HOMOTOPY-ALCEBRAIC STRUCTURES

F. D. WILLIAMS

In topology, there are many objects of study that consist of a space together with an "operation" on it. One may think of a topological group structure, an H-space structure, a homotopy self-equivalence, etc. One wishes to classify such operations up to homotopy and to consider the possible relations such an operation may satisfy. In this paper we provide a general framework to study these questions in terms of the Postnikov system of the space in question. Our model is the well-known fact that a space is an H-space if and only if its Postnikov invariants are primitive, and we are inspired by the work of Stasheff, [7].

The spaces we shall consider will be connected CW-complexes with basepoint. Let X be such a space, with x_0 its basepoint. Denote the cartesian product of n copies of X by X^n and let $T_1^n(X)$ be the subspace of X^n consisting of all points at least one of whose coordinates is the basepoint.

DEFINITION 1. An (*n*-ary) operation on X consists of a pointed continuous function $\phi : X^n \to X$.

Let $\Im X$ denote the (Moore) free path-space of X, i.e., the set of all pairs (λ, r) such that $r \ge 0$ and $\lambda : [0, r] \to X$ is continuous. We have two projections of $\Im X$ onto X, π_0 and π_∞ , given by $\pi_0(\lambda, r) = \lambda(0)$ and $\pi_\infty(\lambda, r) = \lambda(r)$. The basepoint of $\Im X$ is taken to be the pair $(\lambda_0, 0)$ such that $\lambda_0(0) = x_0$.

DEFINITION 2. If $\phi, \psi : X^n \to X$ are operations, a *relation* between ϕ and ψ is a homotopy $R: X^n \to \Im X$ such that $\pi_0 \circ R = \phi$ and $\pi_{\infty} \circ R = \psi$.

REMARK. Since $T_1^n(X)$ is retractile [3] in X^n , if ϕ and ψ agree on $T_1^n(X)$, then R may be chosen to remain fixed on $T_1^n(X)$.

DEFINITION 3. Suppose that $\phi: X^n \to X$ and $\phi_1: X_1^n \to X_1$ are operations. A map $f: X \to X_1$ is called a (ϕ, ϕ_1) -map provided that there exists a homotopy $H: X^n \to \Im X_1$ such that $\pi_0 \circ H = \phi_1 \circ f^n$ and $\pi_{\infty} \circ H = f \circ \phi$.

Observe that $\Im X$ is a functor in X, i.e., that given $f: X \to Y$ we may define $\Im f: \Im X \to \Im Y$ by $\Im f(\lambda)[t] = f(\lambda(t))$.

Received by the editors April 29, 1973 and in revised form September 1, 1973. Copyright • 1975 Rocky Mountain Mathematics Consortium

DEFINITION 4. Suppose that $R: X^n \to \Im X$ and $R_1: X_1^n \to \Im X_1$ are relations between operations $\phi, \psi: X^n \to X$ and $\phi_1, \psi_1 = X_1^n \to X_1$ respectively. A map $f: X \to X_1$ is called an (R, R_1) -map provided that there exists a secondary homotopy $D: X^n \to \Im(\Im X_1)$ such that $\pi_0 \circ D = R_1 \circ f^n$ and $\pi_\infty \circ D = f \circ R$.

Note that if $H = \Im \pi_0 \circ D$ and $G = \Im \pi_\infty \circ D$, then H and G are homotopies that make f a (ϕ, ϕ_1) -map and a (ψ, ψ_1) -map, respectively.

