}1 & 0 \\ 0 & \lambda\end{array}\right), \boldsymbol{R}\binom{0}{1}\right\}$ for $|\lambda|<1$.

Proof. We can assume that g_{0} is one of the algebras listed in Theorem 1. The condition $g_{0}(V) \subset V$ puts no restriction on V if $\operatorname{dim} V$ $=0$ or 2 ; when $\operatorname{dim} V=1, V$ can be arbitrary if $g=\{0\}$ or $R\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), V=$ $\boldsymbol{R}\binom{1}{0}$ or $\boldsymbol{R}\binom{0}{1}$ if $g=R\left(\begin{array}{ll}1 & 0 \\ 0 & \lambda\end{array}\right)-1 \leqq \lambda<1$ or $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\right\}, \quad V=R\binom{1}{0} \quad$ if $\left.g=R\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad \boldsymbol{R}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \quad\left\{\left(\begin{array}{cc}\lambda a & b \\ 0 & (\lambda+1) b\end{array}\right)\right\}, \quad\left\{\begin{array}{cc}a & b \\ 0 & a\end{array}\right)\right\}, \quad$ or $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$, and otherwise no one-dimensional V will work. When $g_{0}=\{0\}$ or $R\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, $B g_{0} B^{-1}=g_{0}$ for all B; applying an appropriate B to V we can assume $V=R\binom{1}{0}$ If $g_{0}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\right\} \quad$ or $\quad R\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right), \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) g_{0}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{-1}=g_{0} \quad$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) R\binom{1}{0}=R\binom{0}{1}$; thus V can be taken to be $R\binom{1}{0}$. If $g_{0}=R\left(\begin{array}{ll}1 & 0 \\ 0 & \lambda\end{array}\right)$ for $|\lambda|<1$ and $B g_{0} B^{-1}=g_{0}, B=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ so $R\binom{1}{0}$ and $R\binom{0}{1}$ are not conjugate.

Choose a subspace V_{1} of R^{2} so $V \oplus V_{1}=R^{2}$. Whenever $A \in g_{0}$, there is a unique $\varphi(A) \in V_{1}$ so $\langle A, \varphi(A)\rangle \in g$. Clearly $g=\{\langle A, \varphi(A)$ $\left.+\ell\rangle \mid A \in g_{0}, \ell \in V\right\}$.

Notice that $\varphi: g_{0} \rightarrow V_{1}$ is linear. Let $P: R^{2} \rightarrow V_{1}$ be the obvious projection map. Then $\varphi([A, B])=P\{A \varphi(B)-B \varphi(A)\} \quad$ since $[\langle A, \varphi(A)\rangle,\langle B, \varphi(B)\rangle]=\langle[A, B], A \varphi(B)-B \varphi(A)\rangle$.

Conjugation of g by $\langle I, m\rangle$ leaves g_{0} and V fixed and converts $\langle A, \varphi(A)\rangle$ to $\langle A, \varphi(A)-A m\rangle$. Hence we may replace $\varphi(A)$ by $P\{\varphi(A)-A m\}$ and obtain a conjugate algebra.

If $g_{0}=\{0\}, \varphi=0$. If $g_{0}=\operatorname{Re}$ where $e=\left(\begin{array}{ll}1 & 0 \\ 0 & \lambda\end{array}\right) 0<|\lambda| \leqq 1,\left(\begin{array}{cc}\lambda & -1 \\ 1 & \lambda\end{array}\right)$ $0 \leqq \lambda$ or $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), m$ can be found so $\varphi(e)=e m$ since det $e \neq 0$. Thus after conjugation $\varphi=0$. If $I \in g_{0}$ we can suppose $\varphi(I)=0$ since I is nonsingular; whenever $A \in g_{0}, 0=\varphi([I, A])=P\{\varphi(A)\}=\varphi(A)$, so $\varphi=0$. If $g_{0}=s \ell(2, R), \varphi=0$ unless $V=\{0\}$ and $V_{1}=R^{2}$. In this case let $e=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), f=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad g=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) ;$ as usual we may assume $\varphi(e)=0$. Then $2 \varphi(f)=\varphi[e, f]=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \varphi(f)$, so $\varphi(f)=0$. Similarly $-2 \varphi(g)=\varphi[e, g]=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \varphi(g)$, so $\varphi(g)=0$
 pose $\lambda \neq 0,-1$, or -2 . Then $\operatorname{det}\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda+1\end{array}\right) \neq 0$ and we can suppose $\varphi(e)=0 ; \quad-\varphi(f)=\varphi[e, f]=P\left\{\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda+1\end{array}\right) \varphi(f)\right\} . \quad$ If $\quad V=\{0\} \quad$ and $\varphi(f)=\binom{v_{1}}{v_{2}}, \quad\binom{(1+\lambda) v_{1}}{\left(2+\lambda v_{2}\right.}=0$ so $v_{1}=v_{2}=0$ and $\varphi=0$. If $V=R\binom{1}{0}$
let $V_{1}=R\binom{0}{1}$ and $\varphi(f)=\binom{0}{0}$; then $-\binom{0}{v}=\binom{0}{(\lambda+1) v}$ and $v=0$, so $\varphi=0$. In short, φ can be taken to be zero unless $g_{0}=\boldsymbol{R}\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), R\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $\left\{\left(\begin{array}{ll}0 & b \\ 0 & a\end{array}\right)\right\},\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)\right\}$, or $\left\{\left(\begin{array}{cc}2 a & b \\ 0 & a\end{array}\right)\right\}$. The following five lemmas complete the classification.

