JACOBI SUMS AND A THEOREM OF BREWER

PHILIP A. LEONARD AND KENNETH S. WILLIAMS*

1. Introduction. Throughout p will denote an odd prime, and (\cdot / p) the familiar Legendre symbol. It is well known that $p=c^{2}+2 d^{2}$ if and only if $p=8 k+1$ or $p=8 k+3$, and that in these cases c is unique if we require $c \equiv(-1)^{k+1}(\bmod 4)$. In 1961, Brewer [1] related this representation of p to the character sum

$$
\begin{equation*}
B=\sum_{x=0}^{p-1}\left(\frac{(x+2)\left(x^{2}-2\right)}{p}\right) . \tag{1.1}
\end{equation*}
$$

More precisely, he proved
Theorem.

$$
B= \begin{cases}0, & \text { if } p \neq c^{2}+2 d^{2} \\ 2 c, & \text { if } p=c^{2}+2 d^{2} \text { and } c \equiv(-1)^{k+1}(\bmod 4) .\end{cases}
$$

We present a variant of Whiteman's proof [6] of this result, using simple properties of Jacobi sums, with the view that this is more natural than the use of Jacobsthal sums [6], modular curves [5] (see Theorem 1) or the theory of cyclotomy [3] in other existing proofs.

For multiplicative characters ψ and λ of $\operatorname{GF}\left(p^{r}\right)$, the Jacobi sum $J(\psi, \lambda)$ is defined by

$$
\begin{equation*}
J(\psi, \lambda)=\sum_{\alpha+\beta=1} \psi(\alpha) \lambda(\beta) . \tag{1.2}
\end{equation*}
$$

If ψ, λ and $\psi \lambda$ are non-trivial, these sums satisfy [4]

$$
\begin{equation*}
J(\psi, \lambda)=\frac{G(\psi) G(\lambda)}{G(\psi \lambda)}, \tag{1.3}
\end{equation*}
$$

where $G(\psi)$ is the Gaussian sum $G(\psi)=\sum_{\alpha} \psi(\boldsymbol{\alpha}) \exp (2 \pi i \operatorname{tr}(\boldsymbol{\alpha}) / p)$, with $\operatorname{tr}(\boldsymbol{\alpha})=\alpha+\alpha^{p}+\cdots+\alpha^{p^{r-1}}$, and therefore as $|G(\psi)|=p^{r / 2}$,

$$
\begin{equation*}
|J(\psi, \lambda)|^{2}=p^{r} . \tag{1.4}
\end{equation*}
$$

[^0]The Gaussian sums also satisfy

$$
\begin{equation*}
G(\psi) G(\bar{\psi})=\psi(-1) p^{r} \tag{1.5}
\end{equation*}
$$

where $\bar{\psi}$ is the character conjugate to ψ. The particular Jacobi sums of interest will be studied in $\S 4$.

It is convenient to introduce θ, an element of $\mathrm{GF}\left(p^{2}\right)$ of multiplicative order $p+1$, and the notation $\overline{\boldsymbol{\theta}}=\boldsymbol{\theta}^{p}$, so that $\boldsymbol{\theta} \overline{\boldsymbol{\theta}}=1$. (Similarly, the integers x, \bar{x} among $1,2, \cdots p-1$ are related by $x \bar{x} \equiv 1(\bmod p))$. We note the relation

$$
\begin{equation*}
\left(\theta^{n}+1\right)^{p-1}=\theta^{n p} \text { for } 1 \leqq n \leqq p+1, n \neq(p+1) / 2 \tag{1.6}
\end{equation*}
$$

which follows from $\left(\theta^{n}+1\right)^{p}=\theta^{n p}+\theta^{n(p+1)}=\theta^{n p}\left(\theta^{n}+1\right)$.
2. Transformation formulae. The following result contains two simple formulae which are useful in the argument.