Given (λ, r) in $\Im X$, define $\lambda(t) = \lambda(r)$ if $t \ge r$. There is a product $\mu : (\Im X)^n \to \Im(X^n)$ given by

$$\boldsymbol{\mu}((\boldsymbol{\lambda}_1, \boldsymbol{r}_1), \cdots, (\boldsymbol{\lambda}_n, \boldsymbol{r}_n)) = (\boldsymbol{\lambda}, \max(\boldsymbol{r}_1, \cdots, \boldsymbol{r}_n)),$$

where $\lambda(t) = (\lambda_1(t), \dots, \lambda_n(t))$. Let $\mathcal{P}X$ be the subset of $\mathfrak{P}X$ consisting of all (λ, r) such that $\lambda(0) = x_0$ and let ΩX consist of all (λ, r) in $\mathcal{P}X$ such that $\lambda(r) = x_0$. Let $A \subset \mathfrak{P}X \times \mathfrak{P}X$ consist of all pairs $((\lambda_1, r_1), (\lambda_2, r_2))$ such that $\lambda_1(r_1) = \lambda_2(0)$. Then we obtain an addition, $+: A \to \mathfrak{P}X$, by

$$((\lambda_1, r_1) + (\lambda_2, r_2))[t] = \begin{cases} \lambda_1(t) & (0 \le t \le r_1) \\ \lambda_2(t - r_1) & (r_1 \le t \le r_1 + r_2). \end{cases}$$

Clearly $\Omega X \times \Omega X \subset A$ and $\Omega X + \Omega X \subset \Omega X$.

Henceforth, consider the situation

$$\Omega X_1 = \Omega X_1
\downarrow \qquad \downarrow \\
E \rightarrow \mathcal{P} X_1
\downarrow p f \qquad \downarrow \pi_{\infty}
X \qquad \rightarrow X_1,$$

where the left-hand column is the fibration induced from the righthand column. Thus $E = \{(x, \lambda) | f(x) = \pi_{\infty}(\lambda)\}$. Suppose that there are operations $\phi: X^n \to X$ and $\phi_1: X_1^n \to X_1$ and that there is a homotopy $H: X^n \to \Im X_1$ that makes f a (ϕ, ϕ_1) -map. Construct an operation $\phi_2: E^n \to E$ by

$$\phi_2((x_1,\lambda_1),\cdots,(x_n,\lambda_n)) = (\phi(x_1,\cdots,x_n), \ \Im\phi_1 \circ \mu(\lambda_1,\cdots,\lambda_n) + H(x_1,\cdots,x_n)).$$

Observe that ϕ_2 is well-defined and that $P : E \to X$ is a (ϕ_2, ϕ_1) -map. The operation ϕ_2 is said to be induced by ϕ, ϕ_1 , and H.

Suppose that $\phi, \psi: X^n \to X$ and $\phi_1, \psi_1: X_1^n \to X_1$ are operations and that there are relations $R: X^n \to X$ and $R_1: X_1^n \to X_1$ between the

pairs ϕ, ψ and ϕ_1, ψ_1 , respectively. Then there is induced in similar fashion a relation $R_2: E^n \to \Im E$.

We wish to consider the existence of operations and relations on a space by examining the stages of its Postnikov system. Thus we examine the situation

$$\begin{array}{c} E \\ \downarrow p \\ X \xrightarrow{\theta} K(G, m+1) \end{array}$$

where $\pi_k(X) = 0 (k \ge m)$. We want to determine necessary conditions for the existence of operations and relations on E in terms of X and θ .

Suppose we have an operation $\phi_2: E^n \to E$. By the naturality of Postnikov systems [4] there are induced $\phi: X^n \to X$ and $\phi_1: K(G, m + 1)^n \to K(G, m + 1)$ such that θ is a (ϕ, ϕ_1) -map and pis a (ϕ_2, ϕ) -map. The homotopy classes of ϕ and ϕ_1 are uniquely determined. We need to know more, however, to conclude that ϕ_2 induces operations on X with prescribed values on $T_1^{n}(X)$.

PROPOSITION 1. Let $n \ge 2$. Suppose that $\phi_2 : E^n \to E$ and $\phi : T_1^n(X) \to X$ are such that $p \circ \phi_2 = \check{\phi} \circ p^n$ on $T_1^n(X)$. Then there exists an extension $\phi : X^n \to X$ of $\check{\phi}$ such that p is a (ϕ_2, ϕ) -map.

