## HOMOTOPY-ALGEBRAIC STRUCTURES

F. D. WILLIAMS

In topology, there are many objects of study that consist of a space together with an "operation" on it. One may think of a topological group structure, an H -space structure, a homotopy self-equivalence, etc. One wishes to classify such operations up to homotopy and to consider the possible relations such an operation may satisfy. In this paper we provide a general framework to study these questions in terms of the Postnikov system of the space in question. Our model is the well-known fact that a space is an H -space if and only if its Postnikov invariants are primitive, and we are inspired by the work of Stasheff, [7].

The spaces we shall consider will be connected CW-complexes with basepoint. Let $X$ be such a space, with $x_{0}$ its basepoint. Denote the cartesian product of $n$ copies of $X$ by $X^{n}$ and let $T_{1}{ }^{n}(X)$ be the subspace of $X^{n}$ consisting of all points at least one of whose coordinates is the basepoint.

Definition 1. An (n-ary) operation on $X$ consists of a pointed continuous function $\phi: X^{n} \rightarrow X$.

Let $\exists X$ denote the (Moore) free path-space of $X$, i.e., the set of all pairs ( $\lambda, r$ ) such that $r \geqq 0$ and $\lambda:[0, r] \rightarrow X$ is continuous. We have two projections of $\exists X$ onto $X, \pi_{0}$ and $\pi_{\infty}$, given by $\pi_{0}(\lambda, r)=\lambda(0)$ and $\pi_{\infty}(\lambda, r)=\lambda(r)$. The basepoint of $\exists X$ is taken to be the pair $\left(\lambda_{0}, 0\right)$ such that $\lambda_{0}(0)=x_{0}$.
Definition 2. If $\phi, \psi: X^{n} \rightarrow X$ are operations, a relation between $\phi$ and $\psi$ is a homotopy $R: X^{n} \rightarrow \Im X$ such that $\pi_{0} \circ R=\phi$ and $\pi_{\infty} \circ R$ $=\psi$.

Remark. Since $T_{1}{ }^{n}(X)$ is retractile [3] in $X^{n}$, if $\phi$ and $\psi$ agree on $T_{1}{ }^{n}(X)$, then $R$ may be chosen to remain fixed on $T_{1}{ }^{n}(X)$.

Definition 3. Suppose that $\phi: X^{n} \rightarrow X$ and $\phi_{1}: X_{1}{ }^{n} \rightarrow X_{1}$ are operations. A map $f: X \rightarrow X_{1}$ is called a $\left(\boldsymbol{\phi}, \boldsymbol{\phi}_{1}\right)$-map provided that there exists a homotopy $H: X^{n} \rightarrow \ni X_{1}$ such that $\pi_{0} \circ H=\phi_{1} \circ f^{n}$ and $\pi_{\infty} \circ H=f \circ \phi$.

Observe that $\exists X$ is a functor in $X$, i.e., that given $f: X \rightarrow Y$ we may define $\exists f: \exists X \rightarrow \exists Y$ by $\exists f(\lambda)[t]=f(\lambda(t))$.

[^0]Definition 4. Suppose that $R: X^{n} \rightarrow \varsubsetneqq X$ and $R_{1}: X_{1}{ }^{n} \rightarrow \varsubsetneqq X_{1}$ are relations between operations $\phi, \psi: X^{n} \rightarrow X$ and $\phi_{1}, \psi_{1}=X_{1}{ }^{n} \rightarrow X_{1}$ respectively. A map $f: X \rightarrow X_{1}$ is called an $\left(R, R_{1}\right)$-map provided that there exists a secondary homotopy $D: X^{n} \rightarrow \ni\left(\varsubsetneqq X_{1}\right)$ such that $\pi_{0} \circ D=R_{1} \circ f^{n}$ and $\pi_{\infty} \circ D=f \circ R$.

Note that if $H=\varsubsetneqq \pi_{0} \circ D$ and $G=\varsubsetneqq \pi_{\infty} \circ D$, then $H$ and $G$ are homotopies that make $f$ a $\left(\phi, \phi_{1}\right)$-map and a $\left(\psi, \psi_{1}\right)$-map, respectively.

