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TRACTIONS IN CRITICAL POINT THEORY 
DALE LANDIS AND MARSTON MORSE 

Introduction. The application of critical point theory to fields of 
mathematics as divergent as the theory of functions on a differentiable 
or topological manifold or global variational analysis, requires diver
gent preparatory analysis and alterations of the data that present the 
problem in modified form, but leave invariant the critical elements 
(equilibrium points, extremals, areas, etc.) whose discovery was the 
goal. See references [1] to [17]. 

In sharp contrast with this preparatory analysis is the essence of 
the critical point method, namely the discovery of the homological 
changes in the sublevel sets of a real-valued function or integral as the 
level increases or decreases through a critical value. These two aspects 
of the critical point theory will be termed preparatory and critical, 
respectively. We have found the following to be true. 

In general problems preparation and critical operations must alter
nate. 

It is for this reason that we shall attempt to characterize in one 
theorem the essential homological changes in sublevel sets as an iso
lated critical level is passed. The hypotheses of this theorem sum
marize preparatory analysis of very general character. In particular 
this theorem will greatly simplify global variational analysis. 

1. Hypotheses and principal theorem. Let X be a metric space 
which is the domain of a continuous real-valued mapping 

(1.1) p^F(p):X^R, 

with values which are bounded above by a constant ß. The theorems 
of this paper can be shown to be true for a topological space. A 
metric space simplifies some of the theorems. 

We shall make use of the singular homology theory introduced by 
Eilenberg in reference [18]. See also reference [4]. Homology will 
be taken over an arbitrary commutative field D{. Homology groups 
will then be vector spaces overl^. 

For each value a (E R we shall set 

(1.2) Fa = {p G X | F(p) =g a} , 

and term Fa the a-sublevel set of X. A fundamental problem is to 
know how Fß differs homologically from Fa when a < ß. We shall 
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consider the case where there is just one value a on the interval 
a < c < ß at which Fc changes its homological character. This value 
a will be termed critical. We shall give special conditions on F under 
which a critical level a exists together with a point or at the F-level a 
near which the level sets of F behave topologically as if a were an 
ordinary nondegenerate critical point. These conditions are both 
local and global. The global condition is in terms of a special deforma
tion of X, termed an F-traction, which we shall now define. We begin 
by recalling other more familiar terms in deformation theory. 

Deformations. Let t be a real variable termed the time. Let I = 
[0,1] denote an interval for t. With us a deformation of a subspace 
A of a topological space X is a continuous mapping 

(1.3) (p,t) - > D ( p , 0 : A X Z-+X, 

such that D(p, 0) = p for p G. A. We term D(p, 1) the final image 
Di(p) of p under D. For p fixed in A, the partial mapping 

(1.4) t-*D(p,t):I-+X 

will be called the trajectory of p under D. 

RETRACTING DEFORMATIONS. A deformation D of A onto a set B C A 
is said to be a deformation retracting A onto B, if D deforms A on A 
onto B and leaves each point of B fixed. That is D(p, t) = p for 
p G B and 0 ^ t^ 1. See reference [17]. 

Retracting deformations need to be supplemented. There is a 
larger related class of deformations which we now define. 

DEFINITION 1.1. Tractions. A deformation D of a subspace A of X 
will be termed a traction of A into a subspace B of A if D deforms A 
on A into B and deforms B on B. 

Each deformation retracting A onto B is a traction of A into B, but 
a traction of A into B is not in general a deformation retracting A onto 
B. However, a traction of A into B shares with a deformation retract
ing A onto B a fundamental property. There exists an isomorphic 
mapping of Hq(A) onto Hq(B) for each q. See § 2. 

DEFINITION 1.2. An F-deformation of A on X. A deformation D of 
A on X is called an F-deformation if F ( D ( p , 0 ) ) ^ F(D(p,t)), ((p,t) 
G A X /). An F-deformation which is a retraction or traction is called 
an F-retraction or F-traction, respectively. 

A traction induced critical point a of F will now be defined. Let 
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an integer/A = 1 be given and fixed. We refer to points x = (x1? • • -,xM) 
G RM and introduce the origin-centered /x-ball 

(1.5) De = {x G fr | ||x|| < e} 

in B? of radius e. 

DEFINITION 1.3. A traction induced critical point a of F. Let k be 
an integer on the range 0 ,1 , • -, /A. A point cr E X will be called a 
traction induced critical point of F of index k if the following two con
ditions are satisfied. (See the Note at the end of the paper.) 

LOCAL CONDITION I. For some sufficiently small positive constant e 
there exists an injective homeomorphism 

(1.6)' x^><t>Jx):De^>Fß, (Fß = X) 

onto a topological ju.-ball A„. = «&„( De) C X, containing the point 
<T = $„(0), while for x E D , and p = *„(x), 

F(p) - F(<7) s - ^ 2 _ Xfc2 + X2fc + i 

+ ••• + xM
2=Çfc(x), ( M > 0 ) 

introducing the quadratic form Qk. The topological /x-ball A,,, may be a 
neighborhood of a, relative to X, but is not required to be a neighbor
hood of a. 

GLOBAL CONDITION II. Set F (a) = a. For some value c £ f i such 
that a > c > a — e2 there exists an F-traction A of Fß into A^ U Fc. 

Theorem 1.1 makes use of the following two definitions. 

DEFINITION 1.4. The critical (k — \)-cycle wc
k~l of a on Fc. Set 

(1.7) p 2 = a — c, (a> c > a — e2) 

and for 0 < k ^ JJL introduce the (k — l)-sphere 
(1.8) sk_l = {x E De | Xj2 + • • • + xk

2 = p2; xk+l = • • • = xß = 0} 

of radius p and denote 4>0.(5fc_1) by 7rfc_1. Then 7rk_i is a topological 
(k — l)-sphere on Fc, as (1.6)" shows. Let wc

k~l be any singular 
(k — l)-cycle on 7rk_l whose homology class on irk^i is a base for the 
homology group Hk_l(irk_l) owevU{. We term wc

k~l & critical (k — 1)-
cycle of a. 

