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DAVID C. CLARK 

1. Introduction. It is the purpose of this paper to derive some re­
sults concerning the set of solutions near the trivial solution u = 0 of 
equations of the form 

(1.1) \u = Lu + T(u) + V(u), u*H. 

Here A is a real parameter whose value is specified, and H is a real 
separable Hilbert space. L is a self-adjoint linear operator, T is homo­
geneous of odd degree k, and V is odd and of higher order than T. It is 
assumed that T and V are gradient operators, but not that the poten­
tials are weakly continuous. 

We will establish lower bounds for the number of solutions of (1.1) 
near u = 0 when X is in a one-sided neighborhood of X, an isolated 
eigenvalue of L. Because both sides of (1.1) are odd, non-trivial solu­
tions occur in pairs ± u. These solutions are shown to be approxi­
mately of the form |X — A|I/(*-I)i;, where v satisfies the finite dimen­
sional problem v = sgn (A — X) PTv, where F is the projection onto the 
subspaceof L — XL 

The above hypotheses imply that the set of solutions of (1.1) coin­
cides with the set of critical points of a certain even, real valued func­
tion <t>(u). Our methods are based in part upon an appropriate modifi­
cation of the Lusternik-Schnirelman theory. 

In section 2 we obtain a result which is in part an analog and in part 
an extension of the main result of the Lusternik-Schnirelman theory for 
critical points of an even function on a manifold. It is an analog in that 
in the present case we consisder even functions on a ball in a finite di­
mensional space. The fact that this manifold has a boundary requires a 
modification of the theory. The extension of the theory lies in the cir­
cumstance that, if we wish, we may seek points which are only approxi­
mately critical. This is done in order to obtain a statement as to the 
spacing apart of the approximate critical points. The purpose of this 
spacing property is that when we use the theorem in conjunction with 
a Galerkin approximation scheme to obtain critical points of $, we may 
be able to obtain more than one pair of critical points at the same criti­
cal level of </>, and thus overcome a limitation of the use of Lusternik-

Received by the editors November 12, 1973. 

Copyright © 1975 Rocky Mountain Mathematics Consortium 

317 



318 D. C. CLARK 

Schnirelman theory in conjunction with a Galerkin approximation 
scheme. 

In section 3 we state our hypotheses for the terms in equation (1.1) 
and our main results on bifurcation; in section 4 we give the proofs. 

The bifurcation problem for equations similar to (1.1) has been in­
vestigated by many authors. See, for example, [1 , 2, 5, 6, 7, 9, 10] 
and the references cited in some of these. The Lusternik-Schnirelman 
theory has previously been applied to bifurcation theory in [1 , 2, 
5, 7, 9 ] , however, our development enjoys two main advantages. 
First, we are able to treat À as a parameter whose value is speci­
fied rather than to be determined. Secondly, we have eliminated the 
hypothesis that the potential of T(u) + R(u) be weakly continuous. In 
[6, 10] there are treatments of bifurcation theory for equations of 
the form (LI ) in which T(u) is a homogeneous "polynomial" and is a 
gradient, though not necessarily odd, and R(u) is of smaller order and 
is not necessarily a gradient. They consider the relative extrema of the 
functional (T(u),u\Sj where S is the unit sphere in the nullspace of L — 
X Z, and they find solutions of (1.1) related to these extrema. W e 
obtain solutions of (1.1) which, for |X — X| small, are also related to 
critical points of (T(u), u ) | s , but these critical points are not necessarily 
extrema. 

2. Preliminary results. Throughout this section E will denote a real 
euclidean space, Br(Sr) the closed ball (the sphere) of radius r about the 
origin in E, and \p a C l real valued function on a neighborhood of the 
origin in E. The results of this section could be generalized to the sit­
uation where E is an arbitrary real Banach space, but we have not done 
so because in any case we have to use a Galerkin approximation 
scheme and so we need these results only for finite dimensional spaces. 

W e shall say that t// satisfies condition (I) with parameters a, hy r, h 
if \p is defined in a neighborhood of Bn h G (0, 1), and for all u (= Sr 

such that a ^ \\t (u) ^ b there holds (t// '(u), u) > -h\\$ '(u)\\ \\u\\. 

L E M M A 2.1. Let i//, satisfying condition (I) with parameters a, b, r, h, 
be even, and have a Lipschitz continuous derivative. Then there exists 
a positive comtant d and an odd, Lipschitz continuous vector field 
v : Br—» E such that for all u G Br such that a — d ^ 4f{u) ^ b + d 
there holds 

(2.1) ||i// ' (M) | | ^ ||t;(u)||, (ifj ' («), v(u)) g (1 - /^ ) | | 0 '(n)||2, 

and for all u ina neighborhood ofSr there holds 

(2.2) (v(u), u) ^ 0. 
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PROOF. We define sets 

a= {uESr\a^ ifj(u) ^b},à= {u G a | (i// '(u), u) g 0}? 

cre = {M E ß r | dist (w, or) ^ € }, C7e = {M £ ßf | dist (w, (j) ä= € }. 

We write (// '(M) = a{u) -f j3(w), where a(w) = (i/i '(w), W)||M||~2M and 
hence (ß(u), u) = 0. For u Ei Br such that i// '(w) ^ 0 we may define 
0(u) = cos~1[(i//'(w),w)||i//'(w)||-1||w||-1]. Evidently, for uGor we 

have cos 6(u) > —h. Using the compactness of a, we may choose a 
neighborhood of cr of the form o% such that cos 6(u) > — h for 
M G o"e. Since a€ C a6 and cos 6(u) = 0 for u Œâ, by choosing 
€ > 0 smaller, if necessary, we may arrange that —h< cos 0(u) < h 
for all u G a e . It follows that \\ß(u)\\ > (1 - h2)1'2]^ '(u)\\ for all 
w G o v 

Now we let 

17(1/) = dist (u, (7e/2)/(dist (w,ae/2) 4- dist (u, Br\â€)), u G Br. 