Lemma 2.1. Let F be a complex-valued function of period p. Then

$$
\begin{align*}
\sum_{x=0}^{p-1}\left(\frac{x+2}{p}\right) F(x) & +\sum_{x=0}^{p-1}\left(\frac{x-2}{p}\right) F(x) \tag{2.1}\\
& =\sum_{x=1}^{p-1}\left(\frac{x}{p}\right) F(x+\bar{x})
\end{align*}
$$

and

$$
\begin{align*}
\sum_{x=0}^{p-1}\left(\frac{x+2}{p}\right) F(x) & -\sum_{x=0}^{p-1}\left(\frac{x-2}{p}\right) F(x) \tag{2.2}\\
& =\sum_{n=1}^{p+1}(-1)^{n} F\left(\theta^{n}+\bar{\theta}^{n}\right)
\end{align*}
$$

Proof. For (2.1), see [7]. The observation of Brewer [1] and Whiteman [6] that the number of solutions of $x=\boldsymbol{\theta}^{n}+\bar{\theta}^{n}, 1 \leqq n \leqq p$ +1 , is $1-\left(\left(x^{2}-4\right) / p\right)$, gives

$$
\begin{equation*}
\sum_{x=0}^{p-1} G(x)-\sum_{x=0}^{p-1}\left(\frac{x^{2}-4}{p}\right) G(x)=\sum_{n=1}^{p+1} G\left(\theta^{n}+\bar{\theta}^{n}\right) \tag{2.3}
\end{equation*}
$$

for any complex-valued function G of period p. Setting $G(x)=$ $((x+2) / p) F(x)$, we obtain (2.2) as $\left(\left(\theta^{n}+\overline{\theta^{n}}+2\right) / p\right)=(-1)^{n}, 1 \leqq n$ $\leqq p+1, n \neq(p+1) / 2$. This assertion follows from (1.6) and Euler's criterion, since

$$
\begin{aligned}
\left(\boldsymbol{\theta}^{n}+\overline{\boldsymbol{\theta}}^{n}+2\right)^{(p-1) / 2} & =\left(\left(\boldsymbol{\theta}^{n}+1\right)^{2} \overline{\boldsymbol{\theta}}^{n}\right)^{(p-1) / 2} \\
& =\boldsymbol{\theta}^{n p} \overline{\boldsymbol{\theta}}^{n(p-1) / 2}=\boldsymbol{\theta}^{n(p+1) / 2}=(-1)^{n}
\end{aligned}
$$

for the indicated values of \boldsymbol{n}.
3. Applications; the trivial cases. We apply Lemma 2.1 to $F(x)=$ $\left(\left(x^{2}-2\right) / p\right)$. For $p \equiv 1(\bmod 4),(2.1)$ gives

$$
\begin{align*}
2 B & =\sum_{x=1}^{p-1}\left(\frac{x}{p}\right)\left(\frac{(x+\bar{x})^{2}-2}{p}\right)=\sum_{x=0}^{p-1}\left(\frac{x}{p}\right)\left(\frac{x^{4}+1}{p}\right) \tag{3.1}\\
& =\sum_{x=0}^{p-1}\left(\frac{x^{8}+1}{p}\right)-\sum_{x=0}^{p-1}\left(\frac{x^{4}+1}{p}\right)
\end{align*}
$$

If $p \equiv 5(\bmod 8)$, the biquadratic and octic residues modulo p coincide, so that $B=0$ in this case.

For $p \equiv 3(\bmod 4),(2.2)$ gives

$$
\begin{align*}
2 B & =\sum_{n=1}^{p+1}(-1)^{n}\left(\frac{\theta^{2 n}+\overline{\boldsymbol{\theta}}^{2 n}}{p}\right) \tag{3.2}\\
& =\sum_{n=1}^{p+1}\left(\frac{\boldsymbol{\theta}^{4 n}+\overline{\boldsymbol{\theta}}^{4 n}}{p}\right)-\sum_{n=1}^{p+1}\left(\frac{\boldsymbol{\theta}^{2 n}+\overline{\boldsymbol{\theta}}^{2 n}}{p}\right) .
\end{align*}
$$