DEFINITION 1.5. Linking or non-linking critical cycles wc
k~l. The 

cycle wk~l and cr will be said to be of linking or non-linking type, 
respectively, according as wk~l is or is not homologous to 0 on Fc. 

THEOREM 1.1 states the principal result of this paper. 
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THEOREM 1.1. If the index k of the traction induced critical point 
cr is positive, and the homology groups over U( of Fc are finitely 
generated, the connectivities Rq

ß of Fß are finite and equal the re
spective connectivities Rq

c of Fc, except at most when q = k — 1 or k. 
When q = k — 1 ork, respectively, 

(1.9)' R £ - i - f l £ - i = 0 o r - l , 

(1.9)" V - f l * c = l o r O , 

according as wc
k~l is of linking or non-linking type. 

The proof of Theorem 1.1 will lead to the following corollary. 

COROLLARY 1.1. Under the hypotheses of Theorem 1.1, if b is such 
that F(cr) > b > c, Fb admits an F-traction into Fc. 

In proving Theorem 1.1, a number of propositions and lemmas will 
be established. Our lemmas are regarded as secondary in importance 
to the propositions. 

The proof of Theorem 1.1 will be completed in § 4. At the end of 
this section a program for the proof of Theorem 1.1 will be outlined. 
The formulation of this program requires the definition of a "k-saddle 
of F hung at a" and a basic F-deformation d. 

DEFINITION 1.6. A k-saddle fikp of F, hung at a. We refer to the 
origin-centered /i-ball De of (1.5) and to the difference p 2 = a — c< e2 

where a = F (a). The euclidean Zc-disc 

<Ofcp = {x £ De I xx
2 + • • • + xk

2 ^ p2; xk + l = • • • = xM = 0} 

( * > 0 ) 

of radius p, has the (k — l)-sphere sk_1 of (1.8) as boundary. Set 

(1.11)' I V = ^ ( 0 ^ ) , 

and note that the topological (k — l)-sphere 

( L U ) " * f c - l = * a ( * * - l ) 

is the boundary of the topological fc-disc £lkP. Observe that 

(1.12) ft*? C Fß; I V O F , = **_!. 

The points of £lkP are below the F-level F (a) except for a. ftkP is 
called a k-saddle of F, hung at cr. Its boundary 7rfc_i is the carrier 
of the critical (k — l)-cycle wc

k~l. 

The following lemma concerns the subspace A^ U Fc of X intro
duced in Global Condition II. 
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LEMMA l.l(i). When k = /m, \ , U Fc = fy> U Fc. 
(ii) When 0 < k < /i, ffoere existe an F-deformation d of \U Fc 

retracting A^ U Fc onto iikP U Fc. 

PROOF OF (i). Recall that p < e and c = a — p2 . From the defini
tions of A^ and f i / we infer that When k = /ut, fì/ = {p G \ | a è 
F(p) = c} from which (i) follows. 

PROOF OF (ii). Use will be made of Ç)fc-deformations defined on 
subspaces of RM, as F-deformations were defined on subspaces of 
X. When 0 < k < p,, we shall define a Qk-deformation 8, retracting 
De on De onto a subset B of Dg of the form 

(1.13) B = {x G D, | Çfc(x) ê - p 2 } U atf, (p2 = a - c). 

DEFINITION OF 8. Let b = (bl9 • • *,&M) be a point in De — B. On 
De — B, Çfc(x) > — p2. Let g*, be the sensed straight arc in De 

which joins the point b to the point b* = (fo1? • • -, bk, 0, • • -,0) in 
De. As the point x moves along gb in the positive sense, the coordi
nates xk+u • • -,3^ alone vary, with xk+l + • • • + x2 decreasing 
to 0. There are two cases to be considered, distinguished by the 
nature of the initial point b. 

Case I. V + ' • ' + V > P 2 . 
Case II. bY

2 + •••-*- bk
2 g p2. 

In both cases Qk(b) > — p2. In Case I, Qk(b*) < — p 2 so there is 
a subarc yb of gb which joins b to a point x on gb at which Qk{x) = 
—p2. In Case II, set yb = gb. The arcs yb clearly vary continuously 
with b G De — B. To define the deformation 8, one moves a point 
x, given as b when t = 0, along yb at a velocity with respect to t 
equal to the length of yb. Under 8 points on B are held fast. So 
defined, 5 is a Qk-deformation retracting De on De onto B. 

DEFINITION OF d. Recall that A^ = <J>a(De). The "trajectories" 
under d of points x initially in Aa when t = 0, are taken as the images 
under 4>a of the trajectories of the corresponding points in De under 
the Çfc-deformation 8. Under d points p G Fc are held fast. 

Since 8 is a Çfc-deformation, retracting De onto B, the restriction 
of d to \j. is, by (1.6)", an F-deformation retracting A^ onto *CT(B) 
= {p G A, I F(p) i c } U *„(«»/>) = (A, H Fc) U (V, (0 < fc < / 4 
Since d leaves points of Fc fixed, (ii) of Lemma 1.1 follows. 

PROGRAM FOR PROOF OF THEOREM 1.1. We shall denote fìfc
p — a by 

Clk
p and consider the sequence of sets, 

(1.14) Fß,\, U Fc, nko U Fc, Ùkp U Fc, Fc (k > 0). 
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Each set in (1.14) is a proper subset of its predecessor. We shall show 
that the q-th singular homology groups over D{ of successive sets in 
(1.14) are isomorphic, except for the successive sets, 

(1.15) I V U Fc, Ùkp U Fc , (k> 0). 