Then 17 is even, Lipschitz continuous, 0 ^ 1 7 ^ 1 , 1 7 = 0 on â€J2 and 
17 == 1 on Br\<76. We let v — t)a + ß. Then ü is odd and Lipschitz 
continuous, and v = \\t ' on Br\d€. Also (\fj'(u), v(u)) = 7)(u)\\a(u)\\2 

+ \\ß(u)\\2 ^ ||/3(w)||2, hence for all u G a€, (1// '(ti), t5(ti)) > 
(1 — /i2)jji//'(u)||2. Combining cases, 

(2.3) (*'(u),v(»))^ (1 ~ h2)\\*'(«)\\2-

Also clearly 

(2.4) | |ö (u) | |^ | |* ' («) | | -

Since (v(u), u) = 0 if u G <J€/2, and by compactness of d, (a(w), M) 

=̂  const > 0 for u G crVe/2? it follows that (t5(w), w) § 0 in a neigh­
borhood of cr. Hence there exists d > 0 such that (v(u), w) = 0 in a 
neighborhood in Br of {u G Sr | a — d = i//(w) = b + d}. In the same 
manner that 17 was constructed, we may construct £ : Br —» R which is 
even, Lipschitz continuous, such that 0 a £ = l , £ = 0 i n a neighbor­
hood in Br of {u G Sr I i//(w) =̂  a — d or i//(w) § fc + d}, £ = 1 on 
{u G Br I 0 ^ i//(u) ^ 6}. We then let Ü(W) = £(t*)i;(u). Clearly v(u) 
is odd and Lipschitz continuous, and using (2.3) and (2.4), ||Ü(W)|| = 
||i// '(w)||, (i// '(tt), Ü(M)) è (1 - /i2)||</> '(w)ll2, and it is clear that (v(u\ u) 
^ 0 in a neighborhood of Sr. This completes the proof. 

We introduce the notations 

Kc, = {u G Br I i|/(u) = c, 1// » = 0}, ^Cff = {w G B r | i//(u) g c}. 
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LEMMA 2.2. Let $ satisfy the hypothesis of Lemma 2.1 with a = b 
= c. Let U be an open neighborhood in Br of K ,̂.. Then there exists 
d > 0 and a continuous function r) : [0, oo ) X Br—» Br such that 
r)(t9 - M ) = -7)(t,u) andr)(l, $c+dtr\U) C i//c_d,r. 

PROOF. This theorem and its proof are analogous to theorem 4 of |3], 
and it should suffice to indicate the differences in the proofs. Let v be 
as in Lemma 2.2 with a = b = c, and consider the function r)(t, u) de­
fined by the initial value problem 

(2.5) <qt(t, u)= -v- 7)(t, u), T?(0, u) = u. 

Since v is Lipschitz continuous, (2.5) has a unique maximal solution. 
This maximal solution is defined for all t = 0, since the solution curves 
of (2.5) do not terminate because of meeting the boundary of Br. Also, 
the properties of v(u) listed in Lemma 2.1 are similar to those of a 
pseudo-gradient vector field, and hence the proof of Theorem 4 of [3] 
is seen to carry through in the present case. 

We next introduce the topological notion of genus. Let F be a real 
Banach space, and if C C F, let 2(C) denote the class of subsets of 
C\{0} closed and symmetric with respect to the origin. If A G 2(F) let 
the genus of A, denoted by y (A), be the least integer k such that there 
exists an odd continuous map from A to Rfc\{0}. If no such integer 
exists, let y (A) = oo . We let y (0) = 0. 

LEMMA 2.3. Let A, B G 2(F). 

(a) If there exists an odd continuous mapf:A-*B, then y (A) ^ y(B). 
(b) If A C B, then y (A) S y(B). 
(c) y ( A U B ) S 7 ( A ) + r ( ß ) . 
(d) Ify(B) < oo , then y(7Kß) ^ y (A) - y Iß). 
(e) If A is compact, then y(A) < oo and there is an open neighbor­

hood U of A such that D G 2(F) andy(Ü) = y (A). 
(f ) If there exists an odd homeomorphism of A onto the n-sphere, 

theny(A) = n + 1 . 
(g) If F is a Hilbert space and G is an n-dimensional subspace of 

F and A is such that AH G1 = 0 , then y (A) â n. 
The proofs of these properties are elementary and can be found in 

[4], for example, except that for (g), which can be found in [3]. 

DEFINITION 2.4. Let i// : Br -» R. Then, for positive integers 
m ^ dim F, define 

cm,r(*) = inf{sup{i/f(w) \u G A\ A G 2(Br),y(A) ^ m}. 

Clearly cm?r(i/i) < cnj($) if m < n. 
We come to the principal result of this section. 
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THEOREM 2.5. Let i|» satisfy the hypotheses of Lemma 2.1; let 
e = b—a^ 0; let a ^ cmr(«/>) t= c„r(«/>) 5= b, where m < n; and let 
\\i(u) > b for all u G Bf, where r < r. Then there exist n — m + 1 dis­
tinct non-zero pairs ± «;, m = t S n ; such that 

(2.6) a ^ i//(Uj) ^ b, 

(2.7) ||^ '(«OU â m a x ( V e / ( l - ^ 2 ) , 2 € / ( ( l - /i2)?)), 

(2.8) r ^ ||MÌ|| ^ r, 

(2.9) I h - w J ^ n j ^ i . 

In particular, ifb = a then i/i '(a*) = 0. 

REMARK. In the case b = a, one may prove the stronger result that 
y(Kar) è n - m + l . This is an easy consequence of Lemmas 2.2 and 
2.3, and the proof goes essentially like that for corresponding results 
in, for example, [11, p. 312] and [3, p. 69]. However, we shall not 
need this result for the present paper. 

PROOF. By the continuity of i/> ' and the compactness of Br, since ifß 
satisfies condition (I) with parameters a, b, r, h, there exists bx > b, 
such that for all b* G (fo, bx], \\t satisfies condition (I) with parameters 
a, £>*, r, /i*, where h*—* h as £>*—» b, and such that \fj(u) > bY for all 
u G B?. Applying Lemma 2.1, let v(b*, u) be an odd, Lipschitz con­
tinuous vector field on Br such that if a ^ ty(b*, u) ^S b*, then 

||*'(«)||^Hb*,«)||, 
(f(«),#,u))l(l-l .«)| |f(„)|p, 

and such that for all u in a neighborhood of Sr there holds 

(2.11) ( Ü ( 6 * M ) , n ) ^ 0 . 

Until something further is said, it will be convenient to suppress the 
dependence of v on b*. Then the initial value problem (2.5) defines a 
function y) : [0, oo ) X Br-^> Br which is odd in u and continuous. 