Given $(\lambda, r)$ in $\varsubsetneqq X$, define $\lambda(t)=\lambda(r)$ if $t \geqq r$. There is a product $\mu:(\exists X)^{n} \rightarrow \ni\left(X^{n}\right)$ given by

$$
\mu\left(\left(\lambda_{1}, r_{1}\right), \cdots,\left(\lambda_{n}, r_{n}\right)\right)=\left(\lambda, \max \left(r_{1}, \cdots, r_{n}\right)\right)
$$

where $\lambda(t)=\left(\lambda_{1}(t), \cdots, \lambda_{n}(t)\right)$. Let $\mathscr{P} X$ be the subset of $\ni X$ consisting of all $(\lambda, r)$ such that $\lambda(0)=x_{0}$ and let $\Omega X$ consist of all $(\lambda, r)$ in $\mathfrak{P} X$ such that $\lambda(r)=x_{0}$. Let $A \subset \varsubsetneqq X \times \exists X$ consist of all pairs $\left(\left(\lambda_{1}, r_{1}\right),\left(\lambda_{2}, r_{2}\right)\right)$ such that $\lambda_{1}\left(r_{1}\right)=\lambda_{2}(0)$. Then we obtain an addition, $+: A \rightarrow \varsubsetneqq X$, by

$$
\left(\left(\lambda_{1}, r_{1}\right)+\left(\lambda_{2}, r_{2}\right)\right)[t]= \begin{cases}\lambda_{1}(t) & \left(0 \leqq t \leqq r_{1}\right) \\ \lambda_{2}\left(t-r_{1}\right) & \left(r_{1} \leqq t \leqq r_{1}+r_{2}\right) .\end{cases}
$$

Clearly $\Omega X \times \Omega X \subset A$ and $\Omega X+\Omega X \subset \Omega X$.
Henceforth, consider the situation

where the left-hand column is the fibration induced from the righthand column. Thus $E=\left\{(x, \lambda) \mid f(x)=\pi_{\infty}(\lambda)\right\}$. Suppose that there are operations $\phi: X^{n} \rightarrow X$ and $\phi_{1}: X_{1}{ }^{n} \rightarrow X_{1}$ and that there is a homotopy $H: X^{n} \rightarrow \ni X_{1}$ that makes $f$ a $\left(\phi, \phi_{1}\right)$-map. Construct an operation $\phi_{2}: E^{n} \rightarrow E$ by

$$
\begin{aligned}
\phi_{2}\left(\left(x_{1}, \lambda_{1}\right), \cdots,\left(x_{n}, \lambda_{n}\right)\right)= & \left(\phi\left(x_{1}, \cdots, x_{n}\right), \varsubsetneqq \phi_{1} \circ \mu\left(\lambda_{1}, \cdots, \lambda_{n}\right)\right. \\
& \left.+H\left(x_{1}, \cdots, x_{n}\right)\right) .
\end{aligned}
$$

Observe that $\phi_{2}$ is well-defined and that $P: E \rightarrow X$ is a ( $\phi_{2}, \phi_{1}$ )-map. The operation $\phi_{2}$ is said to be induced by $\phi, \phi_{1}$, and $H$.

Suppose that $\phi, \psi: X^{n} \rightarrow X$ and $\phi_{1}, \psi_{1}: X_{1}{ }^{n} \rightarrow X_{1}$ are operations and that there are relations $R: X^{n} \rightarrow X$ and $R_{1}: X_{1}{ }^{n} \rightarrow X_{1}$ between the
pairs $\phi, \psi$ and $\phi_{1}, \psi_{1}$, respectively. Then there is induced in similar fashion a relation $R_{2}: E^{n} \rightarrow \varsubsetneqq E$.