Lemma 1. Let $g_{0}=R\left(\begin{array}{ll}d & 0 \\ 0\end{array}\right)$. If $V=R\binom{0}{1}$ or R^{2}, φ can be taken to be zero. If $V=\{0\}$ or $R\binom{1}{0}, \varphi\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ can be taken to be 0 or $\binom{0}{1}$.

Proof. If $B g_{0} B^{-1}=g_{0}, B=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$; such a B preserves all possible V. Conjugation of $\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \varphi\left(\begin{array}{ll}\left(\begin{array}{l}1 \\ 0\end{array}\right. & 0\end{array}\right)\right\rangle$ by $\left\langle\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right), m\right\rangle$ yields $\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right.$,
 the second part of this expression equal 0 or $\binom{0}{1}$. We are interested in the projection of this term on V_{1}; since $V_{1}=R^{2}, R\binom{0}{1}, R\binom{1}{0}$, and $\{0\}$ when $V=\{0\}, R\binom{1}{0}, R\binom{0}{1}$, and R^{2}, the lemma follows.

Lemma 2. Let $g_{0}=R\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. If $V=R^{2}, \varphi=0$. If $V=\{0\}$ or $R\binom{1}{0}, \varphi\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ can be taken to be 0 or $\binom{0}{1}$.

Proof. If $B g_{0} B^{-1}=g_{0}, B=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$; such a B preserves all possible V. Conjugation of $\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \varphi\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right\rangle$ by $\left\langle\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right), m\right\rangle$ yields $\left\langle\left(\begin{array}{ll}0 & a / d \\ 0 & 0\end{array}\right)\right.$, $\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \varphi\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)-\left(\begin{array}{cc}0 & a / d \\ 0 & 0\end{array}\right) m\right\rangle$. Clearly $a=d$ and m can be chosen to make the second part of this expression equal 0 or $\binom{0}{1}$.

Lemma 3. Let $g_{0}=\left\{\left(\begin{array}{ll}0 & b \\ 0 & a\end{array}\right)\right\}$. If $V=R\binom{1}{0}$ or R^{2}, φ can be taken to be zero. If $V=\{0\}, \varphi\left(\begin{array}{cc}0 & b \\ 0 & a\end{array}\right)$ can be taken to be 0 or $\binom{a}{0}$.

Proof. Let $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad f=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right), \quad \varphi(e)=\binom{v_{1}}{v_{2}}, \quad \varphi(f)=\binom{w_{1}}{w_{2}}$. If $\quad V=\{0\}, \quad\binom{v_{1}}{v_{2}}=\varphi(e)=\varphi[e, f]=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \quad\binom{w_{1}}{w_{2}}-\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \quad\binom{v_{1}}{v_{2}}=$ $\binom{w_{2}}{-v_{2}}$, so $v_{1}=w_{2}$ and $v_{2}=0$. If $V=R\binom{1}{0}$, let $V_{1}=R\binom{0}{1}$; then $v_{1}=$ $w_{1}=0 \quad$ and $\quad\left(\underset{-v_{2}}{0}\right)=\varphi(e)=\varphi[e, f]=P\left\{\binom{w_{2}}{-v_{2}}\right\}=\binom{0}{-v_{2}}$, so $\quad v_{2}$ $=0$.

If $B g_{0} B^{-1}=g_{0}, B=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$; such a B preserves all possible V. Con-
 $\left.\left(\begin{array}{ll}0 & b / d \\ 0 & 1\end{array}\right) m\right\rangle$. If $V=R\binom{1}{0}$, we are only interested in the projection of the second parts of these expressions on $R\binom{0}{1}$; since $\varphi(e)=0$, the projection of $\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right) \varphi(e)-\left(\begin{array}{cc}0 & a / d \\ 0 & 0\end{array}\right) m$ is automatically zero; clearly $a=d$, $b=0$, and m can be chosen to make the projection of $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \varphi(f)$ $-\left(\begin{array}{cc}0 & b / d \\ 0 & 1\end{array}\right) m$ vanish. If $V=\{0\}$, let $\tilde{\varphi}$ be the conjugate of φ;

$$
\begin{aligned}
\tilde{\varphi}(e)=\frac{d}{a} \tilde{\varphi}\left(\begin{array}{cc}
0 & a / d \\
0 & 0
\end{array}\right) & =\frac{d}{a}\left\{\binom{a b}{0 d}\binom{v_{1}}{0}\right. \\
& \left.-\left(\begin{array}{cc}
0 & a / d \\
0 & 0
\end{array}\right)\binom{m_{1}}{m_{2}}\right\}=\binom{d v_{1}-m_{2}}{0}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{\varphi}(f)= & \tilde{\varphi}\left(\begin{array}{rr}
0 & b / d \\
0 & 1
\end{array}\right)-\frac{b}{d} \tilde{\varphi}(e)=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\binom{w_{1}}{v_{1}} \\
& -\left(\begin{array}{cc}
0 & b / d \\
0 & 1
\end{array}\right)\binom{m_{1}}{m_{2}}-\binom{b v_{1}-b / d m_{2}}{0}=\binom{a w_{1}}{d v_{1}-m_{2}}
\end{aligned}
$$

Clearly a, d, and m_{2} can be chosen to make $\tilde{\varphi}(e)=0$ and $\tilde{\varphi}(f)$ either 0 or $\binom{1}{0}$.

