p-SUBGROUPS OF CORE-FREE QUASINORMAL SUBGROUPS II

FLETCHER GROSS

1. Introduction. The subgroup H is quasinormal in the group G if $H K=K H$ for each subgroup K in $G . H$ is core-free in G if H contains no non-identity normal subgroup of G. Suppose now that H is a corefree quasinormal subgroup of G and that H has exponent p^{n} where p is a prime. It was shown in [2] that $(i) H$ is nilpotent of class at most Max $\left\{1, p^{n-1}-1\right\}$, and (ii) the derived length of H is at most n if p is odd and at most $[(n+1) / 2]$ if $p=2$. Stonehewer [4] constructed examples proving that the upper bound on the derived length is best-possible for $p \neq 2$. One result of the present paper is that the bound in (ii) also is best-possible if $p=2$. The main purpose of this paper, however, is to obtain a best-possible upper bound on the class of H. Specifically, it is proved that the class of H is at most $\operatorname{Max}\left\{1, p^{n-2}(p-1)\right\}$. For each prime p and each positive integer n, there is an example of a corefree quasinormal subgroup H of exponent p^{n} such that H has nilpotence class equal to $\operatorname{Max}\left\{1, p^{n-2}(p-1)\right\}$.
2. Notation and preliminary results. If S is a subset of the group G, then $\langle S\rangle$ is the subgroup generated by the elements of S. If G is a p group and n is a non-negative integer, then $\Omega_{n}(G)=\langle x| x \in G, x^{p^{n}}$ $=1\rangle$ and $\mho^{n}(G)=\left\langle x^{p^{n}} \mid x \in G\right\rangle$. If G is a nilpotent group, then $c(G)$ and $d(G)$ denote the class and derived length of G, respectively. The subgroups $L_{n}(G)$ are defined inductively by $L_{1}(G)=G$ and $L_{n+1}(G)$ $=\left[L_{n}(G), G\right]$. The core of H in G is the largest normal subgroup of G contained in H. The group G is said to have exponent n if n is the smallest positive integer such that $x^{n}=1$ for all $x \in G$.

The first three of the following lemmas are well known and are stated without proof. These three results will be used implicity throughout the remainder of the paper.
2.1. Lemma. If H is a quasinormal subgroup of G and T is a homomorphism of G, then HT is a quasinormal subgroup of GT.
2.2. Lemma. Let H be a subgroup of G and N a normal subgroup of G contained in H. Then H is quasinormal in G if, and only if, H / N is quasinormal in G / N.

Received by the editors October 30, 1973
2.3. Lemma. If H is a quasinormal subgroup of G and K is a subgroup of G, then $H \cap K$ is a quasinormal subgroup of K.
2.4. Lemma. Let A be an abelian group of exponent dividing 4. Let x be an automorphism of A such that $x^{4}=1$ and $\left[A, x^{2}, x^{2}\right]=1$. Let $B=\left[A, x^{2}\right][A, x, x] \mho^{1}(A)$. Then $\left[B, x^{2}\right]=[B, x, x]=\mho^{1}(B)=1$.

Proof. Let V be A written additively and let T be the element in the endomorphism ring of V corresponding to x. Then $V\left(T^{4}-1\right)=$ $V\left(T^{2}-1\right)^{2}=4 V=(0)$ and the lemma is equivalent to showing that $(T-1)^{2}\left(T^{2}-1\right)=2\left(T^{2}-1\right)=(T-1)^{4}=2(T-1)^{2}=0 . \quad$ Now $(T-1)^{4}$ $=\left(T^{2}-1\right)^{2}-4 T(T-1)^{2}=0 . \quad 2\left(T^{2}-1\right)=\left(T^{4}-1\right)-\left(T^{2}-1\right)^{2}=0$ and $2(T-1)^{2}=2\left(T^{2}-1\right)-4(T-1)=0$. Finally, $(T-1)^{2}\left(T^{2}-1\right)=$ $\left(T^{2}-1\right)^{2}-2\left(T^{2}-1\right)(T-1)=0$.

The next two lemmas are used to compute the derived length and class of the examples constructed in $\S 4$.
2.5. Lemma. Let G be a finite non-trivial nilpotent group with a normal abelian subgroup M. Assume that there is a basis for M that is the union of conjugacy classes of G. Then $\mathrm{d}(G)>\mathrm{d}\left(G / C_{G}(M)\right)$.

Proof. Assume that G is a counter-example in which $|M|$ is as small as possible. Since the lemma certainly is true if $\left|G / C_{G}(M)\right|=1$, we must have $G \neq C_{G}(M)$. According to the hypothesis, M contains elements $u_{1}, u_{2}, \cdots, u_{r}$ such that u_{i} and u_{j} are not conjugate in G for $i \neq j$ but $\left\{x^{-1} u_{i} x \mid x \in G, 1 \leqq i \leqq r\right\}$ is a basis for M. Let M_{i} be the subgroup generated by all conjugates of u_{i}. Then M_{i} is normal in G and $M=M_{1} \times M_{2} \times \cdots \times M_{r}$.

First suppose that $r>1$. Then $\left|M_{i}\right|<|M|$ for $1 \leqq i \leqq r$. The minimality of M implies that $\mathrm{d}(G)>\mathrm{d}\left(G / C_{G}\left(M_{i}\right)\right)$ for $1 \leqq i \leqq r$. Since $\bigcap_{i} C_{G}\left(M_{i}\right)=C_{G}(M)$, we obtain $\mathrm{d}(G)>\mathrm{d}\left(G / C_{G}(M)\right)$.