PROPOSITION 2. Let $\phi_2, \psi_2 : E^n \to E$, $\phi, \psi : X^n \to X$, and ϕ_1 , $\psi 1 : K(G, m + 1)^n \to K(G, m + 1)$ be operations such that p is a (ϕ_2, ϕ) - and (ψ_2, ψ) -map and θ is a (ϕ, ϕ_1) - and (ψ, ψ_1) -map. Let $R_2 : E^n \to \Im E$ be a relation between ϕ_2 and ψ_2 . Let $\hat{R} : T_1^n(X) \to$ $\Im X$ be a homotopy between the restrictions of ϕ and ψ to $T_1^n(X)$. Then \hat{R} extends to a relation R between ϕ and ψ such that p is an (R_2, R) -map. Furthermore, there exists a relation R_1 between ϕ_1 and ψ_1 such that θ is an (R, R_1) -map.

PROPOSITION 3. (cf. [9, pp. 38–40]). Suppose that $\phi: X^n \to X$ and $\phi_1: K(G, m+1)^n \to K(G, m+1)$ are operations and that $\overline{H}: X^n \to \Im K(G, m+1)$ is a homotopy that makes θ a (ϕ, ϕ_1) -map. Suppose that $\hat{\phi}_2: T_1^n(E) \to E$ is given by

$$\begin{split} \hat{\phi}_2((x_1,\lambda_1),\cdots,(x_n,\lambda_n)) &= (\phi(x_1,\cdots,x_n), \ \Im \phi_1 \circ \mu(\lambda_1,\cdots,\lambda_n) \\ &+ \overline{H}(x_1,\cdots,x_n)). \end{split}$$

Then any extension $\dot{\phi}_2$ of $\hat{\phi}_2$ that makes $p \ a \ (\dot{\phi}_2, \phi)$ -map is homotopic to one of the form

$$\dot{\phi}_2((x_1,\lambda_1),\cdots,(x_n,\lambda_n)) = (\phi(x_1,\cdots,x_n), \, \Im \phi_1 \circ \mu(\lambda_1,\cdots,\lambda_n) + H(x_1,\cdots,x_n)),$$

for some homotopy H between $\theta \circ \phi$ and $\phi_1 \circ \theta^n$ that agrees with H on $T_1^{n}(X)$.

PROPOSITION 4. Suppose $R: X^n \to \Im X$ and $R_1: K(G, m+1)^n \to \Im K(G, m+1)$ are relations and that $\overline{D}: X^n \to \Im(\Im K(G, m+1))$ makes $\overline{\theta}$ an (R, R_1) -map. Suppose that $\hat{R}_2: E^n \to \Im E$ is induced by R, R_1 , and \overline{D} . Then any $\check{R}_2: E^n \to \Im E$ that makes p an (\check{R}_2, R) -map is homotopic to one induced by R, R_1 , and D, for some D that agrees with \overline{D} on $T_1^{n}(X)$.

Propositions 1 and 2 are modelled on those of [7]. Propositions 3 and 4 are proved using obstruction theory, cf. [6]. See also [1].

The above techniques have been used to study *H*- and *HAH*-structures in [1], [7], [8] and [12]; *HC*-structures in [10] and [12]; and *QC*-structures in [11]. In order to make calculations we need to examine the image of $[-; \Omega K(G, m + 1)] \rightarrow [-; E]$. We illustrate the type of calculation necessary in two examples.

EXAMPLE 1. We enumerate the *H*-equivalence classes of multiplications on real projective 3-space P_3 . (Two multiplications *m* and *m'* are *H*-equivalent if there exists an *H*-map $f: (X, m) \rightarrow (X, m')$ that is a homotopy equivalence. According to [5] there are 768 homotopy classes of *H*-space multiplications on P_3 . We wish to determine which of these are *H*-equivalent to each other.