Lemma 4. Let $g_{0}=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)\right\}$. If $V=\{0\}$ or R^{2}, φ can be taken to be zero. If $V=R\binom{1}{0}, \varphi\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ can be taken to be 0 or $\binom{0}{a}$.
Proof. Let $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad f=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \quad \varphi(e)=\binom{v_{1}}{v_{2}}, \quad \varphi(f)=\binom{w_{1}}{w_{2}} . \quad$ If $V=\{0\}, \quad-\binom{v_{1}}{v_{2}}=-\varphi(e)=\varphi[e, f]=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \quad\binom{w_{1}}{w_{2}}-\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \quad\binom{v_{1}}{v_{2}}=$ $\left({ }^{w_{2}-v_{1}}\right)$, so $w_{2}=v_{2}=0$. Conjugation by $\left\langle I,\binom{w_{1}}{v_{1}}\right\rangle$ converts $\langle e, \varphi(e)\rangle$ and $\langle f, \varphi(f)\rangle$ to $\langle e, 0\rangle$ and $\langle f, 0\rangle$, so φ can be taken to be zero.

If $V=\boldsymbol{R}\binom{1}{0}$, let $V_{1}=\boldsymbol{R}\binom{0}{1}$; then $v_{1}=w_{1}=0$ and $-\binom{0}{v_{2}}=\varphi[e, f]$ $=P\left\{\binom{w_{2}}{0}\right\}=0$, so $v_{2}=0$. If $B g_{0} B^{-1}=g_{0}, B=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$. Conjugation of $\langle e, 0\rangle$ and $\langle f, \varphi(f)\rangle$ by $\left\langle\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right),\binom{m_{1}}{m_{2}}\right\rangle$ yields $\left\langle\left(\begin{array}{cc}0 & a / d \\ 0 & 0\end{array}\right),-\left(\begin{array}{cc}0 & a / d \\ 0 & 0\end{array}\right)\binom{m_{1}}{m_{2}}\right\rangle$ and $\left\langle\left(\begin{array}{cc}1 & -b / a \\ 0 & 0\end{array}\right) \quad\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \quad\binom{0}{w_{2}}-\left(\begin{array}{cc}1 & -b d \\ 0 & 0\end{array}\right) \quad\binom{m_{1}}{m_{2}}\right\rangle$; we are only interested in the projection of the second parts of these expressions on $R\binom{0}{1}$, so $\tilde{\varphi}(e)=0, \tilde{\varphi}(f)=\binom{0}{d w_{2}}$. Clearly d can be chosen so $\tilde{\varphi}(f)=0$ or $\binom{0}{1}$.

Lemma 5. Let $g_{0}=\left\{\left(\begin{array}{cc}2 a & b \\ 0 & a\end{array}\right)\right\}$. If $V=R^{2}, \varphi$ is zero. If $V=\{0\}$ or $R\binom{1}{0}, \varphi\left(\begin{array}{ll}2 a & b \\ 0 & a\end{array}\right)$ can be taken to be 0 or $\binom{0}{b}$.

Proof. Let $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), f=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$. Since f is non-singular, $\varphi(f)$ can be taken to be zero; let $\varphi(e)=\binom{v_{1}}{v_{2}}$. If $\mathrm{V}=\{0\},-\binom{v_{1}}{v_{2}}=-\varphi(e)=$ $\varphi[e, f]=-\left(\begin{array}{cc}2 & 0 \\ 0 & 1\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{-2 v_{1}}{-v_{2}}$, so $v_{1}=0$. If $V=R\binom{1}{0}$, let $V_{1}=$ $\boldsymbol{R}\binom{0}{1}$; then $v_{1}=0$.

If $B g_{0} B^{-1}=g_{0}, B=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$. Conjugation of $\langle e, \varphi(e)\rangle$ and $\langle f, 0\rangle$ by $\left\langle\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right),\binom{m_{1}}{m_{2}}\right\rangle$ yields respectively

$$
\begin{gathered}
\left\langle\left(\begin{array}{rr}
0 & a / d \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\binom{0}{v_{2}}-\left(\begin{array}{rr}
0 & a / d \\
0 & 0
\end{array}\right)\binom{m_{1}}{m_{2}}\right\rangle \\
\left\langle\left(\begin{array}{rr}
2 & -b / d \\
0 & 1
\end{array}\right),-\left(\begin{array}{rr}
2 & -b / d \\
0 & 1
\end{array}\right)\binom{m_{1}}{m_{2}}\right\rangle
\end{gathered}
$$

If $V=\{0\}$,

$$
\tilde{\varphi}(e)=\binom{\frac{b d}{a} v_{2}-m_{2}}{\frac{d^{2}}{a} v_{2}} \quad, \quad \tilde{\varphi}(f)=\binom{-2 m_{1}+\frac{b^{2}}{a} v_{2}}{\frac{b d}{a} v_{2}-m_{2}}
$$