Hence $r=1$. Since $C_{G}\left(u_{1}\right) \neq G$ and G is nilpotent, we find that $G \neq G^{\prime} C_{G}\left(u_{1}\right)$. This implies that $\left\{x^{-1} u_{1} x \mid x \in G\right\}$ is the union of more than one conjugacy class in $G^{\prime} M$. Let v_{1}, \cdots, v_{s} be representatives of all the distinct classes in $G^{\prime} M$ whose union is $\left\{x^{-1} u_{1} x \mid x \in G\right\}$. Let $N_{i}=\left\langle x^{-1} v_{i} x \mid x \in G^{\prime} M\right\rangle$ for $1 \leqq i \leqq s$. Then N_{i} is normal in $G^{\prime} M$ and $M=N_{1} \times N_{2} \times \cdots \times N_{s}$. Furthermore, $s>1$ and conjugation by the elements of G transitively permutes the subgroups N_{1}, \cdots, N_{s}. Since $\left|N_{i}\right|<|M|$, the minimality of M implies that $\mathrm{d}\left(G^{\prime} M\right)>\mathrm{d}\left(G^{\prime} M / C_{G^{\prime} M}\left(N_{i}\right)\right)$ for $\quad 1 \leqq i \leqq s$. Since $\cap_{i} C_{G^{\prime} M}\left(N_{i}\right)$ $=M C_{G^{\prime}}(M)$, this yields $\mathrm{d}\left(G^{\prime} M\right)>\mathrm{d}\left(G^{\prime} / C_{G^{\prime}}(M)\right)=\mathrm{d}\left(G / C_{G}(M)\right)-1$. Now let $T_{i}=\prod_{j \neq i} N_{j}$ and $U=[M, G]$. Since conjugation transitively permutes N_{1}, \cdots, N_{s} among themselves, $U T_{i}=M$ for $1 \leqq i \leqq s$.

Hence $G^{\prime} M=G^{\prime} T_{i}$ for $1 \leqq i \leqq s . G^{\prime} M$ is the subdirect product of the isomorphic groups $G^{\prime} M / T_{i}$. Thus $\mathrm{d}\left(G^{\prime} M\right)=\mathrm{d}\left(G^{\prime} M / T_{i}\right)=\mathrm{d}\left(G^{\prime} T_{i} / T_{i}\right)$ $=\mathrm{d}\left(G^{\prime} / G^{\prime} \cap T_{i}\right)$ for $1 \leqq i \leqq s$. Since $\cap_{i}\left(G^{\prime} \cap T_{i}\right)=1$, this implies that $\mathrm{d}\left(G^{\prime} M\right)=\mathrm{d}\left(G^{\prime}\right)$. We then obtain $\mathrm{d}\left(G^{\prime}\right)>\mathrm{d}\left(G / C_{G}(M)\right)-1$ which is equivalent to $\mathrm{d}(G)>\mathrm{d}\left(G / C_{G}(M)\right)$.
2.6. Lemma. Assume p is an odd prime and V is a vector space of finite dimension n over a field of characteristic p. Assume that x and y are p-elements of $\mathrm{GL}(V)$ such that $x^{-1} y x=y^{p+1}$ and $C_{V}(y)$ has dimension one. Assume further that V contains a subspace U such that $U x=$ U and V is the direct sum of $C_{V}(y)$ and U. Then the minimal polynomial of x is $(x-1)^{r}$ where r is the smallest positive integer such that $r p \geqq n$.

Proof. Let $G=\langle x, y\rangle$ and $P=\left\langle x, y^{p}\right\rangle$. If g is any nonidentity element of $\langle y\rangle$, then $V(g-1)$ must contain $C_{\mathrm{V}}(y)$. Hence g cannot fix U. Thus $\langle x\rangle \cap\langle y\rangle=1$. Then $\langle x\rangle$ is quasinormal in $G[2$, Lemma 4.1(b)]. Let W be the largest subspace of U that is invariant under P. Let z be either of the elements y^{p} or $x y^{p}$. Since $\langle x\rangle$ is quasinormal, $P=\langle x, z\rangle=$ $\langle z\rangle\langle x\rangle$. Now let $W_{1} / W=C_{U / W}(z)$. Then $W_{1} P=W_{1}\langle z\rangle\langle x\rangle=$ $W_{1}\langle x\rangle \subset U$. Due to the definition of W, this implies that $W_{1}=W$. Hence $C_{V / W}(z)$ has dimension one. Let m be the dimension of V / W. By looking at the Jordan normal form of z acting on V / W, we see that $(V / W)(z-1)^{\mathrm{m}}=(0) \neq(V / W)(z-1)^{\mathrm{m}-1}$. Clearly $\quad(V / W)(g-1)^{\mathrm{m}}=0$ for all $g \in P$ since P is a p-group.

Since P is normal in G, this implies that $V(g-1)^{\mathrm{m}} \subset W y^{i}$ for all i. But $\cap_{i} W y^{i}=(0)$. Thus $V(g-1)^{m}=(0)$ for all $g \in P$. Then the minimal polynomial of z must be $(z-1)^{m}$. Thus $\left(x y^{p}-1\right)^{r}=0$ if, and only if, $\left(y^{p}-1\right)^{r}=0$. But $x y^{p}=y x y^{-1}$. Hence $(x-1)^{r}=0$ if, and only if, $\left(y^{p}-1\right)^{r}=0$. Since $C_{V}(y)$ has dimension one, the minimal polynomial of y is $(y-1)^{\mathrm{n}}=0$. This implies that $\left(y^{p}-1\right)^{r}=0$ if, and only if, $p r \geqq n$. The lemma now follows.
3. An upper bound on the class. Our upper bound on the class is based upon Lemma 3.1 if $p \neq 2$ and upon Lemma 3.3 if $p=2$.
3.1. Lemma. Suppose $G=H\langle x\rangle$ is a finite p-group where $|\langle x\rangle|$ $=p^{n}, n \geqq 3, H$ is a core-free quasinormal subgroup, and $p \neq 2$. Let $M=\Omega_{n-1}(G)$ and define M_{0}, M_{1}, \cdots, inductively by $M_{0}=M$ and $M_{i+1}=\left[M_{i}, M\right] \boldsymbol{U}^{1}\left(M_{i}\right)$. Let $r=p^{n-3}(p-1)$. Then $M_{r}=1$.