Begin by observing that there are two homotopy classes of homotopy equivalences of P_3 with itself. For, in the short exact sequence of groups

$$0 \rightarrow [P_3; S^3] \xrightarrow{\pi_*} [P_3; P_3] \rightarrow [P_3; K(Z_2, 1)] \rightarrow 0$$

obtained from the fibration $S^0 \rightarrow S^3 \rightarrow P_3$, we see that $[P_3; P_3]$ is an extension of Z_2 by Z, and the only elements of $[P_3; P_3]$ that induce isomorphisms of integral cohomology are 1 and $1 - [\pi \circ p]$ for p an appropriately chosen generator of $[P_3; S^3]$.

Now consider the bottom stage of a Postnikov system for P_3 . We have

$$\begin{array}{c}
E_1 \\
\downarrow \\
K(Z_2, 1) \xrightarrow{\boldsymbol{\theta}_1} K(Z, 4).
\end{array}$$

There is one self-equivalence on $K(\mathbb{Z}_2, 1)$, there are two on $K(\mathbb{Z}, 4)$, and θ_1 is a map for each pair of these, since θ_1^* takes both generators of $H^4(\mathbb{Z}, 4; \mathbb{Z})$ to the non-zero element of $H^4(\mathbb{Z}_2, 1; \mathbb{Z})$. Differences in homotopies $H: K(\mathbb{Z}_2, 1) \rightarrow \Im K(\mathbb{Z}, 4)$ for θ_1 lie in

$$[K(Z_2, 1); \Omega K(Z, 4)] \approx H^3(Z_2, 1; Z) = 0.$$

Thus we obtain two classes of self-equivalences for E_1 , which are easily seen to lift to the two classes on P_3 .

We now count the multiplications on E_1 . There are unique multiplications on $K(Z_2, 1)$ and K(Z, 4), respectively, and θ_1 must be an *H*-map with respect to these. The classes of multiplications on E_1 , therefore, are determined by elements of the group $H^4(K(Z_2, 1) \land K(Z_2, 1); Z) \approx Z_2$, so there are at most two classes of multiplications on E_1 .

We may regard P_3 as a loop space $\Omega BSO(3)$, and consequently may consider the spaces and maps in its Postnikov system to be loop spaces and loop maps. Let *m* denote the loop addition on E_1 . If we can show that *m* is not homotopy-commutative, then the two classes of multiplications on E_1 must be those determined by *m* and $m \circ T$.

Let us write $E_1 = \Omega E_1'$, $K(Z_2, 1) = \Omega K(Z_2, 2)$, $K(Z, 4) = \Omega K(Z, 5)$, and $\theta_1 = \Omega \theta_1'$. For any space Y let $\epsilon : \Sigma \Omega Y \rightarrow Y$ denote the evaluation map. It is easy to see, cf. [12], that the composition

$$H^{5}(K(\mathbb{Z}_{2},2) \land K(\mathbb{Z}_{2},2)) \xrightarrow{(\epsilon \land \epsilon)^{*}} H^{5}(\Sigma K(\mathbb{Z}_{2},1) \land \Sigma K(\mathbb{Z}_{2},1))$$
$$\approx H^{3}(K(\mathbb{Z}_{2},1) \land K(\mathbb{Z}_{2},1))$$

takes the obstruction to θ_1 ' being an *H*-map to an element of the obstruction set to θ_1 being an *HCH*-map. This latter obstruction set is a coset of the subgroup $(T^* - 1^*)(H^3(K(\mathbb{Z}_2, 1) \land K(\mathbb{Z}_2, 1)))$. By use of the Künneth theorem we see that this subgroup is trivial and that $(\epsilon \land \epsilon)^*$ is an isomorphism in this dimension. Thus θ_1 ' is an *H*-map if and only if θ_1 is an *HCH*-map. But it is shown in [2] that θ_1 ' is not an *H*-map. Thus no multiplication on E_1 can be homotopy-commutative.