As $\theta^{(n+1) / 2}=-1$ and $(-1 / p)=-1$, the transformation $n \rightarrow(p+1) / 4$ $+n$ shows that the second term in (3.2) is its own negative, and so $2 B=\sum_{n=1}^{p+1}\left(\left(\theta^{4 n}+\overline{\boldsymbol{\theta}}^{4 n}\right) / p\right)$ in this case. If $p \equiv 7(\bmod 8)$, the transformation $n \rightarrow(p+1) / 8+n$ applied to (3.3) shows that $2 B=$ $-2 B$, so that $B=0$ in this case as well.
4. The Jacobi sums. For $p \equiv 1(\bmod 8)$ and $p \equiv 3(\bmod 8)$, some special Jacobi sums are needed. First, let D denote the ring of integers of the number field $Q(\sqrt{2}, i)=Q(\omega)$, where $\omega=\exp (2 \pi i / 8)$. D is a unique factorization domain. If π denotes a prime factor of p in D, then $k=D /(\pi)$ is a field of $N(\pi)$ elements, where

$$
N(\pi)= \begin{cases}p & \text { if } p \equiv 1(\bmod 8) \tag{4.1}\\ p^{2} & \text { if } p \equiv 3(\bmod 8)\end{cases}
$$

We define a character $\chi=\chi_{\pi}$ of k by specifying

$$
\begin{equation*}
\chi(\xi)=\omega^{\lambda} \quad \text { if } \xi^{(N(\pi)-1) / 8} \equiv \omega^{\lambda}(\bmod \pi) \tag{4.2}
\end{equation*}
$$

for elements ξ of D not divisible by π. The function χ defined by (4.2) is related to the Legendre symbol by

$$
\left(\frac{a}{p}\right)= \begin{cases}\chi^{4}(a) & \text { if } p \equiv 1(\bmod 8), \tag{4.3}\\ \chi(a) & \text { if } p \equiv 3(\bmod 8), \text { for all } a \text { in } Z\end{cases}
$$

When $p \equiv 3(\bmod 8)$ we have

$$
\theta^{\left(p^{2}-1\right) / 8}=\left(\theta^{(p+1) / 4}\right)^{(p-1) / 2}=(\pm i)^{(p-1) / 2}= \pm i, \text { so that } \chi(\theta)= \pm i
$$

Replacing $\boldsymbol{\theta}$ by $-\boldsymbol{\theta}$ if necessary we can assume without loss of generality that $X(\theta)=i$.

Since our Gauss and Jacobi sums involve only characters which are powers of χ, we set $J(m, n)=J\left(\chi^{m}, \chi^{n}\right)$ and $G(m)=G\left(\chi^{m}\right)$ to simplify notation. Also, $\bar{\alpha}$ and α^{\prime} denote the conjugates of α in D with respect to i and $\sqrt{2}$, respectively. Thus $\bar{\omega}^{\prime}=\omega^{3}$, for example.

For $p=8 k+1$, the central role is played by the Jacobi sum $J(1,4)$.

Lemma 4.1. For $p=8 k+1, J(1,4)= \pm \pi \bar{\pi}^{\prime}$.
Proof. As $\sum_{y=0}^{p-1} y^{n} \equiv 0(\bmod p)$ wherever $p-1 \not \backslash n$, we have

$$
\begin{equation*}
J(1,4) \equiv \sum_{y=0}^{p-1} y^{(p-1) / 8}(1-y)^{(p-1) / 2} \equiv 0(\bmod \pi) \text { in } D \tag{4.4}
\end{equation*}
$$

Since $y^{(p-1) / 8} \equiv \omega^{\lambda}(\bmod \pi)$ implies $y^{3(p-1) / 8} \equiv \omega^{\lambda}\left(\bmod \bar{\pi}^{\prime}\right)$, we have

$$
\begin{equation*}
J(1,4) \equiv \sum_{y=0}^{p-1} y^{3(p-1) / 8}(1-y)^{(p-1) / 2} \equiv 0\left(\bmod \bar{\pi}^{\prime}\right) \text { in } D \tag{4.5}
\end{equation*}
$$