Proof. $H \leqq \Omega_{n-1}(G)$ by [1, Theorem 5.1]. Hence $M=H\left\langle x^{p}\right\rangle$ [2, Lemma 3.1 (b)]. First, suppose $n=3$. Since H is core-free in G, $H \cap\langle x\rangle=1$ and $C_{G}(x)=\langle x\rangle$. Then, since $Z(G)$ must be contained in
$\langle x\rangle$, any nonidentity normal subgroup of G must contain $x^{p^{2}}$. M has exponent p^{2} [2, Lemma $3.1(\mathrm{~b})$] and so if M is abelian, we would have M_{2} $=1$. Since $r=p-1 \geqq 2$ (this is the only place where the assumption $p \neq 2$ is required), $M_{r}=1$ if M is abelian. Suppose M is not abelian. Then $x^{p^{2}} \in M^{\prime}, M=\left\langle x^{p}\right\rangle H$, and $c(M) \leqq p-1$ [2, Lemma 3.1 (c)]. $M / \Omega_{1}(G)$ is isomorphic to $\Omega_{1}\left(G / \Omega_{1}(G)\right)$ which is abelian by [2, Lemma 3.1]. Hence $M^{\prime} \leqq \Omega_{1}(G)$. It follows from all of this that $\mathcal{U}^{1}(M)$ $=\left\langle x^{p^{2}}\right\rangle \mho^{1}(H)$. If K is the core of H in M, then H / K has exponent dividing $p\left[1\right.$, Theorem 5.1]. Hence $K \geqq \mho^{1}(H)$. It follows that $\left[\mho^{1}(M), M\right] \leqq K \leqq H$. Since H is core-free in $G,\left[\mho^{1}(M), M\right]=1$. Since $M_{1} \leqq \Omega_{1}(G)$, we deduce that $M_{2}=[M, M, M]$. Then M_{r} $=M_{p-1}=L_{p}(M)=1$.

Thus the lemma is proved if $n=3$. We now assume that $n>3$ and proceed by induction on n. Let K be the core of H in M. Then M / K satisfies the hypothesis of the lemma with n replaced by $n-1$. By induction, therefore, M / K satisfies the conclusion of the lemma.

This implies that M contains normal subgroups $N_{0}, N_{1}, \cdots, N_{s}$ such that $N_{0}=\left\langle x^{\rho^{2}}\right\rangle H, \quad N_{s}=K, s=p^{n-4}(p-1), \quad N_{i} \geqq N_{i+1}, \quad N_{i} / N_{i+1}$ is elementary abelian, and $\left[N_{i},\left\langle x^{p^{2}}\right\rangle H\right] \leqq N_{i+1}$.

Let V_{i} be N_{i} / N_{i+1} written additively. Since N_{i} and N_{i+1} are normal in M, M induces automorphisms of $V_{i} .\left\langle x^{p^{2}}\right\rangle H$ acts trivially on V_{i}. Let T_{i} be the automorphism of V_{i} induced by x^{p}. Then $T_{i}{ }^{p}-1=0$. Hence $\left(T_{i}-1\right)^{p}=0$. This implies that

$$
[N_{i}, \underbrace{M, \cdots, M}_{p}] \leqq N_{i+1}
$$

$M / N_{1}=\left(\left\langle x^{p}\right\rangle N_{1} / N_{1}\right)\left(N_{0} / N_{1}\right)$. Hence

$$
L_{p+1}\left(M / N_{1}\right)=[N_{0}, \underbrace{M, \cdots, M}_{p}] N_{1} / N_{1}=1 .
$$

Therefore $c\left(M / N_{1}\right) \leqq p$. Then $\left(M / N_{1}\right) / Z\left(M / N_{1}\right)$ has class at most $p-1$. If $N_{1} x^{p} \notin Z\left(M / N_{1}\right)$, then both $\left(M / N_{1}\right) / Z\left(M / N_{1}\right)$ and $Z\left(M / N_{1}\right)$ have exponent dividing p. It follows from this that $M_{p} \leqq N_{1}$ if $N_{1} x^{p} \notin Z\left(M / N_{1}\right)$. If, on the other hand, $N_{1} x^{p} \in Z\left(M / N_{1}\right)$, then M / N_{1} is abelian and $M_{p} \leqq M_{2} \leqq N_{1}$. Thus it is always true that $M_{p} \leqq N_{1}$. Since N_{1} / N_{2} is elementary abelian and

$$
[N_{1}, \underbrace{M, \cdots, M}_{p}] \leqq N_{2}
$$

we conclude that $M_{2 p} \leqq N_{2}$. Continuing in this way we find that $\mathrm{M}_{\mathrm{r}}=M_{s p} \leqq N_{s}=K \leqq H$. But M_{r} is a normal subgroup of G and H is core-free in G. Hence $M_{r}=1$ and the lemma is proved.

The case $p=2$ presents more difficulty and we require a preliminary result.
3.2. Lemma. Assume $G=$ CH is a finite 2 -group where C is cyclic and H is a non-identity core-free quasinormal subgroup of exponent 2^{n}. Then the following is true:
(a) $|C| \geqq 2^{n+2}$.
(b) $\Omega_{2}(C) \leqq Z(G)$.
(c) $c\left(\Omega_{3}(G)\right) \leqq 2$.