Let ϕ denote the non-identity self homotopy-equivalence on E_1 . We may represent ϕ by $\phi(\alpha) = -\alpha$. (Here $-(\alpha, r) = (-\alpha, r)$ where $-\alpha(t) = \alpha(r-t)$.) Then $\phi \circ m(\alpha, \beta) = -(\alpha + \beta) = (-\beta) + (-\alpha)$ whereas $m \circ (\phi \times \phi)$ (α, β) = $m(-\alpha, -\beta) = (-\alpha) + (-\beta)$. Thus $m \circ (\phi \times \phi)$ is not homotopic to $\phi \circ m$. Let ϕ_1 denote the nonidentity self homotopy-equivalence of P_3 . Since any multiplication m_1 on P_3 is a lifting of either m or $m \circ T$, then $\phi_1^{-1} \circ m_1 \circ (\phi_1 \times \phi_1)$ must be a lifting of the other. Hence ϕ_1 is not an *H*-map between any multiplication and itself, so the 768 homotopy classes of multiplication P_3 reduce to exactly 384 *H*-equivalence classes.

F. D. WILLIAMS

EXAMPLE 2. We compute the number of classes of homotopy selfequivalences of the special unitary group, SU(3). The first stages of a Postnikov system for SU(3) may be written

$$E_{7} = \begin{array}{c} E_{8} \\ \downarrow^{P_{8}} \\ \theta_{8} \\ \downarrow^{P_{6}} \\ \downarrow^{P_{6}} \\ E_{5} \\ \downarrow^{P_{5}} \\ H_{5} \\ H_{3} = E_{4} = K(Z, 3) \\ \end{array} \\ \begin{array}{c} H_{6} \\ H_{6} \\ H_{5} \\ H_{5$$

To construct and classify the equivalences on E_n , we consider the Serre exact sequence (coefficients in $\pi_n(SU(3))$):

$$\cdots \leftarrow H^k(K(\pi_n, n)) \leftarrow H^k(E_n) \leftarrow H^k(E_{n-1}) \xleftarrow{\theta_n} H^{k-1}(K(\pi_n, n)).$$

Note that $H^{n-1}(E_{n-1}) \to H^{n-1}(E_n)$ is isomorphic and $H^n(E_{n-1}) \to H^n(E_n)$ is monomorphic. Thus, $H^n(E_n) \approx H^n(\mathrm{SU}(3))$ and $H^{n+1}(E_n)$ injects monomorphically into $H^{n+1}(\mathrm{SU}(3))$. Since $H^n(\mathrm{SU}(3))$ is an exterior algebra with two generators in dimensions 3 and 5, $H^n(\mathrm{SU}(3)) = 0$ $(n \neq 0, 3, 5$ and 8). Thus if $n \geq 8$, $H^n(E_n) = 0 = H^{n+1}(E_n)$. We observe further that if $n \geq 8$, $\theta_n^* \circ \sigma : H^n(K(\pi_n, n)) \to H^{n+1}(E_{n-1})$ is an isomorphism, whence $\theta_n^* : H^{n+1}(K(\pi_n, n+1)) \to H^{n+1}(E_{n-1})$ is isomorphic. Further examination reveals that θ_n^* is an isomorphism in dimension n + 1 for all n > 5. Thus any self-equivalence of E_{n-1} (n > 5), induces a unique one of $K(\pi_n, n+1)$ such that θ_n is a map of these structures. There are two self-equivalences each on K(Z, 3) and K(Z, 6) and θ_5 is a map for each of the four pairings of these, since $\theta_5^* : H^6(K(Z, 6) : Z) = Z \to H^6(K(Z, 3) : Z) = Z_2$. We now need to count the various liftings of these structures from E_{n-1} to E_n .