Clearly a, b, d, m_{1}, and m_{2} can be chosen so $\tilde{\varphi}(e)=0$ or ($\left.\begin{array}{l}0 \\ 1\end{array}\right)$ and $\tilde{\varphi}(f)$ $=0$. If $V=R\left({ }_{0}^{1}\right)$, we are only interested in the projections of the above expressions on $R\binom{0}{1}$, so $\tilde{\varphi}(e)=\left({ }_{\left(d^{2} l a\right)_{2}}^{0}\right)$ and $\tilde{\varphi}(f)=\left(\underset{\left(b d / a v_{2}-m_{2}\right.}{0}\right)$; clearly a, b, d, and m_{2} can be chosen so $\tilde{\varphi}(e)=0$ or $\binom{0}{1}$ and $\tilde{\varphi}(f)=0$.

Combining the above results, we obtain:
Theorem 4. Let g be a subalgebra of $a(2)$. Then g is conjugate to precisely one of the following:
A. $\left\{\langle A, 0\rangle \mid A \in g_{0}\right\}$ or $\left\{\langle A, \ell\rangle \mid A \in g_{0}, \ell \in R^{2}\right\}$ where g_{0} is one of the following

1. $\{0\}$
2. $R\left(\begin{array}{ll}1 & 0 \\ 0 & \lambda\end{array}\right)$ where $|\lambda| \leqq 1$
3. $R\left(\begin{array}{rr}\lambda & -1 \\ 1 & \lambda\end{array}\right)$ where $0 \leqq \lambda$
4. $R\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
5. $R\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
6. $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\right\}$
7. $\left\{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\right\}$
8. $\left\{\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)\right\}$
9. $\left\{\left(\begin{array}{ll}\lambda a & b \\ 0 & (\lambda+1) a\end{array}\right)\right\}$ where $\lambda \in R$
10. $\operatorname{se}(2, R)$
11. $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$
12. $M_{2}(R)$.
B. $\left\{\langle A, \ell\rangle \mid A \in g_{0}, \ell \in V\right\}$ where $\left\{g_{0}, V\right\}$ is one of
13. $0, R\binom{1}{0}$
14. $R\left(\begin{array}{ll}1 & 0 \\ 0 & \lambda\end{array}\right), R\binom{1}{0}$
where $|\lambda| \leqq 1$
15. $R\left(\begin{array}{cc}1 & 0 \\ 0 & \lambda\end{array}\right), R\binom{0}{1}$
16. $R\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), R\binom{1}{0}$
where $|\lambda|<1$
17. $R\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), R\binom{1}{0}$
18. $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\right\}, R\binom{1}{0}$
19. $\left\{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\right\}, R\binom{1}{0}$
20. $\left\{\left(\begin{array}{ll}\lambda a & b \\ 0 & (\lambda+1) a\end{array}\right)\right\}, R\binom{1}{0}$
21. $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}, R\binom{1}{0}$
where $\lambda \in R$
C.
22. $\left\{\left.\left\langle\left(\begin{array}{ll}r & 0 \\ 0 & 0\end{array}\right),\binom{0}{r}\right\rangle \right\rvert\, r \in R\right\}$
23. $\left\{\left.\left\langle\left(\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right),\binom{0}{r}\right\rangle \right\rvert\, r \in R\right\}$
24. $\left\{\left.\left\langle\left(\begin{array}{ll}0 & r \\ 0 & s\end{array}\right),\binom{s}{0}\right\rangle \right\rvert\, r, s \in R\right\}$
25. $\left\{\left.\left\langle\left(\begin{array}{ll}2 r & s \\ 0 & r\end{array}\right),\binom{0}{s}\right\rangle \right\rvert\, r, s \in R\right\}$
26. $\left\{\left.\left\langle\left(\begin{array}{ll}r & 0 \\ 0 & 0\end{array}\right),\binom{s}{r}\right\rangle \right\rvert\, r, s \in R\right\}$
27. $\left\{\left.\left\langle\left(\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right),\binom{s}{r}\right\rangle \right\rvert\, r, s \in R\right\}$
28. $\left\{\left.\left\langle\left(\begin{array}{cc}r & s \\ 0 & 0\end{array}\right),\binom{t}{r}\right\rangle \right\rvert\, r, s, t \in R\right\}$
29. $\left\{\left.\left\langle\left(\begin{array}{ll}2 r & s \\ 0 & r\end{array}\right),\binom{t}{s}\right\rangle \right\rvert\, r, s, t \in R\right\}$

Theorem 5. Let G be a connected Lie subgroup of $A(2)$. Then G is conjugate to precisely one of the following:
A. $\left\{\langle A, 0\rangle \mid A \in G_{0}\right\}$ or $\left\{\langle A, \ell\rangle \mid A \in G_{0}, \ell \in R^{2}\right\}$ where G_{0} is one of the following,