We wish to consider the existence of operations and relations on a space by examining the stages of its Postnikov system. Thus we examine the situation

$$
\left.\right|_{X} ^{E} \xrightarrow[\rightarrow]{p} K(G, m+1)
$$

where $\pi_{k}(X)=0(k \geqq m)$. We want to determine necessary conditions for the existence of operations and relations on $E$ in terms of $X$ and $\theta$.
Suppose we have an operation $\phi_{2}: E^{n} \rightarrow E$. By the naturality of Postnikov systems [4] there are induced $\phi: X^{n} \rightarrow X$ and $\phi_{1}: K(G, m+1)^{n} \rightarrow K(G, m+1)$ such that $\theta$ is a $\left(\phi, \phi_{1}\right)$-map and $p$ is a ( $\boldsymbol{\phi}_{2}, \boldsymbol{\phi}$ )-map. The homotopy classes of $\boldsymbol{\phi}$ and $\boldsymbol{\phi}_{1}$ are uniquely determined. We need to know more, however, to conclude that $\phi_{2}$ induces operations on $X$ with prescribed values on $T_{1}{ }^{n}(X)$.
Proposition 1. Let $n \geqq 2$. Suppose that $\phi_{2}: E^{n} \rightarrow E$ and $\phi: T_{1}{ }^{n}(X)$ $\rightarrow X$ are such that $p \circ \boldsymbol{\phi}_{2}=\check{\phi} \circ p^{n}$ on $T_{1}{ }^{n}(X)$. Then there exists an extension $\phi: X^{n} \rightarrow X$ of $\phi$ such that $p$ is a $\left(\phi_{2}, \phi\right)$-map.
Proposition 2. Let $\phi_{2}, \psi_{2}: E^{n} \rightarrow E, \phi, \psi: X^{n} \rightarrow X$, and $\phi_{1}$, $\psi 1: K(G, m+1)^{n} \rightarrow K(G, m+1)$ be operations such that $p$ is a $\left(\phi_{2}, \phi\right)-$ and $\left(\psi_{2}, \psi\right)$-map and $\theta$ is a $\left(\phi, \phi_{1}\right)$ - and $\left(\boldsymbol{\psi}, \psi_{1}\right)$-map. Let $R_{2}: E^{n} \rightarrow \exists E$ be a relation between $\phi_{2}$ and $\psi_{2}$. Let $\hat{R}: T_{1}{ }^{n}(X) \rightarrow$ $\exists X$ be a homotopy between the restrictions of $\phi$ and $\psi$ to $T_{1}{ }^{n}(X)$. Then $\hat{R}$ extends to a relation $R$ between $\phi$ and $\psi$ such that $p$ is an $\left(R_{2}, R\right)$-map. Furthermore, there exists a relation $R_{1}$ between $\phi_{1}$ and $\psi_{1}$ such that $\theta$ is an ( $R, R_{1}$ )-map.

Proposition 3. (cf. [9, pp. 38-40]). Suppose that $\phi: X^{n} \rightarrow X$ and $\phi_{1}: K(G, m+1)^{n} \rightarrow K(G, m+1)$ are operations and that $\bar{H}: X^{n} \rightarrow$ $\ni K(G, m+1)$ is a homotopy that makes $\theta$ a $\left(\phi, \phi_{1}\right)$-map. Suppose that $\hat{\phi}_{2}: T_{1}{ }^{n}(E) \rightarrow E$ is given by

$$
\begin{aligned}
\hat{\phi}_{2}\left(\left(x_{1}, \lambda_{1}\right), \cdots,\left(x_{n}, \lambda_{n}\right)\right)= & \left(\phi\left(x_{1}, \cdots, x_{n}\right), \Im \phi_{1} \circ \mu\left(\lambda_{1}, \cdots, \lambda_{n}\right)\right. \\
& \left.+\bar{H}\left(x_{1}, \cdots, x_{n}\right)\right) .
\end{aligned}
$$

Then any extension $\check{\phi}_{2}$ of $\hat{\phi}_{2}$ that makes pa( $\left.\check{\phi}_{2}, \phi\right)$-map is homotopic to one of the form

$$
\begin{aligned}
\check{\phi}_{2}\left(\left(x_{1}, \lambda_{1}\right), \cdots,\left(x_{n}, \lambda_{n}\right)\right)= & \left(\phi\left(x_{1}, \cdots, x_{n}\right), \varsubsetneqq \phi_{1} \circ \mu\left(\lambda_{1}, \cdots, \lambda_{n}\right)\right. \\
& \left.+H\left(x_{1}, \cdots, x_{n}\right)\right),
\end{aligned}
$$

for some homotopy $H$ between $\theta \circ \phi$ and $\phi_{1} \circ \theta^{n}$ that agrees with $H$ on $T_{1}{ }^{n}(X)$.