We will show how to construct ui9 given that if i > m then Uj, m^j 
= i— 1, have been constructed. Let 

«! = {i* G Br\Br- | (w, u,) = 0, m g j g i - 1 } , 

a2 = {u G Br\B-r | dist(tt, aj < r/2}. 

It is understood, of course, that if i = m then «! = a2
 = B\B?. Let 

A G 2(Br) be such that y (A) ^ i and supAi// ^ b*. By Definition 2.4, 
supA^ ^ a. 
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We claim that y (A 0 ax) ^ m. Suppose that y (A D ai) < m were 
the case. Then, using Lemma 2.3(e) we may write A = Ax U A2, 
where Al9 A2 G 2(Br),y(A1) = y(A D o^), and ^ ( 1 ^ = 0 , hence 
by Lemma 2.3(g), y(A2) ^ i — m. It follows from Lemma 2.3(c) that 
y (A) < i, which is a contradiction. Hence y(A fi ax) = ra. 

Let B = TJ(1, A PI «i). Clearly B C Br. y(B) ^ m, by Lemma 2.3(a). 
Hence supBiff ^ a. Let ü G ß b e such that *(u) = supB*, and let 17 
be such that 17(1, u) = u. We introduce the function f(t) = 
*lß°7i(t,ü). Then f'(t) = ($'°y(t,ü)9 ifc(*,ö)), SO by (2.5) and 
(2.10) 

(2.12) / ' ( * ) ^ - ( l - f c * 2 ) | | * ' ^ ( t f l ) | | 2 , 

hence /(£) is decreasing, and since supA* ^ b*, 

(2.13) 0 ^ *(ü) - *(t>) ^ fo* - a = e*. 

On the other hand, 

* ( f l ) - * ( t ; ) = - f / ' ( t ) d * 
(2.14) 

^ ( 1 - Ä * 2 ) J * ||* ' o ^,0)1(2 A , 

using (212). It follows from (2.13) and (2.14) that for some T G (0,1), 
| | * , 0 T 7 ( ^ û ) | | ^ ( € * / ( l - / l * 2 ) ) l / 2 . 

We now distinguish two cases. Suppose, for the first case, that for 
all t G [0,1], T)(t, u) G a2- Then rj(t, u) G a2, and if we let u* = 
r)(l 0), we have ||* '(f*i*)|| ^ (€*/(l - h*2))1'2 and ||t*,* - Uj\\ ^ r, 
m^j^i— 1. Suppose, for the second case, that TJ(£, w)(f a2 f° r 

some £ G [0,1] . We may choose tG. [0,1] so that ri(t, u) lies on the 
boundary of 0%, and we let w = r)(t, u). We introduce the arc length 
parameter s defined by s(0) = 0, dsldt = ||i// ' ° r)(t, ü)\\, and the 
function g(s) = f(t). dsldt j^ 0 since the trajectory starting at ü 
cannot contain a critical point of ip, hence, using (2.12), g ' ( s ) ^ 
- ( 1 - /i*2)||* ' o r)(t, ö)||. Clearly 0 g *(ö) - i//(u;) S e*, hence 

(2.15) (1 - h*2) J™ U* ' o vit, û)\\ ds ^ €*. 

Since ü lies in ax and to lies on the boundary of a2 and since s is the 
arc length from ü to u;, s(£ ) ^ r/2, hence from (2.15), there exists 
^ G [ 0 , 1 ] such that | | * ' ° T ? ( * I , Ü ) | | ^ 2e*/((l - h*2) r). We let 
I*;* = T)(ti, u). Combining the two cases, we have (2.6)-(2.9), for 
m^j^i— 1, with u*, b*, e*, h* replacing uh b, e, h respectively. 
We then consider a sequence of values for b* approaching b, a corre­
sponding sequence of values for h* approaching h, and from the cor-
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responding sequence for u* we may select a convergent subsequence. 
If we take the limit of the subsequence as u{ then (2.6)-(2.9), for 
mÊïj=i— 1, clearly hold. Thus, we construct um,um+l, • • -,un in 
succession, and this completes the proof of the theorem. 

3. Assumptions and statement of results. We shall make the follow­
ing assumptions for the terms on the right hand side of (1.1). 

(A) L:H—* H is a compact, self-adjoint, linear operator with an 
eigenvalue X of multiplicity n. It follows that H may be written in the 
formN ® F® G, where N is the nullspace of L - kl, L : F - » F and 
L : G—» G, and where for some positive constants ô1? 82 

(3.1) (Lu, u) ^ (A - Ô!)H|2, if ti G F, 

(3.2) (Lu, u) § (X 4- 52)||u||2, if u G G. 

(B) T : H—* H is homogeneous of degree k, an odd integer § 3 ; T 
is the strong gradient of the functional (k + l)-l(T(u),u); PT(u) ^ 0 
for 0 / w £ N, where P is the orthogonal projection onto N; and T 
satisfies 

(3.3) | | r ( « ) - r ( « ) | | S g ( | | t t | | + H ) | | « - 0 | | , 

where git)-* 0 as £—» 0. Hence ||r(w)|| = C||w||fc for some C > 0, and 
T is Lipschitz continuous. 

(C) V : D-* H, where D is a neighborhood of the origin in H; V 
is odd and is the strong gradient of p : D - » K; V(u) = o(||w||fc) as 
H | - > 0 , hencep(u) = o(||w||fc + 1) as | |u | | ->0; 

(3.4) \\V(u) - V(v)\\ ^ h(\\u\\ + H)I I« - o||> 

where h(t)—*0 as t—*0. In particular, V(u) is Lipschitz continuous. 
We define the integers 

(3.5) a = y[{u(EN\ \\u\\ = 1, (T(u),u) ^ 0}], 

(3.6) ^ = r [ { « £ N | H = 1, (T(u), u) ^ 0}]. 

The principal results on bifurcation are summarized in the following 
theorem. 

THEOREM 3.1. Assume that (A), (B), (C) hold. Then there exist 
d3, 84 > 0 such that for X G (X, X + ô3] iresp. X G [X — 84,X)) equa­
tion (1.1) /ias a£ least n—a iresp. n—ß) distinct non-zero ipairs ± u of 
solutions, each of the form |X — X|1/(fc— 1)t^1 + o(|X—X|1/(fc-1)) as 
X—» X, where u j satisfies u : = sgn(X—X)PTw1. 
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It seems a reasonable conjecture that there exist at least n pairs of 
solutions of (1.1) bifurcating from X = X, u = 0. This will be shown to be 
contingent upon another conjecture which seems quite reasonable, to 
the author at least. 