As π and $\bar{\pi}^{\prime}$ are non-associated primes of D, (4.4) and (4.5) imply

$$
\begin{equation*}
J(1,4)=\gamma \pi \bar{\pi}^{\prime}, \text { for some } \gamma \text { in } D \tag{4.6}
\end{equation*}
$$

Now by (1.3) and (1.5), $\overline{J(1,4)}=J(3,4)=G(3) G(4) / G(7)=$ $G(1) G(4) / G(5)=J(1,4)$ showing that $J(1,4)$ is in $Z[\sqrt{-2}]$. Since $\pi \bar{\pi}^{\prime}$ is in $\mathrm{Z}[\sqrt{-2}], \gamma$ is in $Z[\sqrt{-2}]$ as well. Computing norms in (4.6) gives, by (1.4), that γ is a unit of $Z[\sqrt{-2}]$, so $\gamma= \pm 1$ as required.

Lemma 4.2. For $p=8 k+1, J(1,4)=c+d \sqrt{-2}$, where $c \equiv$ $(-1)^{k+1}(\bmod 4)$ and $p=c^{2}+2 d^{2}$.

Proof. By lemma 4.1 and its proof, $J(1,4)$ is a prime factor of p in $Z[\sqrt{-2}]$. Thus, since we do not distinguish d from $-d, J(1,4)$ $= \pm(c+d \sqrt{-2})$, with d even and $c \equiv(-1)^{k+1}(\bmod 4)$. The correct sign is obtained by using an idea of Davenport and Hasse [2]. For $1 \leqq y \leqq p-2,((y+1) / p)+1 \equiv 0(\bmod 2)$, and

$$
\chi(y) \equiv\left\{\begin{array}{ll}
1, & \text { if }\left(\frac{y}{p}\right)=1 \\
\omega, & \text { if }\left(\frac{y}{p}\right)=-1
\end{array}\right\}(\bmod \sqrt{-2})
$$

so that

$$
\begin{align*}
& \sum_{y=1}^{p-2}\{\chi(y)-1\}\left\{\left(\frac{y+1}{p}\right)+1\right\} \\
& \left(\frac{y}{p}\right)=1 \tag{4.7}\\
+ & \sum_{y=1}^{p-2}\{\chi(y)-\omega\}\left\{\left(\frac{y+1}{p}\right)+1\right\} \equiv 0(\bmod 2 \sqrt{-2}) . \\
& \left(\frac{y}{p}\right)=-1
\end{align*}
$$

After some simplification of (4.7) we obtain

$$
J(1,4) \equiv \frac{1}{2}(p-5)+\frac{\omega}{2}(p-1)+\chi(-1)(\bmod 2 \sqrt{-2}),
$$

or

$$
\begin{equation*}
J(1,4) \equiv(-1)^{k}-2 \equiv(-1)^{k+1} \equiv c(\bmod 2 \sqrt{-2}) \tag{4.8}
\end{equation*}
$$

As d is even, we have $J(1,4)=c+d \sqrt{-2}$, completing the proof.
For $p=8 k+3$, the central role is played by a factor of the Jacobi sum $J(1,3)$. Following Whiteman, we consider the Eisenstein sum

$$
\begin{equation*}
K=\sum_{b=0}^{p-1} \chi(1+b i) \tag{4.9}
\end{equation*}
$$

which satisfies (see [6] , lemma 2)

$$
\begin{equation*}
K \bar{K}=p, \tag{4.10}
\end{equation*}
$$

and also (as can be shown by a straightforward calculation)

$$
\begin{equation*}
J(1,3)=-K^{2} \tag{4.11}
\end{equation*}
$$

showing that K is indeed a factor of the Jacobi sum $J(1,3)$.
Lemma 4.3. For $p=8 k+3$, let $L=\sum_{n=1}^{p+1} \chi\left(\theta^{n}+1\right)$. Then L is in $Z[\sqrt{-2}]$, and $-\bar{L}=K$.