1. $\{I\}$
2. $\left\{\mathrm{e}^{\lambda t}\left(\begin{array}{rr}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)\right\}$ where $\lambda \geqq 0$
3. $\left\{\left(\begin{array}{ll}\mathrm{e}^{t} & 0 \\ 0 & \mathrm{e}^{\lambda t}\end{array}\right)\right\}$ where $|\lambda| \leqq 1$
4. $\left\{\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right)\right\}$
5. $\left\{\mathrm{e}^{t}\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)\right\}$
6. $\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a>0, b>0\right\}$
7. $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a>0\right\}$
8. $\left\{\left.a\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right) \right\rvert\, a>0\right\}$
9. $\left\{\left.\left(\begin{array}{ll}a^{\lambda} & b \\ 0 & a^{\lambda+1}\end{array}\right) \right\rvert\, a>0\right\}$
10. $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, a>0, d>0\right\}$
where $\lambda \in R$
11. $\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=1\right\} \quad$ 12. $\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c \neq 0\right\}$
B. $\left\{\langle A, \ell\rangle \mid A \in G_{0}, \ell \in V\right\}$ where $\left\{G_{0}, V\right\}$ is one of
12. $\{I\}, R\binom{1}{0}$
13. $\left\{\left(\begin{array}{ll}\mathrm{e}^{t} & 0 \\ 0 & \mathrm{e}^{\lambda t}\end{array}\right)\right\}, R\binom{1}{0}$ where $|\lambda| \leqq 1$
14. $\left\{\left(\begin{array}{ll}\mathrm{e}^{t} & 0 \\ 0 & \mathrm{e}^{t t}\end{array}\right)\right\}, R\binom{0}{1}$
15. $\left\{\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)\right\}, R\binom{1}{0}$
where $|\lambda|<1$
16. $\left\{\mathrm{e}^{t}\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)\right\} \quad R\binom{1}{0}$
17. $\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a>0, b>0\right\}, R\binom{1}{0}$
18. $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a>0\right\}, R\binom{1}{0}$
19. $\left\{\left.\left(\begin{array}{ll}a^{\lambda} & b \\ 0 & a^{\lambda+1}\end{array}\right) \right\rvert\, a>0\right\}, R\binom{1}{0}$ where $\lambda \in R$
20. $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, a>0, d>0\right\}, R\binom{1}{0}$
C.
21. $\left\{\left.\left\langle\left(\begin{array}{cc}\mathrm{e}^{t} & 0 \\ 0 & \mathrm{l}\end{array}\right),\binom{0}{t}\right\rangle \right\rvert\, t \in R\right\}$
22. $\left\{\left.\left\langle\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right),\binom{t^{2} / 2}{t}\right\rangle \right\rvert\, t \in R\right\}$
23. $\left\{\left.\left\langle\left(\begin{array}{cc}1 & t \\ 0 & e^{u}\end{array}\right),\binom{u}{0}\right\rangle \right\rvert\, t, u \in R\right\}$
24. $\left\{\left.\left\langle\left(\begin{array}{cc}t^{2} & t u \\ 0 & t\end{array}\right),\binom{u^{2} / 2}{u}\right\rangle \quad \right\rvert\, t>0, u \in R\right\}$
25. $\left\{\left.\left\langle\left(\begin{array}{cc}e^{t} & 0 \\ 0 & 1\end{array}\right),\binom{u}{t}\right\rangle \right\rvert\, t, u \in R\right\}$
26. $\left\{\left.\left\langle\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right),\binom{u}{t}\right\rangle \right\rvert\, t, u \in R\right\}$
27. $\left\{\left.\left\langle\left(\begin{array}{cc}e^{t} & u \\ 0 & 1\end{array}\right),\binom{v}{t}\right\rangle \right\rvert\, t, u, v \in R\right\}$
28. $\left\{\left.\left\langle\left(\begin{array}{cc}t^{2} & t u \\ 0 & t\end{array}\right),\binom{v}{u}\right\rangle \right\rvert\, t>0, u, v \in R\right\}$
IV. Generation of subalgebras of $M_{2}(R)$ by pairs of infinitesimal transformations.

Theorem 6. Let $X, Y \in M_{2}(R)$.
a. If X and Y have no common complex eigenvector and $\operatorname{tr} X \neq 0$ or $\operatorname{tr} Y \neq 0, X$ and Y generate $M_{2}(R)$
b. If X and Y have no common complex eigenvector and $\operatorname{tr} X=\operatorname{tr} Y$ $=0, X$ and Y generate sl $(2, R)$
c. If X and Y have a common complex eigenvector and $X, Y,[X, Y]$ are linearly independent, X and Y generate a subalgebra conjugate to $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$
d. Otherwise X and Y generate a subalgebra of dimension $\leqq 2$
e. All subalgebras of $M_{2}(R)$ can be generated by appropriate X and Y.

Proof. If g is an algebra listed in Theorem 1 other than $s \ell(2, R)$ and $M_{2}(R)$, there is a complex vector v such that $A v=\lambda v$ for all $A \in g$. Consequently if X and Y have no common complex eigenvector, they generate a subalgebra conjugate to $s \ell(2, R)$ or $M_{2}(R)$. But both of these subalgebras are self-conjugate. The rest of the theorem follows immediately.