CONJECTURE 3.2. Let S be the unit sphere about the origin in Rn 

and let A, B G 2(S) be disjoint. Theny(A) + y(B) ^ n. 

COROLLARY 3.3. Assuming the validity of Conjecture 3.2, and that 
(A), (B), (C) hold, then a + ß = n and hence there exist at least n pairs 
± u of solutions of (1.1) bifurcating from X=X, U = 0 , of the form stated 
in Theorem 3.1. 

4. Proofs. We shall use the results of Section 2 in combination with 
a Galerkin approximation scheme. Under hypotheses (A), (B), (C), the 
expression — AW + Lu + T(w) + V(w) is the strong gradient of the 
functional 

(4.1) <f>(u) = - | ||«|p + | (Lu, u) + ^~(T(u), u) + p(u), 

hence the set of critical points of <f> is the same as the set of solutions of 

(Li). 
(A) implies that H is spanned by the set of eigenvectors of L. More­

over, by considering subspaces of H spanned by a finite number of 
these eigenvectors we may obtain a sequence {Hj} of finite dimensional 
subspaces of H such that, for allj, Hj C Hj+i, Hj = N © Fj © Gj, where 
F j C F , G j C G , and L:Fj-+ Fj9 L:Gj-+ Gj7 L:Hj-+ Hp and Ü / L i H , 
is dense in H. We define (jj = dim Fjy <t>j = <f) \ Hj H D, and henceforth 
Br shall denote the closed ball in H about the origin of radius r. 

In order to find critical points of <f>, we first find critical points of <f>j 
by considering the minimax levels cmj((j>j) with r and m suitably chosen; 
then we show that certain subsequences of these critical points con­
verge, aŝ '—> oo , to critical points of <f>. This yields critical points of </> 
for the case mentioned in Theorem 3.1 where A > X. We deal with the 
other case, where X < X, by applying the procedure just outlined to 
— </> in place of </>. 

We remark here that it might or might not be possible to obtain criti­
cal points of <f> more directly by considering minimax levels cmr(#) if 
the results of section 2 were generalized to the case of functionals on 
Banach spaces. This method would fail if dim F = oo, since then we 
would not be able to establish that cmr(0) is a critical level for any 
values of m and r. 
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LEMMA 4.1. If T satisfies hypotheses (B), then there exists £ > 0 
such that for all a,b G (—£, £) there holds 

(4.2) a = y[{u G N \ \\u\\ = l,!(r(u),ti) ^ a}], 

(4.3) ß = y[{u<EN\ \\u\\ = 1, (r(t*),ti) ^ b}]. 

PROOF. Let &(u) be the restriction of (T(u),u) to N, and let S = 
{ W G 1 V | ||t*|| = 1}. We must show that there exists £ > 0 such that 
for all a,b E ( - £ , £) there holds 

(4.4) y[{uES\®(u)^0}] = y [ { w £ S | 0 ( « ) ^ a } ] 5 

(4.5) y [{ti G S I ©(M) ^ 0} = y [ {u E S |@(u) ^ b}]. 

Consider the application of the Lusternik-Schnirelman theory of 
critical points of functionals on manifolds to &(u) on S (See [8, 11], 
for example). By definition, a critical point of© relative to S is a point 
u0 G S such that S'(u0) is a multiple of u0. From (B) we have that 
e '( t i) = (fc + l)FT(u). By- [8, p. 186], the set { « G S \S(u) = ck}, 
k = 1, 2, • • -, n, where 

e* = s u p { c G R | y [ { i i G S | 0 ( u ) ^ c}] ^ fc}? 

contains critical points of ©. We will show that no ck equals zero. 
Suppose otherwise, that some ck = 0. Then there exists w 0 £ S such 
that 0(uo) = 0 and ©'(%>) = (k + l)PT(u0) = eu0 for some e E R. 
But 0(MO) = (fc + IJ-HÖ'CMOXWO) = (k + i ) " 1 ^ by the homogeneity 
of ©, hence e = 0, and PT(u0) = 0, which contradicts (B). Hence 
actually no ck equals zero. 

Next we observe that y[{u G S |0(w) = c}] is a monotonie integer 
valued function of c, and if there were a jump at c = 0 then some ck 

would equal zero. Since this is not the case, for some £ > 0, (4.3) holds 
forfo G (-£ ,£) . 

By carrying out the above procedure with —© in place of ©, we 
obtain the assertion of (4.2). 

We introduce the notation 

(4-6) biJ,r= Qry+n- t+ l . rW. 

LEMMA 4.2. Under hypotheses (A), (B), (C) there exist positive 
constants Ku K2> 85, rx such that if X G (X, X + 85) and r G (0, r2), ffoen 

(4.7) - K ^ X - X ) * - ^ * - " < 6 ^ < -K2(X-X) ( fc + 1)/(fe-1) , 

/ o r i = 1, 2, • • * , n—a. 
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PROOF. We introduce the homogeneous forms 

q(u)= - - y | | w | | 2 - f y (Lt t ,u ) , 

(4.8) 

in terms of which <f>(u) = q(u) H- t(u) + p(u). From (A) it follows that 
every u G H may be expressed in the form Ui + u2 + u3, where 
ux ÉN,u2 G F, u3 G G, and 

(4.9) q(u) = q(u{) + qf(ti2) + q(u3). 

Let 5j)ö = {u G N © F, | ||M|| = a}. Then y(s,-)a) = Oj + n, hence 
from Definition 2.4 and (4.6), 

biJr g inf{sup{<^(tt) I w G sjta}\ 0 < a < r). 

From (3.1), q(u) ^ -(A - X)||t/||2/2 for u G N e F , hence q(u) ^ 
- ( A - X)a2/2forw G ^ a . Also, from (B) and(C), t(u) + p(u) g C\\u\\k + l 

for some constant C, if ||w|| is sufficiently small. Hence <f*j(u) = / ( a ) 
= — (A —\)a2/2 + C ak + l if u G ^ fl, and a is sufficiently small. It is 
found that the minimum of f{a) is of the form — K2(k — \)(* + i )/(*-*) 
taken at a = cons*. (X—X)1/(fc_1). Hence rx may be chosen so that the 
upper bound of (4.7) holds for r < rx. 

