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JACOBI SUMS AND A THEOREM OF BREWER 
PHILIP A. LEONARD AND KENNETH S. WILLIAMS * 

1. Introduction. Throughout p will denote an odd prime, and 
( 7p) the familiar Legendre symbol. It is well known that p = c2 + 2d2 

if and only if p — 8k + 1 or p = 8k + 3, and that in these cases c is 
unique if we require c = ( — l)fc+1(mod 4). In 1961, Brewer [1] 
related this representation of p to the character sum 

(L1) B , g / ( , + 2)(^-2)v 
x=0 \ P / 

More precisely, he proved 

THEOREM. 

B = JO, ifp f* c2 + 2d2, 
12c, ifp = c2 + if p = c2 + 2d2 and c = ( - 1)*+1 (mod 4). 

We present a variant of Whiteman's proof [6] of this result, using 
simple properties of Jacobi sums, with the view that this is more 
natural than the use of Jacobsthal sums [6], modular curves [5] 
(see Theorem 1) or the theory of cyclotomy [3] in other existing 
proofs. 

For multiplicative characters ifß and A of GF(pr), the Jacobi sum 
/(t/f, A) is defined by 

(1.2) / ( * , * ) = S *(a)A(/8). 
a + /3 = l 

If i/f, A and \fßk are non-trivial, these sums satisfy [4] 

where G(i/f ) is the Gaussian sum G(i/f ) = ^ « *Ma) exp(27ri tr(a)lp), with 
tr(a) = a + ap 4- • • • + a*'"1, and therefore as |G(i^)| = p r /2, 

(1.4) | / ( ^ x ) | a = p ' . 
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The Gaussian sums also satisfy 

(1.5) G ( * ) G ( * ) = * ( - l ) p ' , 

where ^ is the character conjugate to I/J. The particular Jacobi sums 
of interest will be studied in § 4. 

It is convenient to introduce 0, an element of GF(p2) of multiplica
tive order p + 1, and the notation 0 = 0p, so that 6l) = 1. (Similarly, 
the integers x, x among 1, 2, • • • p — 1 are related by xx = 1 (mod p)). 
We note the relation 

(1.6) ( 0n + \y~l = 0n» for 1 ̂  n g p + 1, n ^ (p + l)/2, 

which follows from ( 0n + 1)" = 0n» + 6n{pJtl) = 6np( 0n + 1). 

2. Transformation formulae. The following result contains two 
simple formulae which are useful in the argument. 

LEMMA 2.1. Let F be a complex-valued function of period p. Then 

(2.1) S ( ^ ) F W + I ; ( ^ ) F « 

- | ( i ) F ( , + n 
and 

(2.2) S ( ^ ) F W - §(^A)F(S) 
x=o N V ' x=o x r ' 

= 5 (-l)nF(ön+ön). 
n = l 

PROOF. For (2.1), see [7]. The observation of Brewer [1] and 
Whiteman [6] that the number of solutions of x = 0n + 0n, 1 ̂  n ̂  p 
+ 1, is 1 — ((x2 — 4)/p), gives 

p - i P - I / r 2 _ 4 \ p+i _ 

(2.3) S G(X) - 2 ( J 4 r ^ )G(*) = I ^ + n 
for any complex-valued function G of period p. Setting G(x) = 
((x + 2)/p)F(x), we obtain (2.2) as (( 0" + ̂  + 2)/p) = ( -1)" , 1 ̂  n 
^ p + 1, n / (p + l)/2. This assertion follows from (1.6) and Euler's 
criterion, since 

( en + 0n + 2)("-1)/2 = ( ( » » + I ) 2 ^ ) ( P - D / 2 

= ^ P ^ n ( p - l ) / 2 — £n(p + l)/2 = ( — 1 ) " 
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for the indicated values of n. 

3. Applications; the trivial cases. We apply Lemma 2.1 to F (x) = 
((x2 - 2)/p). For p = 1 (mod 4), (2.1) gives 

»-s<f)(jE±rt)-i<t>(^> 
(3.1) 

à A P i x%\ p / • 
If p = 5 (mod 8), the biquadratic and octic residues modulo p coincide, 
so that B = 0 in this case. 

For p = 3 (mod 4), (2.2) gives 

2B= 2 ( - i ) » ( « - ± « - ) 
(3.2) n = 1 _ H 

P +1 / fl4n + fl4n x P +1 / fl2n + fl2n X 

= 1 N ^ ' n = l 

As 0^+D/2 = - 1 and (-lip) = - 1 , the transformation n-> (p + l)/4 
-f n shows that the second term in (3.2) is its own negative, and so 
2B = ]£nÌì(( 04n + ~è4n)lp) in this case. If p = 7 ( m o d 8 ) , the 
transformation n-* (p + l)/8 + n applied to (3.3) shows that 2B = 
— 2B, so that B = 0 in this case as well. 