Proposition 4. Suppose $R: X^{n} \rightarrow \varsubsetneqq X$ and $R_{1}: K(G, m+1)^{n} \rightarrow$ $\ni K(G, m+1)$ are relations and that $\bar{D}: X^{n} \rightarrow \ni(\ni K(G, m+1))$ makes $\bar{\theta}$ an $\left(R, R_{1}\right)$-map. Suppose that $\hat{R}_{2}: E^{n} \rightarrow \varsubsetneqq E$ is induced by $R, R_{1}$, and $\bar{D}$. Then any $\check{R}_{\cdot 2}: E^{n} \rightarrow \ni E$ that makes $p$ an $\left(\check{R}_{2}, R\right)$-map is homotopic to one induced by $R, R_{1}$, and $D$, for some $D$ that agrees with $\bar{D}$ on $T_{1}{ }^{n}(X)$.

Propositions 1 and 2 are modelled on those of [7]. Propositions 3 and 4 are proved using obstruction theory, cf. [6]. See also [1].

The above techniques have been used to study $H$ - and $H A H$-structures in [1], [7], [8] and [12]; HC-structures in [10] and [12]; and $Q C$-structures in [11]. In order to make calculations we need to examine the image of $[-; \Omega K(G, m+1)] \rightarrow[-; E]$. We illustrate the type of calculation necessary in two examples.

Example 1. We enumerate the $H$-equivalence classes of multiplications on real projective 3-space $\mathrm{P}_{3}$. (Two multiplications $m$ and $m^{\prime}$ are $H$-equivalent if there exists an $H$-map $f:(X, m) \rightarrow\left(X, m^{\prime}\right)$ that is a homotopy equivalence. According to [5] there are 768 homotopy classes of $H$-space multiplications on $\mathrm{P}_{3}$. We wish to determine which of these are $H$-equivalent to each other.

Begin by observing that there are two homotopy classes of homotopy equivalences of $P_{3}$ with itself. For, in the short exact sequence of groups

$$
0 \rightarrow\left[\mathrm{P}_{3} ; \mathrm{S}^{3}\right] \xrightarrow{\pi_{*}}\left[\mathrm{P}_{3} ; \mathrm{P}_{3}\right] \rightarrow\left[\mathrm{P}_{3} ; K\left(\mathrm{Z}_{2}, 1\right)\right] \rightarrow 0
$$

obtained from the fibration $\mathrm{S}^{0} \rightarrow \mathrm{~S}^{3} \rightarrow P_{3}$, we see that $\left[P_{3} ; P_{3}\right.$ ] is an extension of $Z_{2}$ by $Z$, and the only elements of $\left[P_{3} ; P_{3}\right]$ that induce isomorphisms of integral cohomology are 1 and $1-[\pi \circ p]$ for $p$ an appropriately chosen generator of $\left[P_{3} ; \mathrm{S}^{3}\right]$.

Now consider the bottom stage of a Postnikov system for $P_{3}$. We have

$$
{\stackrel{\downarrow}{K\left(Z_{2}, 1\right)}}_{E_{1}}^{\theta_{1}} K(Z, 4)
$$

There is one self-equivalence on $K\left(Z_{2}, 1\right)$, there are two on $K(Z, 4)$, and $\theta_{1}$ is a map for each pair of these, since $\theta_{1} *$ takes both generators of $H^{4}(Z, 4 ; Z)$ to the non-zero element of $H^{4}\left(Z_{2}, 1 ; Z\right)$. Differences in
homotopies $H: K\left(Z_{2}, 1\right) \rightarrow \Im K(Z, 4)$ for $\theta_{1}$ lie in

$$
\left[K\left(Z_{2}, 1\right) ; \Omega K(Z, 4)\right] \approx H^{3}\left(Z_{2}, 1 ; Z\right)=0 .
$$

Thus we obtain two classes of self-equivalences for $E_{1}$, which are easily seen to lift to the two classes on $P_{3}$.