Proof.

$$
\begin{aligned}
\bar{L}^{\prime} & =\sum_{n=1}^{p+1}\left[X\left(\theta^{n}+1\right)\right]^{3}=\sum_{n=1}^{p+1}\left[X\left(\theta^{n}+1\right)\right]^{p} \\
& =\sum_{n=1}^{p+1} X\left(\theta^{n p}+1\right)=\sum_{n=1}^{p+1} X\left(\theta^{n}+1\right)=L,
\end{aligned}
$$

so that L is in $Z[\sqrt{-2}]$. For $0 \leqq b \leqq p-1$, the numbers $(1-b i)$) $(1+b i)$ are distinct, and different from -1 . As $((1-b i) /(1+b i))^{p}$ $=(1+b i) /(1-b i)$, each of them satisfies $y^{p+1}=1$, and so these p elements of $\mathrm{GF}\left(\boldsymbol{p}^{2}\right)$ are simply $\boldsymbol{\theta}^{n}, 1 \leqq n \leqq p+1, n \neq(p+1) / 2$. Therefore

$$
\begin{aligned}
& \left\{\theta^{n}+1 \mid 1 \leqq n \leqq p+1, n \neq \frac{p+1}{2}\right\} \\
= & \left\{\left.\frac{2}{1+b i} \right\rvert\, 0 \leqq b \leqq p+1\right\},
\end{aligned}
$$

so that

$$
\begin{aligned}
K=\sum_{b=0}^{p-1} \chi(1+b i) & =\sum_{n}^{\prime} \chi\left(\frac{2}{\theta^{n}+1}\right) \\
& =-\sum_{n}^{\prime} \bar{\chi}\left(\theta^{n}+1\right)=-\bar{L},
\end{aligned}
$$

as required, where the dash (') indicates that the summation is over those n satisfying $1 \leqq n \leqq p+1, n \neq(p+1) / 2$.
Lemma 4.4. For $p=8 k+3=c^{2}+2 d^{2}$, with $c \equiv(-1)^{k+1}(\bmod 4)$, we have $L= \pm(c+d \sqrt{-2})$. (The ambiguity of sign is resolved in §5).

Proof. From (4.10) and lemma 4.3 we have $p=L \bar{L}=\pi \bar{\pi}$, so that $L= \pm \pi$ or $\pm \bar{\pi}$, showing that L can be written in the form $\pm(c+d \sqrt{-2})$ with $c \equiv(-1)^{k+1}(\bmod 4)$ and $c^{2}+2 d^{2}=p$.
5. Completion of the proof. For $p=8 k+1$, we have

$$
\begin{align*}
& \sum_{x=0}^{p-1}\left(\frac{x^{8}+1}{p}\right) \tag{5.1}\\
= & \sum_{x=0}^{p-1}\left(\frac{x+1}{p}\right)\left\{1+\chi(x)+\chi^{2}(x)+\cdots+\chi^{7}(x)\right\},
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{x=0}^{p-1}\left(\frac{x^{4}+1}{p}\right) \tag{5.2}\\
= & \sum_{x=0}^{p-1}\left(\frac{x+1}{p}\right)\left\{1+\chi^{2}(x)+\chi^{4}(x)+\chi^{6}(x)\right\},
\end{align*}
$$

which, with (3.1) gives

$$
\begin{equation*}
2 B=J(1,4)+\overline{J(1,4)^{\prime}}+J(1,4)^{\prime}+\overline{J(1,4)} . \tag{5.3}
\end{equation*}
$$

From lemma $4.2,2 B=4 c$, so that $B=2 c$ as required.
For $p=8 k+3$, we rewrite (3.3) by introducing χ, and obtain

$$
\begin{equation*}
2 B=\sum_{n=1}^{p+1} \chi\left(\theta^{8 n}+1\right)=\sum_{n=1}^{p+1} \chi\left(\theta^{4 n}+1\right), \tag{5.4}
\end{equation*}
$$

as $p+1=4(2 k+1)$ implies that the fourth powers and eighth powers in the cyclic group $\langle\theta\rangle$ coincide. Setting

$$
\mathrm{S}_{j}=\sum_{n=1}^{p+1} X\left(\theta^{4 n+j}+1\right), \text { for } j=0,1,2,3,
$$

we have the equalities

$$
\begin{align*}
& 2 B=\mathrm{S}_{0} \\
& 4 L=\mathrm{S}_{0}+\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}= \pm 4(c+d \sqrt{-2}) . \tag{5.5}
\end{align*}
$$