Proof. Let $G_{1}=G / \Omega_{n-1}(G)$ and let H_{1} and C_{1} be the images of H and C, respectively, in G_{1}. Then H_{1} is a core-free quasinormal subgroup of $G_{1}[2$, Lemma $3.1(\mathrm{~b})]$. Since $\Omega_{n-1}(G)$ has exponent 2^{n-1} [2, Lemma $3.1(\mathrm{~b})$], $H_{1} \neq 1$. Hence G_{1} is not abelian. But $\Omega_{2}\left(G_{1}\right)$ is abelian [2, Lemma 3.1 (c)] and $H_{1} \leqq \Omega_{2}\left(G_{1}\right)$. It follows that $\left|C_{1}\right| \geqq 2^{3}$ which implies (a).

Now let K be the core of H in $H \Omega_{2}(C)$. (a) applied to $H \Omega_{2}(C) / K$ yields $|H / K|=1$. Hence $\Omega_{2}(C)$ normalizes H. Then $\left[\Omega_{2}(C), G\right] \leqq H$. Since H is core-free in $G=C H$ and G normalizes $\left[\Omega_{2}(C), G\right]$, this implies that $\left[\Omega_{2}(C), G\right]=1$ and so (b) is proved.

Next let L be the core of $\Omega_{3}(H)$ in $\Omega_{3}(G)$. Then $\Omega_{3}(G)$ is the subdirect product of the isomorphic groups $\left\{\Omega_{3}(G) / x^{-1} L x \mid x \in G\right\}$. Thus $c\left(\boldsymbol{\Omega}_{3}(G)\right)=c\left(\boldsymbol{\Omega}_{3}(G) / L\right)$. Since $\boldsymbol{\Omega}_{3}(G)=\boldsymbol{\Omega}_{3}(H) \boldsymbol{\Omega}_{3}(C)$ [2, Lemma 3.1 (b)] and $\Omega_{3}(H) / L$ is a core-free quasinormal subgroup of $\Omega_{3}(G) / L$, it is sufficient to prove (c) under the assumption that $G=\Omega_{3}(G)$.

Assume, therefore, that $G=\Omega_{3}(G)$. Then, by $(\mathrm{a}), H \leqq \Omega_{1}(G)$. Hence $G=\Omega_{1}(G) C$. Now $\left|\Omega_{1}(G)\right| \leqq 2^{2}$ by Lemma 3.1 (d) of [2]. This implies that $|G: C| \leqq 2$. Then G is the product of the two normal abelian subgroups C and $\Omega_{1}(C)$. Thus $c(G) \leqq 2$ and (c) is proved.
3.3. Lemma. Suppose $G=H\langle x\rangle$ is a finite 2 -group where $|\langle x\rangle|=$ $2^{n}, n \geqq 4$, and H is a core-free quasinormal subgroup. Let $M=\Omega_{n-2}$ (G) and define M_{0}, M_{1}, \cdots, inductively by $M_{0}=M$ and $M_{i+1}=$ $\left[M_{i}, M\right]\left[M_{i}, x^{2}, x^{2}\right] \mho^{2}\left(M_{i}\right)$. Let $r=2^{n-4}$. Then $M_{r}=1$.
Proof. By Lemma 3.2(a), $H \leqq \Omega_{n-2}(G)$. Then $M=H\left\langle x^{4}\right\rangle$. By an induction argument, M_{i} is a normal subgroup of G for $i=0,1, \cdots$. Suppose that $n=4$. Then M is abelian [2, Lemma 3.1(c)] and $\boldsymbol{U}^{2}(M)=1$. Therefore $M_{1}=\left[M, x^{2}, x^{2}\right]$. But $M\left\langle x^{2}\right\rangle \leqq \Omega_{3}(G)$, and, according to Lemma 3.2(c), $\boldsymbol{V}_{3}(G)$ has class at most 2. Hence $M_{1}=1$ and the lemma is proved for $n=4$.
We now assume that $n>4$ and proceed by induction on n. Let K be the core of H in $H\left\langle x^{2}\right\rangle$. Then $H\left\langle x^{2}\right\rangle / K$ satisfies the hypothesis of the lemma. By induction, therefore, $H\left\langle x^{2}\right\rangle / K$ satisfies the conclusion.

Thus $H\left\langle x^{2}\right\rangle$ contains normal subgroups $N_{0}, N_{1}, \cdots, N_{s}$ such that $N_{0}=$ $H\left\langle x^{8}\right\rangle, N_{s}=K, s=2^{n-5}, N_{i} \geqq N_{i+1}, N_{i} / N_{i+1}$ is abelian of exponent dividing 4, and [$N_{i}, H\left\langle x^{8}\right\rangle$] [$\left.N_{i}, x^{4}, x^{4}\right] \leqq N_{i+1}$.

Now $\left[N_{i} / N_{i+1}, M\right]=\left[\begin{array}{ll}N_{i} / N_{i+1}, & \left.x^{4}\right] \text {. Let } P_{2 i}=N_{i} \text { and } P_{2 i+1}= \\ =\end{array}\right.$ [N_{i}, x^{2}, x^{2}] [$\left.N_{i}, x^{4}\right] N_{i+1}$. Then x^{2} induces an automorphism of order dividing 4 on N_{i} / N_{i+1} and $\left[N_{i} / N_{i+1}, x^{4}, x^{4}\right]=1$. Lemma 2.4 now implies that $\left[P_{2 i+1}, M\right]\left[P_{2 i+1}, x^{2}, x^{2}\right] \leqq N_{2 i}$. Thus $\left[P_{i}, M\right]\left[P_{i}, x^{2}, x^{2}\right] \mho^{2}\left(P_{i}\right)$ $\leqq P_{i+1}$ for $0 \leqq i \leqq 2 s$.