To deal with the lower bound of (4.7), by Lemma 4.1 we may choose 
a > 0 such that if 
(4.10) 0 = {u G N I ||ti|| = 1, t(u) g a} 

theny(Ü) = a. Let P be the orthogonal projection onto N; let 

(4.11) Uj = {uE Hj PI Br|Pu fé 0, Pfi/||Pt*|| G £/}; 

let Qj be the orthogonal projection onto Fy, and let 

(4.12) Vj = {u G H, H Br I Cyu 7̂  0}. 

Suppose that A G 2(ffj H Br) is such that y (A) ^o , - + a + 1. We 
may show that A\((7j U V}) = 0 . Suppose that, on the contrary, 
AG UjU Vj. Then since A is compact, there exist B, C Œ £(// , C\ Br) 
such that ACBU C,BCUpC C Vj. Clearly there is an odd continu­
ous map of B into t/, hence by Lemma 2.3(a), y(B) = a. By Lemma 
2.3(g), y(C) = o> Hence by Lemma 2.3(b,c), y (A) = &j + a, a contra­
diction. So A\(C7i U V,) fé 0 . 

Now we let u G A\(C7j U V}) and derive a lower bound for <f>j(u). 
Clearly u is of the form v + w, where u E N , u ) E G , hence by (3.2) and 
(4.9), 
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(4.13) q(u) ^ - | ( X - X ) H 2 - |(A - A - S 2 ) H 2 . 

By use of the mean value theorem and the appropriate chain rule, 

(4.14) t(u) = t(v) + (T(v + @w), u>), 0 < 0 < 1. 

since v €JE Uj, t(v) = Ĥ̂ H*"4"1? hence from (4.14), 

(4.15) t(u) a a | |0 | |* + i _ d d l c f + H | * ) H | , 

for some Cl > 0. Since p(u) = o(||u||'c + 1) as ||M|| —» 0, we have 

(4.16) p ( u ) S -T(||tt||)(||ü||* + 1 + \\w\\k + 1), 

where T(s) -* 0 as s -+ 0. Adding (4.13), (4.15), and (4.16), 

<N«) s - i(x - X)|i>||2 - -i(x - x - s 2 )H 2 + 44k+l 

- CiflMi* + Hlfc)HI - T(||«||)(||Ü||^I + Hlk+1)-

We suppose that r is sufficiently small so that, for ||u|| = r, \r(u) | = a/4, 
and we distinguish two cases. First we note that there is a positive 
constant C such that if ||it>|| < C||t;|j then 

<t>(u) i= - | ( X - X ) H 2 -{(k-k- 8 2 ) | H 2 + ±4v\\k + 1 , 

from which it follows that <j>(u) ^ const (X — \)(* + i)/(*-i). Suppose now 
that ||u?|| > C||t?||. Then we choose 85 > 0 so that when X G (X,X + 
85) there holds 

- |(X - X)||o||2 - i(k - X - 8 2 ) H | * S & H I 2 -

Also, the latter three terms on the right hand side of (4.17) are bounded 
below by an expression of the form — C2||u;||fc + 1, hence 

(4.18) <f>(u)^ 82 | |u;| |2-C2 | |u;| | fc + 1. 

The right hand side of (4.18) is non-negative for ||u;|| ^ (82/(4C2))
1'<*-i>, 

hence if £1 ̂  (82/(4C2))
1/(*-i> and \\u\\ ̂  rx then again <£(w) = 

const (X - X)(fc + 1)/(fc~1), hence 

sup{^(u)|ii GA}^ const(X-X)(fc + 1)/^-1} , 

and the lower bound in (4.7) follows. This completes the proof. 

LEMMA 4.3. Assume that (A), (B), (C) hold, and let e > 0. Then 
there exist positive constants 86, r2 such that if X G (X, X + 86) and 
0 < r < min(r2, ^(X—X)1/(fc_1)), fhtfn £/i£re exists h G (0,1), indepen­
dent ofj, such that all fy satisfy condition (I) with parameters —(1/12) 
(X-X)r2,0, r,ft. 
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PROOF. In view of the fact that <f>j is the restriction of <f> to Hj9 it suf­
fices to show that there exist positive constants ô6, r2 such that if 
A G(X,A + S6)and 

(4.19) 0 < r < min(r2, e(k - Ä)1/(/c-1}), 

there exists /i £ (0,1) such that if ||u|| = r and 

(4.20) - ^ - \ ) r ^ ^ ) g 0 , 

then 

(4.21) (<t>'(u),u)>-h\\<t>'(u)\\r. 

Throughout, we assume that \\u\\ = r and that (4.20) holds. We de­
note by "const" any positive constant depending only on L, T, V. We 
assume that r2 is sufficiently small so that Br2 C D the domain of V and 
hence that of <j>. 

We proceed by considering three cases such that always the hypoth­
eses of at least one case hold. 

As the first case we assume that 

(4.22) q(u)^ -J(A-X)r2 , 

where q i > defined by (4.8). Suppose, at first, that V = 0 and p = 0. 
Then we have from (4.8), (4.20), (4.22) that 

(4.23) t{u) ̂  - f qf(u). 

Hence, using the homogeneity of q and t, (4.22) and (4.23) imply that 

(4.24) (<f>'(u), u) è - q(u) ^ J(A-X)r2 > 0. 

Thus (4.21) is satisfied in this case for any h G (0,1). If we do not as­
sume that V=0 and p = 0 , then in view of the fact that V and p are 
smaller order than T and t, the same conclusion holds if r2 is sufficient­
ly small. 

As the second case, writing u in the form uY + u2 + u3, where 
Uy G N , M 2 G F , W 3 £ G , we assume that 

(4.25) I M S ^ r . 

Condition (4.21) is implied if there exists g G (0,1) and v ^ 0 such 
that 

(4.26) (t>,u) = 0, (4>'M>v)>g\\4>'(u)\\\\v\\. 
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If r2 is sufficiently small, then by hypotheses (B) and (C) and by 
(4.19) we have that \t(u) + p(u)\ ^ const(X-X)r2 and hence, by (4.20), 
that 

(4.27) l</(")l = const(X-X)r2. 

Using (A), we have that 

(4.28) q(ul)= - I ( x - X ) | | t t l | | 2 . 

Hence, by (4.8) and (4.27), 

(4.29) \q(u2) + q(u3)\ g const(X~X)r2. 