4. The Jacobi sums. For p = 1 (mod 8) and p = 3 (mod 8), some 
special Jacobi sums are needed. First, let D denote the ring of integers 
of the number field Ç(V2, Ï) = Q((o), where co = exp(27ri/8). D is a 
unique factorization domain. If TT denotes a prime factor of p in D, 
then k = D/(rr) is a field ofNfr) elements, where 

(4.1) N(n)= P i f p ^ K m o d S ) , 
( ' W V i f p = 3 ( m o d 8 ) . 

We define a character X = X^ofkby specifying 

(4.2) X(t)=ùï if fWM-iVSsi ^(modTr), 

for elements £ of D not divisible by w. The function X defined by (4.2) 
is related to die Legendre symbol by 

^ ' \ p / lX(fl) i f p = 3 ( m o d 8 ) , f o r a l l o i n Z . 

When p = 3 (mod 8) we have 
0 ( P 2 - U / 8 = ( e ( p + i ) / 4 ) ( P - i ) / 2 = ( ± i ) ( p - i ) / 2 = ± j , s o t h a t X ( 0 ) = ± t . 
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Replacing 0 by — 6 if necessary we can assume without loss of gener
ality that X( 0) = i. 

Since our Gauss and Jacobi sums involve only characters which are 
powers of X, we set /(m, n) = /(Xm, Xn) and G(m) = G(Xm) to simplify 
notation. Also, ä and a ' denote the conjugates of a in D with respect 
to i and V2, respectively. Thus œ ' = cu3, for example. 

For p = 8fc + 1, the central role is played by the Jacobi sum 
7(1,4). 

LEMMA 4.1. Forp = 8k + 1,/(1,4) = ±mr'. 

PROOF. AS ̂ I 0 */n = 0 (mod p) wherever p — 1 jf n, we have 

(4.4) / ( l , 4) = 5 y(p"1)/8(l - t/)(p"1)/2 = 0 (modTr) in D. 

Since y(p-l^8= û ^ ^ o d v r ) implies y3<p-D/8= (^ (mod^ ' ) , we have 

(4.5) / ( 1 , 4 ) = 2 t/3(p-i)/^(1__ y)<P-iV2 = o ( m o d ^ ' ) » n D . 

As 7T and 7f' are non-associated primes of D, (4.4) and (4.5) imply 

(4.6) / ( l , 4) = 77777 ', for some y in D. 

Now by (1.3) and (1.5), 7(174) = / (3 , 4) = G(3)G(4)/G(7) = 
G(1)G(4)/G(5) = /(1,4) showing that /(1,4) is in Z[\^2]. Since 
7T7T' is in Z[ V — 2], y is in Z[ V —2] as well. Computing norms in 
(4.6) gives, by (1.4), that y is a unit of Z[ V —2], so y = ± 1 as required. 

LEMMA 4.2. For p = 8k + 1, / ( l , 4) = c + d V 3 ^ , w/iere c = 
( - l ) f c + 1 (mod 4) and p = c2 + 2d2. 

PROOF. By lemma 4.1 and its proof, / ( l , 4) is a prime factor of p in 
Z[ V—2]. Thus, since we do not distinguish d from —d, / ( l , 4) 
= ± ( c + d V —2), with d even and c = ( — l) f c+1 (mod4). The correct 
sign is obtained by using an idea of Davenport and Hasse [2]. For 
l g t / ^ p - 2 , ( ( t / + l ) /p )+ l = 0(mod2),and 

so that 
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(4.7) 

;!>-.>{(^)+1} 

+ 2 {%) - <"} { ( ^ - ^ ) + 1 } = 0(mod2V=2). 

After some simplification of (4.7) we obtain 

J(l, 4) =" j - (p - 5) + - | ( p - 1) + X(-1) (mod 2 V = 2 ) , 

or 

(4.8) / ( l , 4) s (-i)fc - 2 = ( -1 )* + 1 = c (mod2v c r 2) . 

As d is even, we have/ ( l , 4) = c + d V — 2, completing the proof. 