Consider now $M / N_{1}=\left(N_{0} / N_{1}\right)\left\langle N_{1} x^{4}\right\rangle$. Since $x^{8} \in N_{0}$ and N_{0} / N_{1} has exponent dividing $4, \mho^{2}(M)$ must be contained in $\mho^{1}\left(N_{0}\right) N_{1}$. We deduce from this that $M_{1} \leqq\left[N_{0}, x^{4}\right]\left[N_{0}, x^{2}, x^{2}\right] \mho^{1}\left(N_{0}\right) N_{1}$. Lemma 2.4 applied to N_{0} / N_{1} being acted upon by x^{2} yields [M_{1}, x^{4}] [M_{1}, x^{2}, x^{2}] $\mho^{2}\left(M_{1}\right) \leqq N_{1}$. Thus $M_{2} \leqq P_{2}$. Since $\left[P_{2}, M\right] \quad\left[P_{2}, x^{2}, x^{2}\right] \mho^{2}\left(P_{2}\right) \leqq$ P_{3}, we find that $M_{3} \leqq P_{3}$. Continuing, we conclude that $M_{i} \leqq P_{i}$ for $i \geqq 2$. Then $M_{r}=M_{2 s} \leqq P_{2 s}=N_{s}=K \leqq H$. Since M_{r} is normal in G and H is core-free, this implies that $M_{r}=1$.
3.4. Theorem. Suppose $G=H\langle x\rangle$ is a finite p-group where $|\langle x\rangle|=$ p^{n} and H is a core-free quasinormal subgroup. Then $c(G) \leqq \operatorname{Max}\{1$, $\left.p^{n-2}(p-1)\right\}$.

Proof. First suppose $p \neq 2$. If $n \leqq 2$, then the theorem follows from [2, Lemma 3.2]. Therefore we assume $n \geqq 3$. Let $M=H\left\langle x^{p}\right\rangle$ and define M_{0}, M_{1}, \cdots inductively by $M_{0}=M$ and $M_{i+1}=\left[M_{i}, M\right] \mho^{1}$ $\left(M_{i}\right)$. Lemma 3.1 implies that $M_{r}=1$ where $r=p^{n-3}(p-1)$. Let V_{i} be M_{i} / M_{i+1} written additively and let T_{i} be the automorphism of V_{i} induced by $x . \quad M_{i} / M_{i+1}$ is elementary abelian and $\left[M_{i} / M_{i+1}, x^{p}\right]=1$. Hence $V_{i}\left(T_{i}-1\right)^{p}=V_{i}\left(T_{i}^{p}-1\right)=0$. This implies that

$$
[M_{i}, \overbrace{G, \cdots, G}^{p} \leqq M_{i+1}
$$

Since M / M_{1} is a normal abelian subgroup of $G / M_{1}=\left(M / M_{1}\right)\left\langle M_{1} x\right\rangle$, we must have $L_{p+1}\left(G / M_{1}\right)=\left[M / M_{1}, G / M_{1}, \cdots, G / M_{1}\right]$. Thus $L_{p+1}(G) \leqq M_{1}$. Then

$$
L_{2 p+1}(G) \leqq[M_{1}, \overbrace{G, \cdots, G}^{p}] \leqq M_{2}
$$

Continuing, we obtain $L_{i p+1}(G) \leqq M_{i}$ for $i \geqq 1$. Since $M_{r}=1, c(G) \leqq$ $r p=p^{n-2}(p-1)$.

Now suppose $p=2$. If $n \leqq 3$, the result follows from either Lemma 3.2 (c) or [2, Lemma 3.2]. Therefore we assume $n \geqq 4$. Let $M=$ $H\left\langle x^{4}\right\rangle$ and define M_{0}, M_{1}, \cdots inductively by $M_{0}=M$ and $M_{i+1}=$ $\left[M_{i}, M\right]\left[M_{i}, x^{2}, x^{2}\right] \boldsymbol{U}^{2}\left(\boldsymbol{M}_{i}\right)$. Then Lemma 3.3 implies that $M_{s}=1$
where $s=2^{n-4}$. Lemma 2.4 implies that $\left[M_{i} / M_{i+1}, x, x, x, x\right]=1$. Since $\left[M_{i} / M_{i+1}, H\right]=1$, we obtain $\left[M_{i}, G, G, G, G\right] \leqq M_{i+1} . \quad M / M_{1}$ is a normal abelian subgroup in $G / M_{1}=\left(M / M_{1}\right)\left\langle M_{1} x\right\rangle$. Thus $L_{5}\left(G / M_{1}\right)=\left[M / M_{1}, G / M_{1}, G / M_{1}, G / M_{1}, G / M_{1}\right]=1$. Hence $L_{5}(G)$ $\leqq M_{1}$ and $L_{9}(G) \leqq\left[M_{1}, G, G, G, G\right] \leqq M_{2}$. In general, $L_{4 i+1}(G)$ $\leqq M_{i}$ for $i \geqq 1$. Since $M_{s}=1, c(G) \leqq 4 s=2^{n-2}$.
3.5. Theorem. Let H be a core-free quasinormal subgroup of the group G. Suppose K is a subgroup of H such that K has exponent p^{n} where p is a prime. Then K is nilpotent of class at most $\operatorname{Max}\left\{1, p^{n-2}(p-1)\right\}$.

Proof. If $x \in G$, let N_{x} be the core of H in $H\langle x\rangle$. Then K is the subdirect product of the groups $K /\left(N_{x} \cap K\right)$. Thus it suffices to prove the theorem under the assumption that $G=H\langle x\rangle$. If $|G: H|$ is infinite, then x normalizes H [1, Theorem 4.1]. Since H is core-free, this implies that $H=1$. Thus we may assume that $|G: H|$ is finite. This implies that $|G|$ is finite.