(4.25) implies that 

(4.30) | K P + | | W 3 | | ^ I r 2 . 

From (3.1) and (3.2), 

(4.31) g(«2) ^ - |(X - X + Si) |K| |2 , 

(4.32) q(u3)^-±(k-l-82)\\u3\\
2. 

It follows from (4.8), (4.28), £4.30), (4.31), (4.32) that if 86 > 0 is chos­
en sufficiently small and k G. (À, A + S6), then 

q(u2) g - J min(8i, 82)r
2, q(u3) ^ j m i n ^ , 82)r

2. 

Hence, using the continuity of q, 

(4.33) ||M2|| ^ const r, ||«3|| l§ const r. 

Now we let v = u2 — (||"2||2/||M3||2)M3- Then (v, u) = 0 and, by (A), 

(4.34) (*'(«), tj) = 2q(u2) - 2(||u2||2/||U3|| 2)9(1*3) + (T(u) + V(u), v). 

It follows from (4.30-4.33) that if ô6 is chosen sufficiently small, then 
X E (X, X + 86) implies that 

(4.35) 2<?(u2) - 2(\\u2^l\\u3\\*)q(u3) =S - const r2. 

From (4.33), 

(4.36) ||u|| ^ const r, 

and, using the continuity and homogeneity properties of L and T, and 
hypotheses (C) for V, we have that, for r2 sufficiently small, 

(4.37) | | 0 ' ( u ) | | ^ const r. 

Also, by (B), (C), and (4.34), (4.35), we have that for r2 sufficiently 
small, |(0'(ti), v)\ § const r2, hence, by (4.36) and (4.37), |(<J>», v)\ ^ 
const | |$'(w)| | \\v\\- Thuswehaveestablishedconditionsoftheform(4.26), 
from which an inequality of the form (4.21) follows. 
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The third and last remaining case is that where 

(4.38) IMI^^r, 

(4.39) q{u) ^ 4 ( A - X)r2. 

By (4.9), (4.28), (4.38), and (4.39), 

(4.40) <7(u2) + 9 ( « 3 ) ^ ( A - X ) r 2 . 

By (4.40) and the continuity of q, 

(4.41) ||u2|| + K U ^ const(A-X)1/2r. 

From (4.41) it follows that either 

(4.42) ||tj21| ^ const (X - X)1/2r 

holds or the corresponding inequality with u3 replacing u2 holds. Let 
us assume that (4.42) holds. Letting w = ux — (||wi||2/||w2||2)w2> we 
have (w, u) = 0 and 

(4.43) (*'(u),u>) = X||Ul||
2 - (||«i||2/||tta||

2)2qr(«2) + (T(u) + V(u),w). 

Using (3.1) and (4.38), if 86 is sufficiently small, then 

(4.44) X | K | | 2 - ( | | « i | 2 / | | «2 | | 2 )29(«2)^ i8 i^ 

Using (B) and (C), if r2 is sufficiently small, then 

(4.45) | |r(«) + V(u)\\ ^ const t*. 

By (4.38) and (4.42), 

(4.46) ||w|| ^ const(X - X)" 1/2r2. 

From (4.19), (4.45), and (4.46) follows 

(4.47) 1 ( 7 » + V(u), to)| ^ const 6*->(X-X)1/2f2. 

From (4.43), (4.44), and (4.47) it follows that if S6 is sufficiently small, 
then 

(4.48) (0 '(w),u>)^ const r2. 

As before, we may estimate \\if> '(u)|| and we find that 

(4.49) ||4>'(«)||= const r 

for r2 sufficiently small. Combining (4.46), (4.48), and (4.49), 

|(*'(«), w)\ i= const (X - KY'2\\<t>'(u)\\ \\w\\. 
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Hence we have established conditions of the form (4.26) and conse­
quently also an inequality of the form (4.21). 

We have demonstrated that an inequality of the form (4.21) holds 
in an exhaustive set of cases, and this establishes the lemma. 

LEMMA 4.4. Assume that (A), (B), (C) hold. Then there exist con­
stants 87, e0 > 0 such that if k E (A, A + 87)andr = e0(k — k)l,{k~l)then 
there exist L à U < 0 such that 

(4.50) L^b^r<U 

for i = 1, 2, • • -, n — a, j = 1, 2, 3, • • •; and iff, q are integers such 
that l S p ^ p + q - l ^ n - a and fopJf — b p + Q _ 1 J ) r = e, then 
there exist q distinct non-zero pairs ±uiy i = 1, 2, • • -, q, and there 
exists ft £ (0,1) such that 

(4.51) bp+q_lJ>r < <j>j(ui) < bp>j>r, 

(4.52) \\<f>j '(Ui)|| ^ max(V€/(l - ft2), 2c/((l - ft2)r)), 

(4.53) r g mil ^ r, 

(4.54) Uti,- i * £ | | S r , £ ^ t , 

/or any? swcft fftaf </>(w) > (7for all u G B?. 

PROOF. Let us take KlyK2 to be as in Lemma 4.2, take e0 

< (12KJ112, and take 87 < min(85, (r^o)*"1), where 85, fj are as in 
Lemma 4.2. Then the hypotheses of Lemma 4.2 are satisfied and hence 
(4.50) holds if we take 

L= -Kl(k-kYk + l^k-l\U= -K2(k-kYk + l^k-l\ 

Let us further restrict 87 to be less than min(86, (f^o)* -1)? where 
86, r2 are as in Lemma 4.3. Then the hypotheses of Lemma 4.3 are 
satisfied, hence there exists ft G (0,1), independent of j , such that 
every fy satisfies condition (I) with constants L, U, r, ft where we are 
using the hypothesis that e0 < (12^) 1 / 2 . 

Hypotheses (A), (B), (C) imply <f>' is Lipschitz continuous, and it fol­
lows that each <̂  ' is Lipschitz continuous. The conclusion of Lemma 
4.4 now follows as an application of Lemma 2.6. 