We now count the multiplications on $E_{1}$. There are unique multiplications on $K\left(Z_{2}, 1\right)$ and $K(Z, 4)$, respectively, and $\theta_{1}$ must be an $H$-map with respect to these. The classes of multiplications on $E_{1}$, therefore, are determined by elements of the group $H^{4}\left(K\left(Z_{2}, l\right)\right.$ $\left.\wedge K\left(Z_{2}, 1\right) ; Z\right) \approx Z_{2}$, so there are at most two classes of multiplications on $E_{1}$.

We may regard $P_{3}$ as a loop space $\Omega B S O(3)$, and consequently may consider the spaces and maps in its Postnikov system to be loop spaces and loop maps. Let $m$ denote the loop addition on $E_{1}$. If we can show that $m$ is not homotopy-commutative, then the two classes of multiplications on $E_{1}$ must be those determined by $m$ and $m \circ T$.
Let us write $E_{1}=\Omega E_{1}{ }^{\prime}, K\left(Z_{2}, 1\right)=\Omega K\left(Z_{2}, 2\right), K(Z, 4)=\Omega K(Z, 5)$, and $\theta_{1}=\Omega \theta_{1}{ }^{\prime}$. For any space $Y$ let $\epsilon: \Sigma \Omega Y \rightarrow Y$ denote the evaluation map. It is easy to see, cf. [12], that the composition

$$
\begin{aligned}
& H^{5}\left(K\left(Z_{2}, 2\right) \wedge K\left(Z_{2}, 2\right)\right) \xrightarrow{(\epsilon \wedge \epsilon)^{*}} H^{5}\left(\Sigma K\left(Z_{2}, 1\right) \wedge \Sigma K\left(Z_{2}, 1\right)\right) \\
& \approx H^{3}\left(K\left(\mathrm{Z}_{2}, 1\right) \wedge K\left(\mathrm{Z}_{2}, 1\right)\right)
\end{aligned}
$$

takes the obstruction to $\theta_{1}{ }^{\prime}$ being an $H$-map to an element of the obstruction set to $\theta_{1}$ being an HCH -map. This latter obstruction set is a coset of the subgroup $\left(T^{*}-1^{*}\right)\left(H^{3}\left(K\left(Z_{2}, 1\right) \wedge K\left(Z_{2}, 1\right)\right)\right)$. By use of the Künneth theorem we see that this subgroup is trivial and that $(\epsilon \wedge \epsilon)^{*}$ is an isomorphism in this dimension. Thus $\theta_{1}{ }^{\prime}$ is an $H$-map if and only if $\theta_{1}$ is an HCH -map. But it is shown in [2] that $\boldsymbol{\theta}_{1}{ }^{\prime}$ is not an $H$-map. Thus no multiplication on $E_{1}$ can be homotopycommutative.

Let $\phi$ denote the non-identity self homotopy-equivalence on $E_{1}$. We may represent $\phi$ by $\phi(\alpha)=-\alpha$. (Here $-(\alpha, r)=(-\alpha, r)$ where $-\alpha(t)=\alpha(r-t)$.) Then $\quad \phi \circ m(\alpha, \beta)=-(\alpha+\beta)=(-\beta)+(-\alpha)$ whereas $m \circ(\phi \times \phi)(\alpha, \beta)=m(-\alpha,-\beta)=(-\alpha)+(-\beta)$. Thus $m \circ(\phi \times \phi)$ is not homotopic to $\phi \circ m$. Let $\phi_{1}$ denote the nonidentity self homotopy-equivalence of $P_{3}$. Since any multiplication $m_{1}$ on $P_{3}$ is a lifting of either $m$ or $m \circ T$, then $\phi_{1}{ }^{-1} \circ m_{1} \circ\left(\phi_{1} \times \phi_{1}\right)$ must be a lifting of the other. Hence $\phi_{1}$ is not an $H$-map between any multiplication and itself, so the 768 homotopy classes of multiplications on $P_{3}$ reduce to exactly 384 H -equivalence classes.