Then H is nilpotent and a Sylow p-subgroup of H is a core-free quasinormal subgroup of a Sylow p-subgroup of $G[3]$. Thus it suffices to prove the theorem under the assumption that G is a finite p-group and $G=H\langle x\rangle$.

Now let M be the core of $\Omega_{n}(H)$ in $\Omega_{n}(G) . \Omega_{n}(G)$ is the subdirect product of the isomorphic groups $\left\{\Omega_{n}(G) / y^{-1} M y \mid y \in G\right\}$. Hence $c(K) \leqq$ $c\left(\Omega_{n}(G)\right)=c\left(\Omega_{n}(G) / M\right)$. The theorem now follows from Theorem 3.4.

4. Examples.

4.1. Theorem. Let n be a positive integer. Then there is a finite 2group G containing a core-free quasinormal subgroup H such that
(a) H has exponent 2^{n}.
(b) $c(H)=\operatorname{Max}\left\{1,2^{n-2}\right\}$.
(c) $d(H)=[(n+1) / 2]$.

Proof. Let R_{n} be the residue classes modulo 2^{n+2}. Let G_{n} be the permutation group on R_{n} generated by $\left\{a_{n}, b_{n, k} \mid 0 \leqq k \leqq n-1\right\}$ where $i a_{n} \equiv i+1\left(\bmod 2^{n+2}\right)$ and

$$
i b_{n, k} \equiv \begin{cases}5 i, & \text { if }\left(2^{n+2}, i\right)=2^{k} \\ i, & \text { otherwise }\end{cases}
$$

The only difference between this and the definition of the groups constructed by Stonehewer in [4] is that, for an odd prime p, Stonehewer defines $i b_{n, k}$ to be either $(p+1) i$ or i rather than $5 i$ or i. As would be expected, many of Stonehewer's arguments carry over to
the present case. Therefore, in the proof of the Theorem, some of the details (especially computations) are omitted.

Now let H_{n} be the stabilzer of 2^{n+2} in G_{n}. From now on, if there is no danger of confusion, we will write R, G, H, a, and b_{k} instead of R_{n}, G_{n}, H_{n}, a_{n}, and $b_{n, k}$, respectively. G_{n} is transitive and so H_{n} is core-free in G_{n}.

First suppose $n=1$. Then $G=\langle(12345678),(15)(37)\rangle$. It is easily verified that $|G|=2^{4}$, that $H=\langle(15)(37)\rangle$, and, by [2, Lemma 4.1], that H is quasinormal in G.

We now suppose $n>1$. Since $\langle a\rangle$ is regular on R, it follows that $G=H\langle a\rangle$ and $C_{H}(\langle a\rangle)=1$. An easy computation shows that a has order 2^{n+2} and that $a^{2^{n}} \in \mathrm{Z}(G)$. Hence G transitively permutes the orbits of $\left\langle a^{2^{n+1}}\right\rangle$. These orbits are $\left\{i, i+2^{n+1}\right\}$ for $1 \leqq i \leqq 2^{n+1}$. This gives rise to a representation of G_{n} as a permutation group on R_{n-1}. As in [4], we obtain a homomorphism T of G_{n} onto G_{n-1} such that $a_{n} T=$ $a_{n-1}, b_{n, k} T=b_{n-1, k}$ for $0 \leqq k \leqq n-2, b_{n, n-1} T=1$, and $H_{n} T=H_{n-1}$.

Let K be the kernel of T. If $x \in K$, then x fixes the set $\left\{i, i+2^{n+1}\right\}$ for all $i, 1 \leqq i \leqq 2^{n+1}$. Hence $x^{2}=1$. Thus K is an elementary abelian 2 -group. By induction on n, we now conclude that G_{n} is a 2 -group of exponent 2^{n+2} and that H_{n} has exponent 2^{n}.

Now if $x \in K$, then either x or $a^{2^{n+1}} x$ fixes 2^{n+2}. This implies that $K=\left\langle a^{2^{n+1}}\right\rangle(H \cap K)$. I assert that $K=\Omega_{1}(G)$. Suppose this is not the the case. Then there exists $x \in G$ such that $x^{2}=1$ but $x \notin K$. Since G is transitive on the orbits of $\left\langle a^{2^{n+1}}\right\rangle$, we may assume without loss of generality that x does not fix the set $\left\{1,2^{n+1}+1\right\}$. By induction on n, $x T$ must fix all the orbits of $\left\langle a_{n-1}^{2^{n}}\right\rangle$. This implies that x fixes the set $\left\{1,2^{n}+1,2^{n+1}+1,2^{n+1}+2^{n}+1\right\}$. It follows from this that x interchanges the two sets $\left\{1,2^{n+1}+1\right\}$ and $\left\{2^{n}+1,2^{n+1}+2^{n}+1\right\}$. Since $x^{2}=1$, there are exactly 2 ways that x could operate on $\left\{1,2^{n}+1\right.$, $\left.2^{n+1}+1,2^{n+1}+2^{n}+1\right\}$. Both possibilities conflict with the fact that $x a^{2^{n}}=a^{2^{n}} x$. Thus $K=\Omega_{1}(G)$. Then $\Omega_{1}(H)=H \cap K$.

Since $G_{n} / \Omega_{1}\left(G_{n}\right)$ is isomorphic to G_{n-1} and $\Omega_{1}\left(G_{n}\right)=\Omega_{1}\left(\left\langle a_{n}\right\rangle\right) \Omega_{1}\left(H_{n}\right)$, it follows that $\Omega_{k}(G)=\Omega_{k}(\langle a\rangle) \Omega_{k}(H)$ for all k.

Since $\Omega_{2}(\langle a\rangle) \leqq \mathrm{Z}(G), \Omega_{2}(G)^{\prime}$ must be contained in H. Since H is core-free, this implies that $\Omega_{2}(G)$ is abelian.