We reduce (1.1) to a pair of equations, as in the method of Lyapunov-
Schmidt (See [6, 10] ). Let P be the orthogonal projection onto N, 
as before, and let Ç be the orthogonal projection onto N 1 = F (B G. 
Then (1.1) is equivalent to the system 
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(4.55) (A-A)t; = P(T(v + w) + V(v + w)), 

(4.56) kw = Lw + Q(T(v + w) + V ( Ü + tu)), 

where v = Pu, w = Çu. 
We consider the following equation in Hj? which is similar to (1.1): 

(4.57) ku = Ylj(Lu + T(u) + V(u)) + s, 

where 11, is the orthogonal projection onto Hj and u, s G Hj. We note 
that (4.57) is equivalent to <f>j '(u) = s. Again introducing the Lyapunov-
Schmidt reduction, we let Qj be the orthogonal projection onto Fj 
© Gj, and then (4.57) is equivalent to the system 

(4.58) (k-k)v = P(T(v + Wj) + V(v + wj) + *), 

(4.59) kWj = Ç,-(Lî - -f T(v + Wj) + V(Ü -h t^) + s), 

where v = Pu, Wj = QjU. 
We may consider v and 5 fixed in (4.56) and (4.59) and seek to solve 

for w and Wj. 
In the following lemma we use the notation B(r) in place of Br. 

LEMMA 4.5. Assume that (A), (B), (C) hold, and let 8 G (0, 8i). 
ITien £/*#re exist r3, r4 > 0 si/c/i £/ia£ /or (A, V) G £ò = [X, A + 8] 
X (ß(r3) H N), (4.56) fozs a unique solution w = i/*(A, Ü); and for 

(A, v, s)G<bj = [kj + 8] X (B(r3) H N) X (B(r4) H //,), 

(4.59) /ias a unique solution Wj = i^(A, u, 5). ^ is uniformly continuous, 
and {\fßj} is a uniformly e quicontinuous family. If Sj G B(r4) H Hj is 
such that Sj —» 0, ^ n ^(A, t>, s) —» i/f (A, u) uniformly. 

PROOF. For A G [A,A + 8X] the restriction of L—AI to A/ has a 
bounded inverse K = K(k), so that K(L-Xl)u ;= ^ t o G N 1 , and 
||K|| g max(|A - Ä + Sil"1, |A - X - 82 |

_1),wh ere || -|| denotes the norm 
on operators from N1 to N1. In terms of K, (4.56) may be written as 

(4.60) w = -KQ(T(v + w) + V(v + w)). 

Defining/ = - KQ(T + V), (4.60) may be written as 

(4.61) w = J(v + w) 

For each 8 G (0,80, ||K|| is bounded uniformly for A £JÂ,Â + 8] 
Using (3.3) and (3.4) we may choose r3 so that for A G [A, A + 8] and 
M1? w2 G B(2r3) 

(4.62) ||/(%)-/M||^ÌIK-%||. 
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In an analogous manner we may construct a linear operator Kj9 de­
fined on FjJB Gj, so that_ K,(L - kl)w = w, wGFj® Gjy and ||K,.|| 
^ max(|X-X + 8i\-\ |X-X - 82\~

1), and (4.59) may be written in the 
form 

(4.63) w = Jj(v + w,s), 

where Jj(u,s) = —KjQj(T(u) + V(u) + s). By choosing r3 smaller, if 
necessary, we may arrange that for allj and s, and for all X G [X, X -h 8]. 
and u l5 u2 G B(2r3) 

(4.64) | | / > 1 ; s) - Jj(u2, s)\\ g l\\Ul - u2\\. 

Equations (4.61) and (4.63) may be solved by the well known method 
of iterations. Let 

(4.65) w° = J(v), wi + l = /(ü-f u?0, i = 0,1,2, • • • , 

(4.66) wj° = Jj(v, s), wf + l = Jj(v + wf, s), i = 0 ,1 , 2, • • •. 

Inequality (4.62) implies that for u G B(2r3), /(w) G B(r3). Hence, if 
ü G B(r3) H N, then by induction w{ G B(r3). The uniform conver­
gence of w* to a solution u? of (4.61) for (k,v) G ^ = [X, X + Ô] 
X (B(r3) H IV) follows easily, and it is easily shown that w is a uniform­
ly continuous function i//(X, ü) on 2 \ Uniqueness of a solution of (4.61) 
for (X, v) G !2> follows from (4.62). Similarly, for r4 sufficiently small 
we have that 5 G ß(r4) D Hj implies that KjQjS G B(rJ4), hence 
(v,s) G (B(r3) H N) X (B(r4) PI H,-) implies, using induction, that 
wf G B(r3) for all i, j . We find easily that wf converges uniformly, as 
i-><*>, to a solution Wj of (4.63) for (\,v>s)G^bj= [X,X + 8] 
X (B(r3) Pi N) X (B(r4) Pi #,), which is unique, and that the family of 
functions (X, v, s) —> i//y(X, v, s) = Wj is uniformly equicontinuous. 

To prove the remaining assertion of the theorem, it clearly suffices to 
consider only the special case where all Sj = 0 in view of the uniform 
equicontinuity of the ifjj. Thus we consider (X, v) as fixed and let w be 
the solution of (4.61), Wj the solution of (4.63) with 5 = 0 , and let wf be 
defined by (4.66) with s = 0. We must show that Wj —» w uniformly for 
(X, v) G 2 \ We have seen that wl —> w uniformly for (X, v) G £> and 
that wf —> Wj uniformly for (X, v,j) G £> X {1, 2, 3, • • •}, hence it will 
suffice to show that wf -> w* for each i uniformly for (X, v) G !2\ 

The latter assertion will be shown by induction on i. For this pur­
pose, we introduce the sets 

(4.67) S< = {wf\(k, v) G <b,j = 1,2, 3, • • •}, Tt = {w* | (X, v) G &}, 

where it is understood that w{ and wf are the functions of (X, v) defined 
by (4.65) and (4.66) with s = 0. We have seen that / and Jj are contin-
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uous on 2>, which is compact, and it follows from their definitions that 
Jj(u)—>J(u)9 as 7—»°°, for u G £>, hence wf-^w0 uniformly for 
(X, v) G 2 \ Also S0 and T0 are compact. Suppose now that for i = k it 
is true that wf —* a?* uniformly for (X, t>) G £> and that S* and Tf are 
compact. Using (4.65) and (4.66) we may write 

(4.68) 

Wji + i - ^ + 1 = [Jjiv + w/tO) - J(v + wf)} + [J(v + wf) - J(v + ^ ) ] -

The argument v + wf lies in the compact set (B(r3) H N ) + Si5 hence by 
the continuity of /, and the convergence of Jj to / , we have that the 
first term on the right hand side of (4.68) converges to zero uniformly 
for (X, v) G !2\ Similarly for the second term on the right hand side of 
(4.68), hence wf + l-* wi + l uniformly for (X, v) G 2 \ The compactness 
of Si+l and Ti+l follows easily from the compactness of Si and Tit This 
completes the induction step. Hence wf —> wl uniformly for (X, v) G !£>, 
for all i, and with this assertion we have completed the proof of the 
lemma. 