Now (see [6], p. 551) $S_{1}=i S_{3}$ and $S_{2}=0$, giving

$$
\begin{equation*}
\pm 4(c+d \sqrt{-2})=2 B+(1+i) \mathrm{S}_{3} . \tag{5.6}
\end{equation*}
$$

From (1.6) we obtain, for $p=8 k+3$, as $\chi(\theta)=i, \chi^{2}\left(\theta^{m}+1\right)=$ $\left\{\chi\left(\theta^{m}+1\right)\right\}^{p-1}=\chi\left(\theta^{m p}\right)=\left\{X\left(\theta^{m}\right)\right\}^{3}=\omega^{6 m}$, so that

$$
\begin{equation*}
x\left(\theta^{m}+1\right)= \pm \omega^{3 m} . \tag{5.7}
\end{equation*}
$$

Hence $X\left(\theta^{4 n+3}+1\right)= \pm \omega$, so that $S_{3}=e \omega$, where $e \in Z$, giving

$$
\begin{equation*}
(1+i) \mathrm{S}_{3}=e \sqrt{-2} . \tag{5.8}
\end{equation*}
$$

From (5.5), (5.6) and (5.8) we have $B / 2=\mathrm{S}_{0} / 4= \pm c$. But

$$
\begin{aligned}
S_{0} / 4 & =\frac{1}{4} \sum_{n=1}^{p+1} \chi\left(\theta^{4 n}+1\right)=\sum_{n=1}^{2 k+1} \chi\left(\theta^{4 n}+1\right) \\
& =\sum_{n=1}^{2 k} X\left(\theta^{4 n}+1\right)-1,
\end{aligned}
$$

and

$$
\sum_{n=k+1}^{2 k} \chi\left(\theta^{4 n}+1\right)=\sum_{m=1}^{k} \chi\left(\theta^{-4 m}+1\right)=\sum_{m=1}^{k} \chi\left(\theta^{4 m}+1\right) .
$$

Since $($ from $(5.7)) X\left(\theta^{4 m}+1\right)= \pm 1$, we have

$$
\frac{B}{2}=2 \sum_{m=1}^{k} \chi\left(\theta^{4 m}+1\right)-1 \equiv 2 k-1 \equiv(-1)^{k+1} \equiv c(\bmod 4)
$$

Since c is odd and $B / 2= \pm c$, we must have $B / 2=c$. This completes the proof.

References

1. B. W. Brewer, On certain character sums, Trans. Amer. Math. Soc. 99 (1961), 241-245.
2. H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fallen, J. Reine Angew. Math. 57 (1935), 151-182.
3. R. E. Giudici, J. B. Muskat, and S. F. Robinson, On the evaluation of Brewer's character sums, Trans. Amer. Math. Soc. 171 (1972), 317-347.
4. K. Ireland and M. I. Rosen, Elements of number theory Bogden and Quigley, Tarrytown, New York, 1972.
5. A. R. Rajwade, Arithmetic on curves with complex multiplication by $\sqrt{-2}$, Proc. Camb. Phil. Soc. 64 (1968), 659-672.
6. A. L. Whiteman, A theorem of Brewer on character sums, Duke Math. J. 30 (1963), 545-552.
7. K. S. Williams, On Salië's sum, J. Number Theory 3 (1971), 316-317.

Arizona State University, Tempe, Arizona 85281
Carleton University, Ottawa, Ontario, Canada

[^0]: Received by the editors June 24, 1973.
 *The research of both authors was supported by the National Research Council of Canada under grant A-7233.