The connectivities over D{ of the two sets (1.15) will be seen in § 3 
to have the same differences as do the connectivities of Fß and Fc of 
Theorem 1.1. 

Under Condition II there is an F-traction of the first set in (1.14) 
into the second. By Lemma 1.1 there is an F-deformation retracting 
the second set in (1.14) onto the third. There is clearly an F-defor
mation retracting Ùkf> onto its geometric boundary irk-i at the F-
level c. We infer the following when k > 0. 

LEMMA 1.2. There exists an F-deformation retracting Ùkp U Fc 

onto Fc. 

In § 2 we shall recall theorems by virtue of which the connectivities 
of successive sets in (1.14) are equal, excepting the two sets (1.15). In 
§ 3 we shall compare the connectivities of the sets (1.15). We are led 
thereby to a proof of Theroem 1.1. 

APPLICATIONS OF THEOREMS 1.1 AND 5.1. One of the simplest appli
cations is to the case of a topologically nondegenerate function F 
defined on a compact topological manifold Mn. It is shown in 
reference [3] that F can be replaced by a similar mapping F 
differing infinitesimally from F, each of whose critical points is of 
singleton type, that is, has a critical value a= F (a) assumed by 
just one critical point cr. The index of cr equals that of the critical 
point it replaces. Let ß, a, c be values in R such that a is a critical 
value of F and the interval (ß, c) contains no critical value of 
F other than a. It is shown in reference [3] that there is a "trac
tion" that induces cr as a critical point. Theorems 1.1 and 5.1 can 
be applied to such critical points. The resultant global critical point-
homology relations have the same form, in this topological case, that 
they have in the analytic nondegenerate case. 

2. F-Deformations and homologies. We shall be concerned with 
singular homology theory (Eilenberg) on a topological space X. 
No triangulations of X are presupposed. Given X and the field D{, 
singular q-ce\\s on X are combined linearly with coefficients in if{ to 
define a vector space denoted by Cq(X,9(). The singular q-cells on 
X form a basis for Cq(X, D{). The elements of Cq(X,-K) are termed 
q-chains. The homology groups Hq(X) over 3{ are well-defined for 
each rational integer q. They are trivial if q < 0. 
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The following notation helps remove ambiguity. 

DEFINITION 2.1. The homology class ((uq,X)). If uq is a ^-cycle in 
Cq(X,LK), then ((uq

yX)) shall denote the subset of 9-cycles in Cq(X,D() 
which are homologous to uq on X. One can regard ((uq,X) as an 
element in the homology group Hq(X) over %. T shall abbreviate 
topological. 

THE CHAIN TRANSFORMATION <p (Eilenberg). Let there be given a 
continuous mapping <p :X —>X' of a T-space X into a T-space X'. 
A singular q-cell aq on X is defined by the class of equivalent map
pings r of vertex-ordered euclidean simplices into X. In a chain trans
formation, 

(2.1) <p:Cq(X,LK)-+Cq(X',y<), (9 = 0,1,2, • • •) , 

the image (paq on X' of a g-cell aq on X is defined by compositions 
<p ° T with <p of the equivalent mappings r into X which define aq. 
The mappings <p, so defined for cells aq on X, are extended linearly 
over IK to define the mappings (2.1). Eilenberg shows that <p is per
mutable with the boundary operator d. "Natural" homomorphisms 

(2.2) fa),, : Hq(X) -* Hq(X ') (overlflf) 

are induced by <p, in which, for each ç-cycle z on X, ((z, X)) goes into 
(02, X')). 

Let 2 be a <7-cycle over 1^ on X and d a deformation of X on X. If 
dx is the terminal mapping of d, the homology z ~ â ^ is valid on the 
image under d of any carrier \z\ of z. This is a classical theorem. See 
§ 26 and § 27 of reference [4] for details. 

The F-tractions, defined in § 1, induce isomorphisms as follows. 

LEMMA 2.1. Let X and X ' be T-spaces with X ' C X. If dis a traction 
ofX into X',an isomorphism 

(2.3) {iJq:Hq(X')^Hq(X) , (9 = 0 ,1 , • • • ) , 

is induced by the inclusion mapping i : X ' —> X. 

The inclusion induced mapping (2.3) is a homomorphism. We 
affirm that if d is a traction of X into X ' it is an isomorphism. This is 
true if the following is true: 

(a) Each </-cycle on X is homologous on X to a </-cycle on X '; 
(b) Each g-cycle on X ' which is bounding on X is bounding on X '. 
In fact (i%)q is surjective if (a) holds and has a null kernel if (b) 

holds. Isomorphisms are understood to be surjective in this paper. 
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PROOF OF (a). Since d deforms X on X into X ', (a) is clearly true. 

PROOF OF (b). Let dx be the terminal mapping of d. As is well 
known, one can associate with d homomorphisms (see § 27 of refer
ence [4] ) 

(2.4) d : Cq(X,9() -» Cq+1(X, %), (q = 0 ,1 , • • • ) , 

such that for each q-chain z G Cq(X,U\) 

(2.5) ddz = âxz — z — ddz. 

Moreover the definition of d in reference [4], page 236, is such 
that |dz| C d\z\, where d\z\ is the union of the trajectories of points 
of |Z|. 

In (b) a g-cycle ux< is given onX ' such that 

(2.6) w r = dyx , 

for some (q + l)-chain yx onX. By virtue of (2.5) 

(2.7) ' ddyx = âYyx - yx - ddyx. 

On applying d to the members of (2.7) ' and making use of (2.6) we 
find that 

(2.7)" 0 = dàxyx -ux, - ddux, 

Since d is a traction into X' both àYyx and dux are on X', so that 
ux ~ 0 onX ', confirming (b). 

Lemma 2.1 follows from (a) and (b). 