Example 2. We compute the number of classes of homotopy selfequivalences of the special unitary group, $\mathrm{SU}(3)$. The first stages of a Postnikov system for $\mathrm{SU}(3)$ may be written

$$
\begin{aligned}
& E_{7}=\stackrel{E_{E_{6}}^{E_{8}} \xrightarrow{\theta_{8}} K\left(Z_{12}, 9\right)}{ } \\
& \int_{E_{5}}^{P_{6}} \xrightarrow{\theta_{6}} K\left(Z_{6}, 7\right) \\
& E_{3}=E_{4}=K(Z, 3) \xrightarrow{\boldsymbol{P}_{5}} K(Z, 6) \text {. }
\end{aligned}
$$

To construct and classify the equivalences on $E_{n}$, we consider the Serre exact sequence (coefficients in $\pi_{n}(\mathrm{SU}(3))$ ):

$$
\cdots \leftarrow H^{k}\left(K\left(\pi_{n}, n\right)\right) \leftarrow H^{k}\left(E_{n}\right) \leftarrow H^{k}\left(E_{n-1}\right) \stackrel{\theta_{n}}{\leftarrow} H^{k-1}\left(K\left(\pi_{n}, n\right)\right)
$$

Note that $H^{n-1}\left(E_{n-1}\right) \rightarrow H^{n-1}\left(E_{n}\right)$ is isomorphic and $H^{n}\left(E_{n-1}\right) \rightarrow$ $H^{n}\left(E_{n}\right)$ is monomorphic. Thus, $H^{n}\left(E_{n}\right) \approx H^{n}(\mathrm{SU}(3))$ and $H^{n+1}\left(E_{n}\right)$ injects monomorphically into $H^{n+1}(\mathrm{SU}(3))$. Since $H^{n}(\mathrm{SU}(3))$ is an exterior algebra with two generators in dimensions 3 and $5, H^{n}(\mathrm{SU}(3))$ $=0 \quad\left(n \neq 0,3,5\right.$ and 8). Thus if $n \geqq 8, H^{n}\left(E_{n}\right)=0=H^{n+1}\left(E_{n}\right)$. We observe further that if $n \geqq 8, \theta_{n}{ }^{*} \circ \sigma: H^{n}\left(K\left(\pi_{n}, n\right)\right) \rightarrow H^{n+1}\left(E_{n-1}\right)$ is an isomorphism, whence $\boldsymbol{\theta}_{n}{ }^{*}: H^{n+1}\left(K\left(\pi_{n}, n+1\right)\right) \rightarrow H^{n+1}\left(E_{n-1}\right)$ is isomorphic. Further examination reveals that $\theta_{n}{ }^{*}$ is an isomorphism in dimension $n+1$ for all $n>5$. Thus any self-equivalence of $E_{n-1}(n>5)$, induces a unique one of $K\left(\pi_{n}, n+1\right)$ such that $\theta_{n}$ is a map of these structures. There are two self-equivalences each on $K(Z, 3)$ and $K(Z, 6)$ and $\theta_{5}$ is a map for each of the four pairings of these, since $\theta_{5}{ }^{*}: H^{6}(K(Z, 6): Z)=Z \rightarrow H^{6}(K(Z, 3): Z)=Z_{2}$. We now need to count the various liftings of these structures from $E_{n-1}$ to $E_{n}$.

According to Proposition 3, we need to look at elements of $H^{n}\left(E_{n-1} ; \pi_{n}(\mathrm{SU}(3))\right)$ and determine which of them define different operations on $E_{n}$; precisely, we examine the image of the composition

$$
H^{n}\left(E_{n-1} ; \pi_{n}(\mathrm{SU}(3))\right) \xrightarrow{P_{n}^{*}}\left[E_{n} ; \Omega K\left(\pi_{n}(\mathrm{SU}(3)), n+1\right)\right] \xrightarrow{i_{*}}\left[E_{n} ; E_{n}\right]
$$

where $i: \Omega K\left(\pi_{n}(\mathrm{SU}(3)) ; n+1\right) \rightarrow E_{n}$ is the inclusion of the fiber. We have already seen that $p_{n}{ }^{*}$ is monomorphic in this dimension.