According to Proposition 3, we need to look at elements of $H^n(E_{n-1}; \pi_n(SU(3)))$ and determine which of them define different operations on E_n ; precisely, we examine the image of the composition

$$H^{n}(E_{n-1};\pi_{n}(\mathrm{SU}(3))) \xrightarrow{P_{n}^{*}} [E_{n}; \Omega K(\pi_{n}(\mathrm{SU}(3)), n+1)] \xrightarrow{i_{*}} [E_{n}; E_{n}]$$

where $i: \Omega K(\pi_n(\mathrm{SU}(3)); n+1) \to E_n$ is the inclusion of the fiber. We have already seen that p_n^* is monomorphic in this dimension.

Let n = 5. Then $H^5(E_n; Z) = H^{\frac{5}{5}}(K(Z, 3); Z) = 0$. Consequently each pair of equivalences on K(Z, 3) and K(Z, 6) determines a unique equivalence of E_5 . Thus E_5 has four self-equivalences.

The group $H^6(E_5; \mathbb{Z}_6)$ injects into $H^6(SU(3); \mathbb{Z}_6) = 0$, so that E_6 possesses four self-equivalences.

Finally let n = 8. We observe, by use of the cohomology ring structure, that $p_8^*: H^8(E_7; Z_{12}) \rightarrow H^8(E_9; Z_{12}) \approx Z_{12}$ is an isomorphism. Consider the diagram

$$\begin{bmatrix} E_8; \ \Omega K(Z_6, 6) \end{bmatrix} = H^5(E_8; Z_6)$$

$$\downarrow j_*$$

$$\begin{bmatrix} E_8; \ \Omega E_7 \end{bmatrix} \to H^8(E_8; 12) \xrightarrow{i_*} \ [E_8; E_8]$$

$$\downarrow$$

$$0 = H^4(E_8; Z) \to [E_8; \ \Omega E_5] \to H^2(E_8; Z) = 0.$$

We see that i_* is onto. Consequently we may look at the compositions $H^5(E_8; Z_6) \rightarrow [E_8; \Omega E_7] \rightarrow H^8(E_8; Z_{12})$. This is induced by a cohomology operation $K(Z_6, 5) \rightarrow K(Z_{12}, 8)$. Any such operation is zero in the cohomology of SU(3) (it must be "essentially" Sq³) and so must also be zero in E_8 . Thus i_* is injective and so each equivalence of E_7 lifts to twelve of E_8 . We conclude that E_8 (and consequently SU(3)) possesses 48 classes of homotopy self-equivalences.

References

1. C.-K. Cheng, Multiplications on a space with finitely many nonvanishing homotopy groups, Can. J. Math. 24 (1972), 1052-1062.

2. A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex, Ann. of Math. (2) 69 (1959), 667-677.

3. I. M. James, On H-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. (2) 11 (1960), 161-179.

4. D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432-450.

5. C. M. Naylor, *Multiplications on SU*(3), Michigan Math. J. 13 (1966), 27-31.

6. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

7. J. D. Stasheff, On extensions of H-spaces, Trans. Amer. Math. Soc. 105 (1962), 126-135.

8. ——, Homotopy-associativity of H-spaces, II. Trans. Amer. Math. Soc. 108 (1963), 293-312.

9. ——, H-spaces from a Homotopy Point of View, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, New York, 1970.

10. F. D. Williams, *Higher homotopy-commutativity*, Trans. Amer. Math. Soc. 139 (1969), 191-206.

11. —, Quasi-commutativity of H-spaces, Michigan Math. J. 19 (1972), 209-213.

F. D. WILLIAMS

12. A. Zabrodsky, Cohomology operations and homotopy commutative Hspaces, Lecture Notes in Mathematics, Vol. 168, pp. 308-317, Springer-Verlag, New York, 1970.

NEW MEXICO STATE UNIVERSITY, LAS CRUCES, NEW MEXICO 88001