LEMMA 4.6. Under hypotheses (A), (B), (C) there exist 83, 84 > 0 
such that for X G (X, X + 83) (resp. X G (X — 84, X)) equation (1.1) has 
at least n — a (resp. n — ß) distinct non-zero pairs ±u of solutions in 
Br, where r = e0(k — X.)ll{k~1} with e0 as Lemma 4.4. 

PROOF. Let us consider the case where X > X. We choose 83 positive 
and less than min(8, 87, (/f3le0)

k~l), where 87 and e0 are as in Lemma 
4.4 and 8 and r3 are as in Lemma 4.5. Letting X G (X, X + 83) and 
r = e0(k—~k)ll{k~l\ by Lemma 4.4 there exist L ^ U < 0 such that 
L ^ bUfr ^ l/for i = 1, 2, • • -, n - a, j = 1, 2, 3, • • •. Hence, for 
each i = 1, 2, • • -, n — a, a limit point £ of biy^r as a sequence in j 
exists, and since bijr is decreasing in i, it follows that L ^ £n-« = 

Suppose that some of the values £ coincide. For example, suppose 
that ìi = ' ' ' = Çv — è. By passing to subsequences, if necessary, we 
may assume that bijr-+ è as j—» 00 ? for i = 1, 2, • • * , p. By Lemma 
4.4, for each j there exist p distinct pairs ± u{^ i = 1, 2, • • • ,p and 
there exists ? G (0, r) independent of j , such that <f>j(uij) ""* £ a s 

j - * » , ^ ' ( t i ^ - f rO as j - > 00, r g I K J ^ r , and \\uu - ui}j\\ 
^r,H^i. We let uitj = vid + u^J? where v{j G N, u;,j G F,- © Gi? 

andle t^- ' ( w u) = 5U-
By the discussion preceding (4.58) and (4.59) the equation <j>j'(Uij) 

= Sij is equivalent to (4.58) and (4.59) with v, wjy s replaced by viij9 

Wij, Sij respectively. We have \\vij\\ = r, and since N is finite di­
mensional, each sequence v{j in j has a convergent subsequence. By 
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passing to a subsequence, we may assume that v{j converges to a 
point Vi as j - * oo . Since A G (X, X + S3), and by the definition off and 
the restriction that 83 < 8, we have that v{j G B(r3) fi N, where r3 is 
as in Lemma 4.5, and since Sjj—» 0 a s j - > o o 5 we have H^JH ^ r4 for j 
sufficiently large, where r4 is as in Lemma 4.5. Hence by Lemma 4.5 
it must be the case that w{j = i^(X, v{J, s{j). By the uniform equi-
continuity property of {\fjj} and by the last statement of Lemma 4.5 we 
have il/j(\, Vij, Sij)—> ^(X, v{) as j^> oo . If We set ttfi = i/*(X, v^, then 
Wij-> w{ and by the definition of i/f, v = v{, w = w{ is a solution of 
(4.56). Also, since Ü = vij7 Wj = w{j, s = s^j is a solution of (4.58), 
it follows by passing to the limit a s j ^ oo that v = v{, w = Wi is a solu­
tion of (4.55). Hence Wj = v{ + u^ is a solution of (1.1). 

Since Utiij — uitj\\ = r,i ^ i, and Wij-» Uj, the wi? i = 1, 2, • • -, 
p, are distinct. It is clear that <f>(Ui) = £, i = 1, 2, • • -, n — a. Hence, 
if a value £ occurs p times in the sequence £1? £2> ' ' S £n-a> then there 
are at least p pairs ±u such that </>(w) = £ and 0'(w) = 0. There­
fore, there are at least n—a pairs ± u such that <j>'(u) = 0. Moreoever, 
these pairs lie in Br, where r has the value previously stated. 

It is easy to see that the result stated in the lemma for the case 
X < X can be obtained by dealing with the functional — <f> in place of <j>. 

This completes the proof of the lemma. 

LEMMA 4.7. Let hypotheses (A), (B), (C) hold, let a be a positive 
constant, and let ube a solution of (1.1) such that 

(4.69) I H ^ f l l X - X l ^ - ^ 
Then u is of the form 

(4.70) IX-Xl^-Dfi! + o f lX-Xl^-UasX-^X, 

where ux satisfies 

(4.71) uY = sgn(X-XjPTt*!. 

PROOF. We let v = Fu, w = Qu, and use the decomposition of (4.55), 
(4.56). Solving (4.56) for to in terms of u and using (A), (B), and (C), we 
have that for a sufficiently small positive constant 80, if |X—X| < ô0, 
then 

(4.72) UHI — c o n s t ||w||fc-
We let 

(4.73) v = ( X - X l ^ - 1 * , w = I X - X l ^ - ^ û M ï = v + w. 

Then (4.55) is equivalent to 

(4.74) v = sgn(X-X)PTö + r, 
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where 

r = sgn(k-k)\k-k\-k«k-vPV(\k-\\li(k-Vû). 

Hence, from (4.69), (4.73), and (C) it follows that 

(4.75) ||r|| = o ( | A - X | ) a s \ - * X . 

From (4.72), (4.73), the Lipschitz continuity of T, and (4.75), it follows 
that v satisfies 

(4.76) v = sgn(k-k)PTv + o(|X-X| as k-> X. 

An easy consequence of hypotheses (B) is that the set of solutions of 
(4.71) is compact. Denoting this set by S, it is easily seen that if v 
satisfies (4.76) then dist(ü, S) ^Sa(|A—A|), where <r(s) —» 0 as s—»0. 
Hence, using (4.69), (4.72), and (4.73), it follows that u is of the form 
(4.70). 

Theorem 3.1 now follows immediately from Lemmas 4.6 and 4.7. 

Corollary 3.3 is an immediate consequence of Lemma 4.1, since the 
proof only requires that we show that a + ß = n, and this is obvious by 
Lemma 4.1. 
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