Now let M be a maximal subgroup of G containing H. Since $|G: M|$ $=2$, we must have $M=H\left\langle a^{2}\right\rangle$. The orbit of 2^{n+2} under M is $\{2 i \mid 1 \leqq$ $\left.i \leqq 2^{n+1}\right\}$. Thus there is a natural representation of M as a permutation group on R_{n-1}. This gives rise to a homomorphism S of M onto G_{n-1} where $a_{n}{ }^{2} S=a_{n-1}, b_{n, k} S=b_{n-1, k-1}$ if $1 \leqq k \leqq n-1, b_{n, 0} S=1$, and $H_{n} S=H_{n-1}$. Let N be the kernel of S. Clearly $N \leqq H . M=\left\langle a^{2}\right\rangle H=$ $\Omega_{n+1}(\langle a\rangle) \Omega_{n+1}(H)=\Omega_{n+1}(G)$.

I assert that $\mho^{n+1}(G)=\left\langle a^{2^{n+1}}\right\rangle$. By induction, we may assume that $\mho^{n}\left(G_{n-1}\right)=\left\langle a_{n-1} 1^{2^{n}}\right\rangle$. Hence $\boldsymbol{U}^{n}(G) \leqq\left\langle a^{2^{n}}\right\rangle K \leqq \mho_{2}(G)$ which is abelian. Thus $\mho^{n+1}(G) \leqq \mho^{1}\left(\left\langle a^{2^{n}}\right\rangle\right) \mho^{1}(K)=\left\langle a^{2^{n+1}}\right\rangle \leqq \mho^{n+1}(G)$. Therefore $\mho^{n+1}(G)=\left\langle a^{2^{n+1}}\right\rangle$ as claimed.

Now we proceed to prove that H is quasinormal in G. By induction, we may assume that H_{n-1} is quasinormal in G_{n-1}. Hence H / N is quasinormal in M / N and $H K / K$ is quasinormal in G / K. Therefore H is quasinormal in M and $H K$ is quasinormal in G. Let L be any subgroup of G. If $L \leqq M$, then $L H=H L$. Suppose then that $L \neq M=\Omega_{n+1}$ (G). This implies that $U^{n+1}(L) \neq 1$. It follows that $a^{2^{n+1}} \in L$. Then $H L=H(H \cap K)\left\langle a^{2^{n+1}}\right\rangle L=H K L$. But $H K L$ is a subgroup of G since $H K$ is quasinormal in G. Hence $H L=L H$ and H is quasinormal in G. It only remains to calculate $c(H)$ and $d(H)$. Since $H K=H \times\left\langle a^{2^{n+1}}\right\rangle$, $c(H K)=c(H)$ and $d(H K)=d(H)$.

Let $c_{i}=a^{-2^{n-1}-i} b_{n-1} a^{2^{n-1}+i}$ for $1 \leqq i \leqq 2^{n}$. Then $j c_{i} \neq j$ if, and only if, $j \equiv i\left(\bmod 2^{n}\right)$. Thus the points in R not fixed by c_{i} are $\left\{i, i+2^{n}, i+2^{n+1}, i+2^{n+1}+2^{n}\right\}$ which is an orbit of $\left\langle a^{2^{n}}\right\rangle$. Since G transitively permutes the orbits of $\left\langle a^{2^{n}}\right\rangle$ and since each orbit of $\left\langle a^{2^{n}}\right\rangle$ contains exactly one element of the set $\left\{1,2,3, \cdots, 2^{n}\right\}$, we see that $c_{1}, \cdots, c_{2^{n}}$ are distinct and that $\left\{c_{1}, \cdots, c_{2^{n}}\right\}$ is a conjugacy class in G. Now $c_{i} \in K$ and K is elementary abelian. It is immediate that $\left\{c_{1}, \cdots, c_{2^{n}}\right\}$ is an independent set of elements of K. Hence $\mid\left\langle c_{i}\right| 1$ $\left.\leqq i \leqq 2^{n}\right\rangle \mid=2^{2^{n}}$. It follows from Lemma 3.1(d) of [2] that $\left|\Omega_{1}(G)\right|$ $\leqq 2^{2^{n}}$. Hence $\left\{c_{i} \mid 1 \leqq i \leqq 2^{n}\right\}$ is a basis for K.

I claim that $C_{G}(K)=\Omega_{2}(G)$. Clearly $\Omega_{2}(G) \leqq C_{G}(K)$ since $K \leqq$ $\mho_{2}(G)$ and $\Omega_{2}(G)$ is abelian. Suppose $x \in C_{G}(K)$. Then $x c_{i}=c_{i} x$. It follows that x fixes the set $\left\{j \mid j c_{i} \neq j\right\}$. Hence x fixes each orbit of $\left\langle a^{2 n}\right\rangle$. Then $x T$ fixes each orbit of $\left\langle a_{n-1}^{2^{n}}\right\rangle$. This implies that $x T \in$ $\Omega_{1}\left(G_{n-1}\right)$. Thus $x^{2} T=1$. This shows that $x^{2} \in K$. Hence $x^{4}=1$ and so $x \in \Omega_{2}(G)$.