For p = 8/c 4- 3, the central role is played by a factor of the Jacobi 
sum J( l , 3). Following Whiteman, we consider the Eisenstein sum 

(4.9) K= P 2x(l + fc0, 

which satisfies (see [6], lemma 2) 

(4.10) KK=p, 

and also (as can be shown by a straightforward calculation) 

(4.11) / ( 1 , 3 ) = - K 2 , 

showing that K is indeed a factor of the Jacobi sum/( l , 3). 

LEMMA 4.3. For p = 8fc + 3, let L = £ n Ì ì *( #n + *)• r ^ n L 

is in Z[ V 1 1 ! ] , and - L = K. 

PROOF. 

L ' = P 2 [ x ( 0 » + i ) ] 3 = PS 1[x(e»+i)]" 
n = l n = l 

= 2 X( 0np + 1) = 2 X( r + l ) = L, 
n = l n = l 
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so that L is in Z[ V 1 1"!] . For 0 g b ^ p - 1, the numbers (1 - bï)l 
(1 + bi) are distinct, and different from — 1. As ((1 — bi)l(l + bi))p 

= (1 + bi)l(l — bi), each of them satisfies yp+l = 1, and so these p 
elements of GF(p2) are simply dn, 1 ^ n ^ p + 1, n ^ (p -h l)/2. 
Therefore 

{ 0n + 1 | l ^ n g p + l , n ^ ^ — | 

so that 

p - i 
K 

b=0 = ÌX ( 1 + W)=?'X(^TT) 
= - 2'x(0-+ 1)= -L, 

n 

as required, where the dash ( ' ) indicates that the summation is over 
those n satisfying 1 ^ n ^ p + 1, n ^ (p + l)/2. 

LEMMA 4.4. For p = 8fc + 3 = c2 + 2d2, with c = ( - l)fc+1(mod 4), 
we have L= ±(c + dV—2). (The ambiguity of sign is resolved in 
§5). 

PROOF. From (4.10) and lemma 4.3 we have p = LL = TTTT, SO 

that L = ±77 or ±7f, showing that L can be written in the form 
± ( c + d V ^ w i t h c ^ ( - l ) f c + 1 ( m o d 4 ) a n d c 2 + 2d2 = p. 

5. Completion of the proof. Forp = 8fc 4- 1, we have 

(5.1) 

and 

I(^) 
= Ï ( J L ± 1 - ){1 + X(x) + X%x) + • • • + X7(*)}, 

(5.2) V/li+i Ê(^) 
~o v P 

= "S ( i L ± I - ){1 + X2(x) + X*(x) + X6(x)}, 
~o v P 



JACOBI SUMS AND A THEOREM OF BREWER 307 

which, with (3.1) gives 

(5.3) 2B = /( l , 4) + /( l , 4) ' + /( l , 4) ' + /( l , 4). 

From lemma 4.2, 2B = 4c, so that B = 2c as required. 
For p = 8fc + 3, we rewrite (3.3) by introducing X, and obtain 

(5.4) 2B = £ X( 68n + 1) = 2 X( #4n + !)» 
n = l n = l 

as p + 1 = 4(2fc + 1) implies that the fourth powers and eighth 
powers in the cyclic group (6) coincide. Setting 

Si = Ï X ( 0*»* + 1), for; = 0,1,2, 3, 
n = l 

we have the equalities 

2B = S0, 
(5.5) t 

4L = S0 + Si + S2 + S3 = ±4(c 4- dV=2). 

Now (see [6], p. 551) Sx = iS3 and S2 = 0, giving 

(5.6) ±4(c + dV=2) = 2B + (1 + i)S3. 

From (1.6) we obtain, for p = 8fc + 3, as X( 0) = i, X2( 0m + 1) = 
{X( 0m + l)}»"1 = X( 0m») = {Xiß"1)}3 = a)6«, so that 

(5.7) X( 0m + 1) = ± w3m. 

Hence X( 04n+3 -f 1) = ± co, so that S3 = e<o, where e £ Z , giving 

(5.8) (1 + i)S3 = eV=l. 

From (5.5), (5.6) and (5.8) we have B/2 = SJ4 = ± c. But 

So/4 = j ^ ( Ö 4 " + l ) = 2>( 04" + 1) 
4 n = l n = l 

2k 

= S X( 04" + 1) - 1, 
n = l 

and 

5 x(04n + i ) = j x ( 0 - 4 m + i) = Sx(ö4m + i). 
n=fc + l m = l m = l 
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Since (from (5.7)) X( 04m + 1) = ± 1, we have 

R k 

-f = 2 ]T X(04m + 1 ) - l = 2k- 1 = ( - l ) f c + 1 = c(mod4). 

Since c is odd and B/2 = ± c, we must have B/2 = c. This completes 
the proof. 
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