Let $n=5$. Then $H^{5}\left(E_{n} ; Z\right)=H^{5}(K(Z, 3) ; Z)=0$. Consequently each pair of equivalences on $K(Z, 3)$ and $K(Z, 6)$ determines a unique equivalence of $E_{5}$. Thus $E_{5}$ has four self-equivalences.

The group $H^{6}\left(E_{5} ; Z_{6}\right)$ injects into $H^{6}\left(\mathrm{SU}(3) ; \mathrm{Z}_{6}\right)=0$, so that $E_{6}$ possesses four self-equivalences.

Finally let $n=8$. We observe, by use of the cohomology ring structure, that $p_{8}{ }^{*}: H^{8}\left(E_{7} ; Z_{12}\right) \rightarrow H^{8}\left(E_{9} ; Z_{12}\right) \approx Z_{12}$ is an isomorphism. Consider the diagram

$$
\begin{gathered}
{\left[E_{8} ; \Omega K\left(Z_{6}, 6\right)\right]=H^{5}\left(E_{8} ; Z_{6}\right)} \\
{\left[\dot{J}_{*} ; \Omega E_{7}\right] \rightarrow H^{8}\left(E_{8} ; 12\right) \xrightarrow{i_{*}}\left[E_{8} ; E_{8}\right]} \\
0=H^{4}\left(E_{8} ; Z\right) \rightarrow\left[E_{8} ; \Omega E_{5}\right] \rightarrow H^{2}\left(E_{8} ; Z\right)=0 .
\end{gathered}
$$

We see that $i_{*}$ is onto. Consequently we may look at the compositions $H^{5}\left(E_{8} ; \mathrm{Z}_{6}\right) \rightarrow\left[E_{8} ; \Omega E_{7}\right] \rightarrow H^{8}\left(E_{8} ; Z_{12}\right)$. This is induced by a cohomology operation $K\left(Z_{6}, 5\right) \rightarrow K\left(Z_{12}, 8\right)$. Any such operation is zero in the cohomology of $\operatorname{SU}(3)$ (it must be "essentially" $\mathrm{Sq}^{3}$ ) and so must also be zero in $E_{8}$. Thus $i_{*}$ is injective and so each equivalence of $E_{7}$ lifts to twelve of $E_{8}$. We conclude that $E_{8}$ (and consequently $\mathrm{SU}(3)$ ) possesses 48 classes of homotopy self-equivalences.

## References

1. C.-K. Cheng, Multiplications on a space with finitely many nonvanishing homotopy groups, Can. J. Math. 24 (1972), 1052-1062.
2. A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex, Ann. of Math. (2) 69 (1959), 667-677.
3. I. M. James, On H-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. (2) 11 (1960), 161-179.
4. D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432-450.
5. C. M. Naylor, Multiplications on $\operatorname{SU}(3)$, Michigan Math. J. 13 (1966), 27-31.
6. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
7. J. D. Stasheff, On extensions of $H$-spaces, Trans. Amer. Math. Soc. 105 (1962), 126-135.
8. -, Homotopy-associativity of H-spaces, II. Trans. Amer. Math. Soc. 108 (1963), 293-312.
9.     - H-spaces from a Homotopy Point of View, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, New York, 1970.
10. F. D. Williams, Higher homotopy-commutativity, Trans. Amer. Math. Soc. 139 (1969), 191-206.
11.     - Quasi-commutativity of H-spaces, Michigan Math. J. 19 (1972), 209-213.
12. A. Zabrodsky, Cohomology operations and homotopy commutative $H$ spaces, Lecture Notes in Mathematics, Vol. 168, pp. 308-317, Springer-Verlag, New York, 1970.

New Mexico State University, Las Cruces, New Mexico 88001


[^0]:    Received by the editors April 29, 1973 and in revised form September 1, 1973.