Now $c(H) \leqq \operatorname{Max}\left\{1,2^{n-2}\right\}$ by Theorem 3.5 and $d(H) \leqq[(n+1) / 2]$ by [2, Theorem 3.4(c)]. It only remains to show that $c(H) \geqq \operatorname{Max}\{1$, $\left.2^{n-2}\right\}$ and $d(H) \geqq[(n+1) / 2]$. If $n \leqq 2$, this is trivial. We now assume $n>2$. Lemma 2.5 implies that $d(H)=d(H K)>d\left(H K / C_{H K}(K)\right)=$ $d\left(H / \Omega_{2}(H)\right)$. Now $H / \Omega_{1}(H)$ is isomorphic to H_{n-1} and $\Omega_{2}(H) / \Omega_{1}(H)=$ $\Omega_{1}\left(H / \Omega_{1}(H)\right)$. Thus $H / \Omega_{2}(H)$ is isomorphic to $H_{n-1} / \Omega_{1}\left(H_{n-1}\right)$ which is isomorphic to H_{n-2}. Thus $d\left(H_{n}\right)>d\left(H_{n-2}\right)$. By induction on n, $d\left(H_{n-2}\right)=[(n-1) / 2]$. Then $d\left(H_{n}\right) \geqq 1+[(n-1) / 2]=[(n+1) / 2]$.

Since $H / \Omega_{2}(H)$ has exponent 2^{n-2}, there is an element $x \in H$ and distinct basis elements $d_{1}, \cdots, d_{2^{n-2}}$ in K such that $x^{-1} d_{i} x=d_{i+1}$ if $1 \leqq$ $i \leqq 2^{n-2}$ and $x^{-1} d_{2^{n-2}} x=d_{1}$. Then

$$
[d_{1}, x, \underbrace{x, \cdots, x}_{2^{n-2}-1}]=d_{1} d_{2} \cdots d_{2^{n-2}} \neq 1 .
$$

Thus $c(H)=c(H K) \geqq 2^{n-2}$. This finishes the proof of the theorem.
4.2. Theorem. Let p be a prime and n a positive integer. Then there is a finite p-group G containing a core-free quasinormal subgroup H such that H has exponent p^{n} and $c(H)=\operatorname{Max}\left\{1, p^{n-2}(p-1)\right\}$.

Proof. If $p=2$, this follows from the previous theorem, and if $n=1$, this follows from [2, Lemma 4.1]. Accordingly, we assume that p is odd and $n>1$. The method of constructing our examples is the same as the method used in [2, page 549]. Let $m=p^{n-1}(p-1)$ and let W be a vector space of dimension m with basis $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ over the field of p elements. Let W_{1} be the subspace spanned by $\left\{v_{2}, v_{3}, \cdots\right.$, $\left.v_{m}\right\}$. Let Y be the linear transformation of W determined by $v_{1} Y=v_{1}$ and $v_{i} Y=v_{i}+v_{i-1}$ for $2 \leqq i \leqq m$. Then the minimal polynomial of Y is $(Y-1)^{m}$. Hence Y has order p^{n}. According to [2, Lemma 5.1], there is a p-element X in $G L(W)$ such that $v_{1} X=v_{1}, W_{1} X=W_{1}$, and $X^{-1} Y X=Y^{p+1}$. As is shown in [2], X must have order p^{n-1}. By Lemma 2.6, the minimal polynomial of X is $(X-1)^{r}$ where $r=p^{n-2}(p-1)$.

Now let A be the group generated by two elements a and b subject only to the relations $b^{p^{n+1}}=a^{p^{n}}=1$ and $a^{-1} b a=b^{p+1}$. Then $a \rightarrow X$, $b \rightarrow Y$ determines a homomorphism of A into GL($W)$. Let B be the semi-direct product $A V$ relative to the above homomorphism.

Using the same argument as in [2, page 549], it can be shown that $\left\langle b^{p^{n}} v_{1}^{-1}, a^{n p^{n-1}} v_{2}\right\rangle$ is a normal elementary abelian subgroup in B.

Let G be the factor group of B modulo this subgroup. Let V, U, x, and y denote the images in G of W, W_{1}, a, and b, respectively. Since $W_{1} X=W_{1}, x$ normalizes U. Let $H=U\langle x\rangle$. Since $\left(Y^{p^{n-1}}-1\right)^{p-1}=$ $(Y-1)^{m}=0$, we conclude that

Thus $c\left(\Omega_{2}(\langle y\rangle) V\right) \leqq p-1$. Then Theorem 4.2 of [2] implies that H is quasinormal in G. x has order p^{n} and $\Omega_{1}(\langle x\rangle) \leqq U$. Since U is a normal elementary abelian subgroup of H and $H=U\langle x\rangle, H$ must have exponent p^{n}. Since the minimal polynomial of X is $(X-1)^{r}$ where $r=$ $p^{n-2}(p-1)$, the class of H must be $p^{n-2}(p-1)$.

It only remains to show that H is core-free. If H is not core-free, then H contains an element z of order p such that $z \in Z(G)$. Since $\left|C_{W_{1}^{\prime}}(Y)\right|$ $=1, z$ cannot belong to U. Since H / U is cyclic, it follows that $U\langle z\rangle=$
$U\left\langle x^{p^{n-2}}\right\rangle$. This implies that $\left[y, x^{p^{n-2}}\right] \in V$. But $\left[y, x^{p^{n-2}}\right]=y^{t-1}$ where $t-1=(p+1)^{p^{n-2}}-1 \equiv p^{n-1}\left(\bmod p^{n}\right)[2$, Lemma 2.4]. Since $\langle y\rangle \cap V=\left\langle y^{p^{\prime \prime}}\right\rangle$, this is a contradiction. Hence H is core-free and the theorem is proved.

References

1. R. Bradway, F. Gross, and W. Scott, The nilpotence class of core-free quasinormal subgroups, Rocky Mt. J. Math. 1 (1971), 375-382.
2. F. Gross, p-subgroups of core-free quasinormal subgroups, Rocky Mt. J. Math. 1 (1971), 541-550.
3. N. Itô and J. Szep, Über die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math. (Szeged) 23 (1962), 168-170.
4. S. Stonehewer, Permutable subgroups of some finite permutation groups, Proc. London Math. Soc. (to appear).

University of Utah, Salt Lake City, Utah 84112