Remark. If g is a subalgebra of $M_{2}(R)$ and X and Y belong to g, the above theorem gives a satisfactory necessary and sufficient condition that X and Y generate g, since the generation problem is trivial when $\operatorname{dim} g \leqq 2$.
V. Generation of subalgebras of $a(2)$ by pairs of infinitesimal transformations. Let g be a subalgebra of $a(2), X$ and Y elements of g. We seek a simple necessary and sufficient condition that X and Y generate g. The problem is trivial when $\operatorname{dim} g \leqq 2$; if $\operatorname{dim} g=3, X$ and Y generate g just in case X, Y, and $[X, Y]$ are linearly independent. When $g \rightarrow g_{0}$ is an isomorphism, the problem was solved in the previous section. Referring to Theorem 4, we are left with algebras 6 through 12 when $V=R^{2}$ and 21.

Theorem 7. Let $g=\left\{\langle A, \ell\rangle \mid A \in g_{0}, \ell \in R^{2}\right\}$ where $g_{0}=R\left(\begin{array}{cc}\lambda & -1 \\ 1 & \lambda\end{array}\right)$ $0 \leqq \lambda,\left\{\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)\right\}$, sl $(2, R)$, or $M_{2}(R)$. Let $X=\langle A, \ell\rangle$ and $Y=\langle B, m\rangle$ belong to g. Then X and Y generate g if and only if
(1) A and B generate g_{0}
(2) The equations $A v=\ell$ and $B v=m$ cannot be simultaneously solved for v; equivalently A is nonsingular and $m \neq B A^{-1} \ell$ or B is nonsingular and $\ell \neq A B^{-1} m$ or A and B are singular and one of $\ell \notin$ range $A, m \notin$ range B.

Moreover, such a pair always exists.
Proof. The first condition is obviously necessary. If v satisfies the second condition, conjugation of X and Y by $\langle I, v\rangle$ produces $\langle A, 0\rangle$ and $\langle B, 0\rangle$, so X and Y generate a subalgebra conjugate to $\left\{\langle A, 0\rangle \mid A \in g_{0}\right\}$.

Conversely, suppose 1 and 2 hold; then X and Y generate a sub-
algebra \tilde{g} such that $\tilde{g}_{0}=g_{0}$. If $\tilde{V}=R^{2}, \tilde{g}=g$; otherwise $\tilde{V}=\{0\}$ by Theorem 3. Then \tilde{g} is conjugate to $\left\{\langle A, 0\rangle \mid A \in g_{0}\right\}$ by Theorem 4. Let $\langle C, w\rangle \in A(2)$ induce this conjugation; then X and Y become $\left\langle C A C^{-1}, C \ell-C A C^{-1} w\right\rangle$ and $\left\langle C B C^{-1}, C m-C B C^{-1} w\right\rangle$, so $C \ell-$ $C A C^{-1} w=0, C m-C B C^{-1} w=0$; since C is nonsingular, $A\left(C^{-1} w\right)$ $=\ell, B\left(C^{-1} w\right)=m$.
If A is nonsingular, the vector v obviously exists just in case $m=$ $B A^{-1} v$. If A and B generate g_{0} and both are singular, g_{0} must be sl $(2, \boldsymbol{R})$ or $M_{2}(\boldsymbol{R})$, so A and B must have rank 1 and $\operatorname{Ker} A \cap \operatorname{Ker} B=$ $\{0\}$. Suppose $\ell \in$ range A and $m \in$ range B. Let $A v=\ell$ and suppose that v_{1} generates Ker A; then $A\left(v+\lambda v_{1}\right)=\ell$; since $v_{1} \notin \operatorname{Ker} B, B v_{1}$ generates the range of B and λ exists such that $B\left(v+\lambda v_{1}\right)=m$.

The existence of a generating pair is clear.
Theorem 8. Let $g=\left\{\left.\left\langle\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), \ell\right\rangle \right\rvert\, \ell \in R^{2}\right\}$. Let $X=\langle A, \ell\rangle$ and $Y=\langle B, m\rangle$ belong to g . Then X and Y generate g if and only if
(1) A and B are linearly independent,
(2) Am-Bl belongs to neither $R\binom{1}{0}$ nor $R\binom{0}{1}$.

Moreover, g can always be generated by such a pair.
Proof. These conditions are necessary. For example, suppose $A m-B l \in R\left({ }_{1}^{0}\right)$. Then the subspace of g generated by X, Y, and $[X, Y]=\langle 0, A m-B \ell\rangle$ is a subalgebra, so X and Y generate an algebra of dimension at most 3 .
Conversely suppose the above conditions hold. Then X and Y generate an algebra \tilde{g} with $\tilde{g}_{0}=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)\right\}$; it is enough to prove that $\tilde{V}=R^{2}$. At any rate \tilde{V} is invariant under \tilde{g}_{0} and so equal to $\{0\}$, $\boldsymbol{R}\left({ }_{0}^{1}\right), \boldsymbol{R}\left({ }_{1}^{(}\right)$, or \boldsymbol{R}^{2}. But $[\langle A, \ell\rangle,\langle B, m\rangle]=\langle 0, A m-B \ell\rangle$ and $A m-$ $B l \notin R\binom{1}{0}$ or $R\binom{0}{1}$.
The above conditions are satisfied by $\left.X=\left\langle\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), 0\right\rangle$ and $Y=$ $\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\binom{1}{1}\right\rangle$.
Theorem 9. Let $g=\left\{\langle A, \ell\rangle \mid A \in g_{0}, \ell \in R^{2}\right\}$ where $\left.g_{0}=\left\{\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\right\}$ or $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$. Let $X=\langle A, \ell\rangle$ and $Y=\langle B, m\rangle$ belong to g. Then X and Y generate g if and only if
(1) A and B generate g_{0},
(2) $\mathrm{Am}-\mathrm{Bl} \notin R\left({ }_{0}^{1}\right)$.