RELATIVE HOMOLOGIES OVER D{. Relative homologies were intro
duced by Lefschetz. Given a T-space X a subspace A of X is taken as 
a "modulus" and the pair (X, A) termed "admissible." The q-Ûv rela
tive homology group of X mod A is denoted by Hq(X, A). See § 28 of 
reference [4]. We state a classical lemma. 

LEMMA 2.2. Let (X, A) and (X', A') be admissible set pairs with 
X' OX and A ' C A , The existence of a deformation d retracting X 
onto X ' and A onto A '', implies that the homomorphism 

(2.8) ' («*)„ : Hq(X ', A')-» Hq(X, A), (q = 0,1, • • •), 

induced by the inclusion mapping 

(2.8)" i : (X ' ,A ' ) -*(X,A) 

is an isomorphism. 
Moreover, under the inverse of the mapping (2.8)', the relative 
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homology class onX of a q-cycle zx onX mod A, goes into the relative 
homology class onX ' mod A ' ofâiZx. 

This lemma is established in slightly different form as Theorem 
28.4 on page 251 of reference [4]. The proof in reference [4] suf
fices. 

EXCISION. Among the axioms of Eilenberg and Steenrod, formu
lated on page 11 of reference [19], is the so-called Excision Axiom. 
Our next theorem formulates a simplified version of this axiom. 

LEMMA 2.3. Excision. Let X be a metric space, A a proper subspace 
of X and A* a subspace of A such that for some positive e 

(2.9) (X - A)e C X ~ A*, 

where (X — A)e is the open e-neighborhood ofX— A, relative to X. 
There then exist isomorphisms, 

(2.1) (i Jq : Hq(X - A \ A - A*) ̂  Hq(X, A) , (q = 0 ,1 , • • •) , 

over lf( induced by the inclusion mapping 

(2.11) i : (X - A*, A- A*) -* (X, A). 

This theorem is established as Theroem 28.3 of reference [3], page 
249, in slightly different form. 

We shall make use of a special theorem given by (2.14) below. 

AN EXACTNESS RELATION. In reference [19] on page 11 one finds 
an Exactness Axiom that consists of a sequence of exactness relations. 
We shall have need for one of these relations in concrete form. Two 
group homomorphisms are involved, a first and second. The exactness 
relation affirms that the image of the first group under the first 
homomorphism is the kernel of the second. We shall define the two 
homomorphisms involved in the exactness relation. 

There is given a T- space X and a subspace A C X. The second 
homomorphism has the form 

(2.12) (!„),_, : H^A)^* !!„_&), (q = 1,2, • • •) , 

and is induced by the inclusion map i : A—» X. 
The first homomorphism has the form 

(2.13) e.-.H^A^H^A) 

and is defined as follows. If uq is a q -chain on X which is a g-cycle 
mod A, the homology class of uq on X mod A shall go into the 
homology class ((duq,A)) of Hq_l(A). One verifies the fact that if 
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vq ~ uq on X mod A, then ((duq, A)) = ((dvq, A)), so that a mapping 
(2.13) is well-defined. 

The exactness theorem affirms that 

(2.14) ©a(Hq(X, A)) = kerfi«),.,, (q = 1,2, • • •). 

The proof of (2.14) is trivial. One can use the definitions found in 
§ 28 of reference [4] on Relative Homologies to verify (2.14). 

3. Comparison of the homology groups of (lkP U Fc9 and Ùk
p U Fc. 

In this section we shall be concerned with the fc-saddle ilkf> of a and 
the sublevel set Fc defined in § 1. For simplicity of notation we shall 
set 

(3.1) n = nkp, Y = f v u FC. 
We also set 

(3.2) fì=n-a, Y = Y - ( 7 . 

A first lemma follows. 

LEMMA 3.1. The homomorphisms 

(3.3) (i*)q:Hq(il,Ù)^Hq(Y,Y), (q = 0 ,1 , • • •) , 

induced by the inclusion mapping 

(3.4) i : (fì, Ù) -+ (Y, Y) 

are isomorphisms. 

Use will be made of Excision Lemma 2.3. The set pair (X, A) and 
set A* of Lemma 2.3 will here be defined by setting 

(3.5) (X,A)=(Y,Y); A * = F c - 7 r f c _ l 7 

so that in Lemma 2.3, A* C A and 

(3.6) X - A* = il; A- A* = n. 

The excision condition (2.9) is satisfied, since a sufficiently small 
neighborhood of X — A = a, relative to Y, is included in X — A* = CI. 

The isomorphisms (3.3) follow from (2.10). 

BASES OF THE HOMOLOGY GROUPS IN (3.3). The homology groups in 
(3.3) are over D( and hence free. We shall establish the relations 

(3.7) dim Hq(Y, Y) = dim HQ(ft «) = W > (9 = 0,1, • • •)• 

PROOF OF (3.7). For fc > 0 let Afc denote the origin-centered, closed 
fc-disc of unit radius in Rk. Let Àfc denote Ak with the origin deleted. 
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The T-saddle ft = I V is, by Definition 1.6, a topological fc-disc with 
the critical point a in its interior. There accordingly exists a sur-
jective homeomorphism 

(3.8)' e fc:ft-+A fc, (fc>o), 

with 0fc(o") = 0. Under @k, ft is mapped homeomorphically onto 
Âk. The chain transformation @k accordingly induces isomorphisms 

(3.8)" Hq(Ü, Ù) ^ Hq( A,, Afc), (k > 0; q = 0 ,1 , • • •)• 

The dimension fi,, of the homology group Hq(Ak, Afc) is 8^, as is 
well known. Hence the second equality in (3.7) is true. The first 
equality in (3.7) is a consequence of (3.3). 

We shall obtain bases for the relative homology groups in (3.8)". 
To that end a definition is required. 

DEFINITION 3.1. A prebase for a homology group. Let Hq(X, A) be a 
relative homology group over D( with a finite base. A set of non-
trivial relative (^-cycles, one from each relative homology class in a 
base for Hq(X, A), will be called a prebase for Hq(X, A). If a base for 
Hq(X, A) is empty, each prebase is empty. 

We seek a prebase for Hk(iï, ft). By virtue of (3.7) such a prebase 
will consist of a single relative fc-cycle on l ì mod ft We shall define 
a prebase which is given by a singular fc-cell on ft mod ft and is simply 
carried by ft in the sense of the following definition. 

DEFINITION 3.2. Simply-carried singular q-cells. A singular g-cell 
on X is defined (Eilenberg) by an equivalence class of continuous 
mappings r : s —» X of vertex-ordered euclidean qf-simplices s into 
X. If the mappings r are homeomorphic mappings of their domains s 
onto their images T(S), the resultant singular g-cell on X will be said 
to be simply-carried. 

We apply this definition as follows. 

DEFINITION 3.3. A saddle k-cell KJ> of a. There exists a fc-cell 
KgP whose carrier is the fc-saddle ft of a and which is simply-carried 
by ft. We term KJ* a saddle fc-cell of a. Taken mod ft, Kf will be 
termed a relative saddle k-cycle on ft mod ft 

We shall verify a basic proposition. 

PROPOSITION 3.1. With ft and Y defined as in (3.1), the saddle k-cell 
KJ* of (j has the following properties-. 

(i) Taken mod ft, it is a prebase for Hk(Cl, ft); 
(ii) Taken mod Y it is a prebase for Hk(Y, Y). 
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PROOF OF (i). We begin by proving the following lemma. 

LEMMA 3.2. Ifykisa singular k-cell whose carried is Ak and which 
is simply-carried, then, taken mod àk, yk is a k-cycle on Afc mod Àfc 

which is a prebase of Hk(kk, Afc). 

Note that \dyk\ is a topological (k — l)-sphere which is the geomet
ric boundary of A .̂ The remainder of the proof is left to the reader. 
Lemma 29.0 of reference [4] is relevant to the proof. 

Granting the truth of Lemma 3.2, (i) of Proposition 3.1 follows from 
the isomorphism (3.8)", as we now verify. The isomorphism (3.8)" is 
induced by the homeomorphism &k of (ft, ft) onto (Afc, Afc). As a 
fc-cycle on ft, mod ft, KJ> of Definition 3.3 is the image under the chain 
transformation &k of a singular fc-cell yk, characterized as in Lemma 
3.2. Taken mod ft, KJ* is a prebase of Hfc(ft, ft), since yk, taken 
mod Afc, is a prebase of Hk(Ak, Afc). Thus (i) of Proposition 3.1 is 
true. 

PROOF OF (ii). If i is the inclusion mapping (3.3) and KJ> the above 
saddle fc-cell on ft, then, KJ3, taken mod ft, is a prebase of Hk(£l, ft), as 
we have just seen. Hence, by Lemma 3.1, \Kap will be a prebase for 
Hk(Y, Y). Statement (ii) of Proposition 3.1 follows. 

The decisive role of the "critical" (k — l)-cycle wk~l in Theorem 
1.1 prompts the following lemma. 

LEMMA 3.3 (a). The conditions of Definition 1.4 on a critical (k — 1)-
cycle wk ~l of a are satisfied by dKa

p, where KJ* is the saddle k-cell 
of Definition 3.3. 

(ß) The (k — \)-cycles wk~l and OK/ are on Fc and both bound
ing or nonbounding on Fc> or equivalently on Y. 

PROOF OF (a). The (k — l)-cycle ÒKJ* is on the topological (fc — 1)-
sphere TT^-I which gives the geometric boundary of ft. Taken mod ft, 
KJ> is a prebase of Hk(il, ft), by (i) of Proposition 3.1. It follows that 
dKa

p is a prebase of Hfc_1(7rfc_1) as one readily verifies. The reader 
will be aided in this proof by turning to Lemma 29.0 of reference 
[4]. Reference to Definition 1.4 of wk~l shows that ÒKJ* can serve 
in place of wk~l. Thus (a) is true. 

PROOF OF (ß). That wk~l and ÒKJ are both bounding or non-
bounding on Fc is immediate. That this is equivalently true if Fc is 
replaced by Y, follows from the existence of a deformation retracting 
Y onto Fc. 

Thus Lemma 3.3 is true. 
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The following definition confirms and extends Definition 1.5. 

DEFINITION 3.4. A linking k-cycle Xj*. In case the critical (k — 1)-
cycle d/c/ bounds a fc-cycle, say uk on Fc, the difference, 

(3.9) Kk = *<? - uk 

is a fc-cycle on Y and is called a linking fc-cycle associated with o\ 
The (k — l)-cycle d#c/, as well as a, is then said to be of linking 
type. 

Note that Ve, like Ka
p, is a prebase ofHfc(Y, t ) . With this under

stood we prove a basic proposition. We continue with the positive 
index k. 

PROPOSITION 3.2. Let ek be an arbitrary k-cycle on Y. Two cases 
arise. 

Case h ÒKJ* oflinking type. In this case for some element K G.9( 

(3.10) ek ~ KXa
k , (on Y mod t ) . 

Case II: dKa
p of non-linking type. In this case 

(3.11) ek~0, (on Y mod t ) . 

In both cases Proposition 3.1 (ii) implies that for some element 
KE1K 

(3.12) ek= K K / + df** + 1 , (on Y mod Y), 

where uk + l is a (k + l)-chain on Y. In both cases (3.12) implies that 

(3.13) KdKf-0, (ont). 

Case I: In this case (3.10) follows from (3.12), since KJ> = Xj* on 
Y mod Y, in accord with (3.9). 

Case II: In this case K = 0 in (3.12) and (3.13). Otherwise 

(3.14) dKj-O, ( on t ) . 