Moreover, g can always be generated by such a pair.
Proof. These conditions are necessary. Indeed suppose $A m$ $B l \in R\binom{1}{0}$. If $\left.g_{0}=\left\{\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\right\}$, the subspace generated by X, Y, and $\left\langle 0,\binom{1}{0}\right\rangle$ is a subalgebra of dimension at most 3 . If $g_{0}=\left\{\left(\begin{array}{c}a, b \\ 0 \\ d\end{array}\right)\right\}$, the subspace generated by $X, Y,\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), 0\right\rangle$ and $\left\langle 0,\binom{1}{0}\right\rangle$ is a subalgebra of dimension at most 4.

Conversely suppose 1 and 2 hold; then X and Y generate an algebra \tilde{g} with $\tilde{g}_{0}=g_{0}$. It is enough to prove that $\tilde{V}=R^{2}$; at any rate, \tilde{V} is invariant under g_{0} and so $\{0\}, R\binom{1}{0}$, or R^{2}. If $g_{0}=\left\{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\right\}, A m-$ $B l \in \tilde{V}$, so \tilde{V} is not $\{0\}$ or $R\binom{1}{0}$. If $g_{0}=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\rangle$, \tilde{g} contains $\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right.$, $\left.\binom{s_{1}}{s_{2}}\right\rangle$ and $[X, Y]=\left\langle\left(\begin{array}{ll}0 & t \\ 0 & 0\end{array}\right),\binom{t_{1}}{t_{2}}\right\rangle$ for some s_{1}, s_{2}, t, t_{1}, and t_{2}; we are assuming $t_{2} \neq 0$. Thus \tilde{g} contains the bracket of these two elements, $\left\langle 0,\binom{t_{1}}{t_{2}}-\binom{t s_{2}}{0}\right\rangle$, and \tilde{V} is not $\{0\}$ or $R\binom{1}{0}$.

If $g_{0}=\left\langle\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\right\}$, the conditions are satisfied by $X=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), 0\right\rangle$ and $Y=\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\binom{0}{0}\right\rangle$. If $\left.g_{0}=\left\{\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$ the conditions are satisfied by $X=\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right), 0\right\rangle$ and $Y=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\binom{0}{1}\right\rangle$.

Theorem 10. Let $g=\left\{\left.\left\langle\left(\begin{array}{cc}\lambda a \\ 0 & (\lambda+1) a\end{array}\right), \ell\right\rangle \right\rvert\, a, b \in R, \ell \in R^{2}\right\}$ for $\lambda \in R$. Let $X=\langle A, \ell\rangle$ and $Y=\langle B, m\rangle$ belong to g. Then X and Y generate g if and only if
(1) A and B are linearly independent,
(2) $(A-\beta) m-(B+\alpha) \ell \notin R\binom{1}{0}$ where $[A, B]=\alpha A+\beta B$.

Moreover g can be generated by such a pair unless $\lambda=-2$.
Proof. If $(A-\beta) m-(B-\alpha) \ell \in R\binom{1}{0}$, the subspace generated by X, Y, and $\left\langle 0,\binom{1}{0}\right\rangle$ is a subalgebra of dimension at most 3 .

Conversely suppose these conditions hold and let X and Y generate \tilde{g}; then $\tilde{g}_{0}=\left\{\left(\begin{array}{cc}\lambda a & b \\ 0 & (\lambda+1) a\end{array}\right)\right\}$ and it is sufficient to show that $\tilde{V}=R^{2}$; since \tilde{V} is invariant under $\tilde{g}_{0}, \tilde{V}=\{0\}, R\left(\frac{1}{0}\right)$, or R^{2}. But \tilde{g} contains $[X, Y]-\alpha X-\beta Y=\{0,(A-\beta) m-(B+\alpha) \ell\rangle$, so $\tilde{V}=R^{2}$.

If $\lambda \neq-2$, let $X=\left\langle\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda+1\end{array}\right), 0\right\rangle, Y=\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\binom{0}{1}\right\rangle$ and notice that the above conditions hold. If $\lambda=-2$. notice that

$$
\left[\left(\begin{array}{ll}
2 a & b \\
0 & a
\end{array}\right),\left(\begin{array}{ll}
2 c & d \\
0 & c
\end{array}\right)\right]=\left(\begin{array}{ll}
0 & a d-b c \\
0 & 0
\end{array}\right)=-c\left(\begin{array}{ll}
2 a & b \\
0 & a
\end{array}\right)+a\left(\begin{array}{ll}
2 c & d \\
0 & c
\end{array}\right)
$$

and

$$
\begin{gathered}
\left\{\left(\begin{array}{cc}
2 a & b \\
0 & a
\end{array}\right)-a\right\}\binom{m_{x}}{m_{y}}-\left\{\left(\begin{array}{cc}
2 c & d \\
0 & c
\end{array}\right)-c\right\}\binom{\ell_{x}}{\ell_{y}} \\
=\binom{a m_{x}+b m_{y}-c \ell_{x}-d \ell_{y}}{0} .
\end{gathered}
$$

Theorem 11. Let $g=\left\{\left\langle\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right),\binom{e}{0}\right\rangle\right\}$. Let $X=\langle A, \ell\rangle$ and $Y=$ $\langle B, m\rangle$ belong to g. Then X and Y generate g if and only if
(1) A and B generate $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$,
(2) $A m-B l \neq 0$.