However (3.14) is impossible in Case II, as we now show. 
There exists an F-deformation d retracting t onto Fc. If then (3.14) 

held, the existence of d would imply, by Lemma 2.2, that ÒKa
p ~ 0 

on Fc contrary to the hypothesis in Case II. Hence K = 0 in (3.12), 
implying (3.11) in Case II. 

Thus Proposition 3.2 is true. 

We introduce the inclusion mapping 

(3.15) i : t -* Y 
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and the induced homomorphisms 

(3.16) («J, : Hq(Y) -» Hq(Y), (q = 0 ,1 , 2, • • •). 

The following lemma concerns (i*)q. 

LEMMA 3.4. The homomorphisms (i#)q of (3.16) have the following 
properties-. 

(ax) When q ^ k - 1, Ker(i*)q = 0; 
(a2) When q = k — 1, Ker(i5|c)Q = 0 or /ias £/ie non-null base 

((ÔKo?, Y)), according as a is or is not of linking type; 
(a3) When q j ^ k, (i%)q is surjective; 
(a4) When q is neither k nor k — 1, (i*)q is an isomorphism over D{ 

ofHq(Y) onto Hq(Y). 

PROOF OF (ax). Recall the exactness relation, 

(3.17) e 8 ( H , + 1 ( Y , Y ) ) ^ K e r ( t J , , (9 = 0,1, 2, • • • ) , 

of which a general form is given in (2.14). It follows from (3.7) that 
Hq+i (Y, Y) = 0 when q + 1 ^ /c. Statement (ax) can then be in
ferred from (3.17). 

PROOF OF (a2). According to (ii) of Proposition 3.1, Kf, taken as a 
fc-cycle on Y mod Y, is a prebase for Hk(Y, Y). From the definition of 
the homomorphism, Sd of (2.13), we infer that a base for the image of 
Hk(Y, Y) under ©ô is 0 or the non-null homology class ((d*/, Y)), 
according as dKa

p is bounding or non-bounding on Y. Statement 
(a2) now follows from (3.17). 

PROOF OF (a3). It is sufficient to show that if c+q is a 9-cycle on Y, 
and if q ^ k, then for some g-cycle c_q on Y 

(3.18) c+q ~ c_q , (on Y). 

To verify (3.18) we infer from (3.7) that if q ^ k 

(3.19) c+
q = de+q+l + e_q, 

for suitable chains e+q + l on Y and e_q on Y. An application of d to 
the members of (3.19) shows that e_q is a (7-cycle on Y, so that (3.18) 
holds with c_q = e_q. Thus (a3) is true. 

PROOF OF (a4). Statement (a4) is a consequence of (aL) and (a3). Thus 
Lemma 3.4 is true. 

DEFINITION 3.5. A prebase Bq(X) of Hq(X). Let X be a topological 
space and q any rational integer. If the connectivity Rq(X) of X over 
U( is finite, we shall denote by Bq(X) a prebase of Hq(X). See Défini-
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tion 3.1. The number of q-cycles in Bq(X) equals Rq(X). This number 
may be 0. Bq(X) is then empty. 

The connectivities RqiFç) are finite by hypothesis of Theorem 1.1. 
It follows then from Lemma 1.2 that each connectivity Rq(Y) is also 
finite. Hence a finite prebase Bq(Y) exists for each q. 

Homological independence over D{ of q-cycles on X. A finite set S 
(possibly empty) of qf-cycles on a topological space X will be said to be 
homologically independent, over 3{ on X, if the corresponding homol
ogy classes in Hq(X) are linearly independent over l^ . An empty set 
S of (/-cycles is understood to be homologically independent. 

The following lemma is needed in the proof of Proposition 3.3. 

LEMMA 3.5 (a). If the index k of a is positive and if a is of non-
linking type, there exists a prebase B ^ ^ Y ) of Hk_l(Y) which con
tains the critical (k — \)-cycle wc

k~l of Theorem 1.1. 
(ß). Moreover the (k — \)-cycles of the set 

Bk_l(t}-wc
k-1 

are then homologically independent over D{ on Y. 

PROOF OF (a). When k > 0 and a is of non-linking type, the (k — 1)-
cycle die J* / 0 on Y. Equivalently by Lemma 3.3, the critical (k — 1)-
cycle wc

k~i'/'0 on Y. There then exists a prebase B^^Y) for 
HK_l(Y) that contains wc

k~l. 

PROOF OF (ß). Suppose, contrary to (/3), that there exists a non-
trivial linear combination uk~l over J{ of (k — l)-cycles in the set 
of ß such that uk~l — 0 on Y. The (k — l)-cycle uk~l is then in 
Ker(i%)k_i and hence, by (a2) of Lemma 3.4, uh~l— Kwc

k~l on Y, 
with KGU(. Equivalently the (k — l)-cycles in Bfc_1(Y) are homo
logically dependent over $( on Y, contrary to the nature of a prebase 
ofHfc_,(t). 

Thus Lemma 3.5 is true. 

NOTATION FOR PROPOSITION 3.3. The index k of a is positive, as 
previously. For each q we seek a prebase for Hq(Y) in terms of a pre
base Bq(Y) for Hq(Y). Prop. 3.3 will refer to the following exhaustive 
case division: 

Case 1. q ^ k or k — 1, 
Case 2. q = k,cr of non-linking type, 
Case 3. q = k — 1; cr of linking type, 
Case 4. q = k,a of linking type, 
Case 5. q = k— 1, a of non-linking type. 
In Case 4, Xj* denotes the linking fc-cycle of Definition 3.4. 
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PROPOSITION 3.3 (I). In cases 1, 2, 3, a prebase for Hq(Y) is a prebase 
forHq(Y). 

(II). In Case 4, ifBk( Y) is a prebase for Hk(Y), then 

(3.19)' B f c ( * ) U V 

is a prebase for Hk(Y). 
(III). In Case 5, if Bk_l(Y) is a prebase for Hk_l(Y) that contains 

wc
k~l, then 

(3.20) B,_!(Y) - u>c*-> 

is a prebase for Hk_i(Y). 

PROOF OF (I). In Case 1, the inclusion induced homomorphism 
(i%)q of (3.16) is an isomorphism by (a4) of Lemma 3.4, so that (I) is 
true in Case 1. 

In case 2, Case II of proposition 3.2 implies that an arbitrary /c-
cycle on Y is homologous on Y to a linear combination, over Lf(, of k-
cycles in Bfe(Y). According to (ax) of Lemma 3.4, Ker(isic)fc = 0. Hence 
the fc-cyeles in Bk(Y) are homologically independent over Lf( on Y 
and so form a prebase for Hk(Y) in Case 2. 

In Case 3, q = k — 1 so that (3.7) implies that an arbitrary (k — 1)-
cycle on Y is homologous on Y to a linear combination over ü{ of 
(k — l)-cycles in B^.^Y). Moreover, by (a2) of Lemma 3.4, 
Ker(i%)k_l = 0 when or is of linking type. Hence Bfc_x(Y) is a pre
base for Hk_1(Y) in Case 3. 

PROOF OF (II). In Case 4, wc
k~l — 0 on Y. By virtue then of (3.10) of 

Proposition 3.2, an arbitrary fc-cycle on Y is homologous on Y in Case 
4, to a linear combination over D{ of fc-cycles in the set (3.19) '. More
over, the fc-cycles in Bk(Y) are homologically independent over D{ on 
Y; for Ker(i*)fc = 0 by (aj) of Lemma 3.4, while Xj* is homologous on 
Y over U( to no linear combination, over !J(, of /c-cycles in Bfc(Y). 
This follows from Proposition 3.1 (ii) and the definition (3.9) of X^. 
Thus (II) is true. 

PROOF OF (III). By (3.7), dim / / ^ ( Y , Y) = 0. Hence each (k - 1)-
cycle on Y is homologous, over % on Y, to a linear combination, over 
Ù{, of (k — l)-cycles in Bfc_1(Y) or, equivalently, in the set (3.20). 
Moreover, in Case 5, the (k — l)-cycles in the set (3.20) are homologi
cally independent, over D(, on Y, by (ß) of Lemma 3.5. Thus (III) 
is true. 

4. Verification of Theorem 1.1 and its corollary. Theorem 1.1 fol
lows from Proposition 3.3 as we shall see. Cf. "Program" at end of § 1. 
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THEOREM 1.1 compares connectivities of the spaces Fß and Fc. 
Proposition 3.3 indirectly compares the connectivities of Y = ilkf> U Fc 

and Y = (itf U Fc by comparing the prebases of the homology groups 
of Y and Y. However, for each q, Hq(Fß) and Hq(Y) are isomorphic, 
as are Hq(Y) and Yq( Fc). This is implied by our initial F-traction A 
and subsequent deformations. With this understood Proposition 3.3 
implies Theorem 1.1. 

VERIFICATION OF COROLLARY 1.1. An F-traction D of a topological 
subspace A of X into a subspace B of A has the property that if 
A D Fb D B for some b G R, then the restriction D | Fb of D is an 
F-traction of Fb on Fb into B. A traction of A into B which is not an 
F-traction does not in general have this property. 

Set A = {p G Fa | F(p) < a}. When fc > 0 let Ai be the final 
image of Fß under the F-traction A of Fß into A«, U Fc. (Global Con
dition II.) To Aj one can apply the F-deformation d retracting 
Aa U Fc onto ( V U Fc. (Lemma l.l(ii).) We infer the existence of an 
F-traction 8 of Fß into fV U Fc. It follows that 6 | A is an F-traction of 
A into ( V U f c- There is accordingly an F-traction D of A into Fc. 
Since AZ) FbD Fc, Corollary 1.1 follows. 

NOTE. Theorem 1.1 is true if the F-traction A of Global Condition 
II is merely a traction of X into A„. C\ Fc. Our proofs show this to be 
the case. However with A merely a traction, a valid formulation of 
Corollary 1.1 is an open question. 

It is a consequence of Corollary 1.1 that the inclusion map of Fc into 
Fb induces an isomorphism of Hq(Fc) onto Hq(Fb) for each b such that 
c < b < F(<r). 

5. The case fc = 0. The case of a traction induced critical point 
a of index fc = 0 is included in Definition 1.3. In this case (1.6)" 
takes the form 

(5.1) F(p) - F (a) = x^ + x2
2 + • • • + xf = Q0(x) (x G De). 

The theorem which bears on this case has hypotheses which differ 
but little from the hypotheses when fc > 0. As previously we set F (a) 
= a and Aa = 4^(De). When fc = 0, Â  is a topological /x-disc on which 
F | AT has an absolute minimum value a. If a is also an absolute mini
mum value of F on X, then for any value c G R such that c < a, Fc 

is an empty set and, by convention, has null connectivities. In general, 
Fc is not empty for c < a. 

The basic theorem when fc = 0 follows. 
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THEOREM 5.1. If the index k of a traction induced critical point a 
is 0 and if the homology groups of Fc are finitely generated, the 
respective connectivities Rqß of Fß are finite and equal the connectivi
ties Rj ofFc when q > 0. When q = 0 

(5.2) V - Boc = 1. 

When Fc is empty Theorem 5.1 implies that Rq
ß = 0 when q > 0 

and that R / = 1. 
The proof of Theorem 5.1 is left to the reader. Theorem 5.1 has a 

corollary similar to Corollary 1.1 of Theorem 1.1. 
Theorems 1.1 and 5.1 have the following useful corollary. 