Moreover, g can always be generated by such a pair.
Proof. If $A m-B l=0$, the subspace generated by X, Y, and $\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), 0\right\rangle$ is a subalgebra of dimension at most 3 .

Conversely suppose these conditions hold and let X and Y generate \tilde{g}; then $\tilde{g}_{0}=\left\{\left(\begin{array}{cc}a \\ 0 & b \\ 0\end{array}\right)\right\}$ and it is enough if $\tilde{V} \neq\{0\}$. But \tilde{g} contains $\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\binom{s}{0}\right\rangle$ and $[X, Y]=\left\langle\left(\begin{array}{cc}0 & t \\ 0 & 0\end{array}\right),\binom{u}{0}\right\rangle$ for some s, t, u; we are assuming $u \neq 0$. Thus \tilde{g} contains the bracket of these two elements, $\left\langle 0,\left(\begin{array}{l}\left.\left({ }_{0}^{u}\right)\right\rangle,\end{array}\right.\right.$ and $\tilde{V} \neq\{0\}$.

The conditions are satisfied by $X=\left\langle\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), 0\right\rangle$ and $Y=\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)\right.$, $\left.\binom{1}{0}\right\rangle$.

Theorem 12. Every connected subgroup of A(2) not conjugate to $\left\{\left.\left\langle\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), \ell\right\rangle \right\rvert\, a>0, \quad l \in R^{2}\right\}, \quad\left\{\left.\left\langle\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right),\binom{c}{0}\right\rangle \right\rvert\, a>0, \quad b, \quad c \in R\right\}$, or $\left.\left.\left\{\left\langle\begin{array}{cc}a & c_{0}^{2} \\ 0 & a\end{array}\right), \ell\right\rangle \right\rvert\, a>0, b \in R, \ell \in R^{2}\right\}$ can be generated by an appropriate pair of infinitesimal transformations.

Proof. It suffices to consider the three dimensional g on the list in Theorem 4. Every non-abelian three dimensional Lie algebra can be generated by appropriate X and Y except the Lie algebra $\left\{\left\langle\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), \ell\right\rangle$ $\left.\mid a \in R, \ell \in R^{2}\right\}[1]$; we should show that only two algebras on our list are isomorphic to this algebra. It is easier to proceed directly; we already know that 1 through 12 can be generated if $V=\{0\}$. If $V=R^{2}$ pick $X=\left\langle 0,\binom{1}{1}\right\rangle$; let $Y=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), 0\right\rangle$ in case 2 if $\left.\lambda \neq 1,\left\langle\begin{array}{cc}\left(\begin{array}{c}1 \\ 1\end{array}\right. & -1 \\ 1\end{array}\right), 0\right\rangle$ in case 3 if $\lambda \neq 1,\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right), 0\right\rangle$ in case 4 , and $\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 0\right\rangle$ in case 5 . In case 3 when $\lambda=1$ let $X=\left\langle 0,\binom{1}{0}\right\rangle, Y=\left\langle\left(\begin{array}{ll}1 & -1 \\ 1 & 1\end{array}\right), 0\right\rangle$. In case 18 let $X=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), 0\right\rangle, Y=\left\langle\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\binom{1}{0}\right\rangle$. In case 19 let $X=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), 0\right\rangle, Y=$ $\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\binom{1}{0}\right\rangle$. In case 20 when $\lambda \neq-1$ let $X=\left\langle\left(\begin{array}{cc}\begin{array}{c}1 \\ 0\end{array} 0+1\end{array}\right), 0\right\rangle, \quad Y=$
 case 29 let $X=\left\langle\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right), 0\right\rangle, Y=\left\langle\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\binom{1}{1}\right\rangle$.

Remark. Notice that the only subgroup of $A(2)$ conjugate to $G=$ $\left\{\left.\left\langle\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right), \ell\right\rangle \right\rvert\, a>0, \ell \in R^{2}\right\}$ is G itself.

References

1. R. Koch and F. Lowenthal, Uniform finite generation of three dimensional linear Lie groups, Can. J. Math. 27 (1975), 396-417.
2. F. Lowenthal, On generating subgroups of the Moebius group by pairs of infinitesimal transformations, Pacific J. Math. 26 (1968), 141-147.
3. -_, Uniform finite generation of the affine group, Pacific J. Math. 40 (1972), 341-348.
4. Hidehiko Yamabe, On an arcwise connected subgroup of a Lie group, Osaka J. Math. 2 (1950), 13-14.

University of Oregon, Eugene, Oregon
University of Wisconsin at Parkside, Kenosha, Wisconsin

[^0]: *Classification: Primary, 22E15 and 50D10; Secondary, None.
 Received by the Editors April 22, 1974.