COROLLARY 5.1. Let k be the index of a traction induced critical 
point a of F as defined on Fß = X and suppose that the homology 
groups ofFc of Global Condition II are finitely generated. 

The connectivities Rqß ofFß are then finite and equal the respective 
connectivities Rq0 ofFc, except when q = k — 1 or k. Moreover either 

(5.3) V = Rkc + 1 and R£_x = Rc
k_l, 

or 

(5.4) Rl_x = Rc
k.x - 1 and V = B*c. 

In the case k = 0, only the first alternative occurs. 

DEFINITION 5.1. The traction induced critical point a of Corollary 
5.1 will be said to be of "increasing" or "decreasing type" according as 
the alternative (5.3) or (5.4) occurs. 

6. An auxiliary lemma. The following lemma is useful in applica
tions of Theorem 5.1 in establishing the relevant traction. 

Let Dê be defined by (1.5) with e replaced by ê < e. Corresponding 
to the homeomorphism ®a of (1.6) ', set &a(Dê) = Ä^ and recall that 
Q„(De) = A.. 

LEMMA 6.1. If c < a and a — c is sufficiently small, there exists an 
F-traction ofA^ U Fc intoka U Fc. 

If k = 0, the lemma is trivial. If 0 < k < \L the traction is given 
by d of Lemma 1.1 on observing that d of Lemma 1.1 deforms 
\ U Fc on itself. When fc = /x, d properly defined moves no point. 

It should be noted that the proof of Lemma 6.1 makes no use of the 
Global Condition II on a. 

7. A global consequence of Theorem 5.3. Suppose that there exists 
a finite sequence 
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(7.1) ax < a2 < ' • * < ar 

of values of F assumed at the respective points, 

(7.2) al7 a2, • • -, ar 

in X, with crx affording an absolute minimum ax to F on X. Here 
orr and ar equal a and a respectively of § 1. Suppose, moreover, that 
there exist values in R, 

(7.3) c0 < cx < < cr_1 < cr> (with cr = ß of § 1), 

such that 

(7.4) , c0 < ax < cx < a2 < ' ' ' < ar_x < cr_i < ar< cr, 

and for i = 1, • • -, r, that o^ is a traction-induced critical point of 
index k{, induced by an F-traction A; of Fc. into Aa. U Fc._1 (as in 
Global Condition II with \a. defined as was A^ in Local Condition I). 

Let K be the maximum of the indices ki9 • • •, kr. For qf = 0 ,1 , 2, 
let mq

+ and m^" be the number of points in the set (7.2) with index 
q which are of "increasing" or "decreasing" type, respectively, in the 
sense of Definition 5.1. The number of points (7.2) with index q is then 

(7.5) mq=mq+ + mq~ , (q = 0 ,1 , 2, • • •). 

We term mq the q-th type number of the set (7.2). Note that ra0 = 
m0

 + and that for q > K, mq
 + = mq~ = 0. 

The set F6() is empty and so has null connectivities. Let Rq be the 
q-th connectivity of X, the domain of F. The change in the q-th con
nectivity of Fc as Fc changes from Fc._i to Fc. is given by Corollary 
5.1. The resultant change in connectivities as Fc changes from FCQ to 
FCr is the connectivity fì^ of FCr. Corollary 5.1 implies that 

(7.6) 

Ho = m0 — ml , 

Ri = m^— m2~ > 

HK_! = mt-i - mK~ , 

RK = mK
+ y 

and that fì^ = 0 for q > K. For q on the range 0, 1, • • -,K, (7.6) 
implies that 

™q - ™q-\ + ' " ( - l ) Q ^ o - rn-q+1 = Rq~ Rq^ + • • - ( - l ^ B o , 

(7.7) 
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and hence that 

(7.8) mq - m,_! + • • • ( - l ) " m 0 ^ R, - R,., + • • • ( - 1 ) " % 

We infer the following. 

GLOBAL THEOREM 7.1. Suppose that the mapping F of § 1 has 
traction-induced critical points (7.2) as characterized in the first 
paragraph of this section, with type numbers m0,mÌ7 • • -,mK. For 
q > K, mq = 0. Moreover, if R^ is the q-Ûi connectivity of X, the 
domain ofF, over U{, then Rq = Ofor q > K and 

m 0 ^ Ro , 

mY - m0 ^ Ri - Ro, 

(7.9) ra2 - mx + m0 ^ R2 - Rx + RQ , 

mK - mK_i + • • • ( - l ) *m 0 = R, - RK-i + • • • ( - 1 ) K % 

As a consequence mq = Rqfor each q è 0. 

HISTORICAL NOTE. The methods of establishing the "tractions" 
inducing the critical points of Theorem 7.1 will vary with the case at 
hand. For the case of topologically nondegenerate functions on a 
topological manifold see [3]. In [3] the critical points are isolated. 
In the general case the critical points are not isolated. This happens 
in the case of the functions F associated with global variational theory. 

NOTE ON LOCAL CONDITIONS I AND GLOBAL CONDITION II. Earlier 
treatments of the critical points of functions on differentiable mani
folds have required that both the manifolds and the functions studied 
be continuously differentiable. When one applies the theory to 
variational analysis, the derivation of fundamental relations, such as 
those of Theorem 7.1, without setting the problem up in classical 
differentiable form, greatly simplifies the exposition. Another very 
essential innovation is that the topological /Lt-ball A^ is not required 
to be a neighborhood of o\ 

The derivation of the global relations of Theorem 7.1 are shown 
to be valid even when there is no underlying global differential 
structure. Kervaire, Eells and Kuiper, Milnor and many others have 
shown the great variety of topological and combinatorial manifolds 
which have no representative with a global differential structure. See, 
for example, [20]. Our theorems apply in examples, similar to 
these, and possibly more importantly when one is not a priori certain 
that there is a global differential structure. 
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