JACOBI SUMS AND A THEOREM OF BREWER PHILIP A. LEONARD AND KENNETH S. WILLIAMS*

1. Introduction. Throughout p will denote an odd prime, and (\cdot/p) the familiar Legendre symbol. It is well known that $p = c^2 + 2d^2$ if and only if p = 8k + 1 or p = 8k + 3, and that in these cases c is unique if we require $c \equiv (-1)^{k+1} \pmod{4}$. In 1961, Brewer [1] related this representation of p to the character sum

(1.1)
$$B = \sum_{x=0}^{p-1} \left(\frac{(x+2)(x^2-2)}{p} \right).$$

More precisely, he proved

THEOREM.

$$B = \begin{cases} 0, & \text{if } p \neq c^2 + 2d^2, \\ 2c, & \text{if } p = c^2 + 2d^2 \text{ and } c \equiv (-1)^{k+1} \pmod{4}. \end{cases}$$

We present a variant of Whiteman's proof [6] of this result, using simple properties of Jacobi sums, with the view that this is more natural than the use of Jacobsthal sums [6], modular curves [5] (see Theorem 1) or the theory of cyclotomy [3] in other existing proofs.

For multiplicative characters ψ and λ of $GF(p^r)$, the Jacobi sum $J(\psi, \lambda)$ is defined by

(1.2)
$$J(\psi, \lambda) = \sum_{\alpha+\beta=1} \psi(\alpha) \lambda(\beta).$$

If ψ , λ and $\psi\lambda$ are non-trivial, these sums satisfy [4]

(1.3)
$$J(\psi, \lambda) = \frac{G(\psi)G(\lambda)}{G(\psi\lambda)},$$

where $G(\psi)$ is the Gaussian sum $G(\psi) = \sum_{\alpha} \psi(\alpha) \exp(2\pi i \operatorname{tr}(\alpha)/p)$, with $\operatorname{tr}(\alpha) = \alpha + \alpha^p + \cdots + \alpha^{p^{r-1}}$, and therefore as $|G(\psi)| = p^{r/2}$,

(1.4)
$$|J(\psi, \lambda)|^2 = p^r.$$

Copyright © 1975 Rocky Mountain Mathematics Consortium

Received by the editors June 24, 1973.

^{*}The research of both authors was supported by the National Research Council of Canada under grant A-7233.

The Gaussian sums also satisfy

(1.5)
$$G(\psi)G(\overline{\psi}) = \psi(-1)p^r,$$

where $\overline{\psi}$ is the character conjugate to ψ . The particular Jacobi sums of interest will be studied in § 4.

It is convenient to introduce θ , an element of $GF(p^2)$ of multiplicative order p + 1, and the notation $\overline{\theta} = \theta^p$, so that $\theta \overline{\theta} = 1$. (Similarly, the integers x, \overline{x} among $1, 2, \dots p - 1$ are related by $x\overline{x} \equiv 1 \pmod{p}$). We note the relation

(1.6)
$$(\theta^n + 1)^{p-1} = \theta^{np} \text{ for } 1 \le n \le p + 1, n \ne (p+1)/2,$$

which follows from $(\theta^n + 1)^p = \theta^{np} + \theta^{n(p+1)} = \theta^{np}(\theta^n + 1)$.

2. Transformation formulae. The following result contains two simple formulae which are useful in the argument.

LEMMA 2.1. Let F be a complex-valued function of period p. Then

(2.1)
$$\sum_{x=0}^{p-1} \left(\frac{x+2}{p} \right) F(x) + \sum_{x=0}^{p-1} \left(\frac{x-2}{p} \right) F(x) = \sum_{x=1}^{p-1} \left(\frac{x}{p} \right) F(x+\bar{x}),$$

and

(2.2)
$$\sum_{x=0}^{p-1} \left(\frac{x+2}{p} \right) F(x) - \sum_{x=0}^{p-1} \left(\frac{x-2}{p} \right) F(x)$$

$$= \sum_{n=1}^{p+1} (-1)^n F(\theta^n + \overline{\theta}^n).$$

PROOF. For (2.1), see [7]. The observation of Brewer [1] and Whiteman [6] that the number of solutions of $x = \theta^n + \overline{\theta}^n$, $1 \le n \le p + 1$, is $1 - ((x^2 - 4)/p)$, gives

(2.3)
$$\sum_{x=0}^{p-1} G(x) - \sum_{x=0}^{p-1} \left(\frac{x^2 - 4}{p} \right) G(x) = \sum_{n=1}^{p+1} G(\theta^n + \overline{\theta}^n),$$

for any complex-valued function G of period p. Setting G(x) = ((x + 2)/p)F(x), we obtain (2.2) as $((\theta^n + \overline{\theta^n} + 2)/p) = (-1)^n$, $1 \le n \le p + 1$, $n \ne (p + 1)/2$. This assertion follows from (1.6) and Euler's criterion, since

$$(\theta^{n} + \overline{\theta}^{n} + 2)^{(p-1)/2} = ((\theta^{n} + 1)^{2} \overline{\theta}^{n})^{(p-1)/2}$$
$$= \theta^{np} \overline{\theta}^{n} {}^{(p-1)/2} = \theta^{n(p+1)/2} = (-1)^{n}$$

302

for the indicated values of n.

3. Applications; the trivial cases. We apply Lemma 2.1 to $F(x) = ((x^2 - 2)/p)$. For $p \equiv 1 \pmod{4}$, (2.1) gives

(3.1)
$$2B = \sum_{x=1}^{p-1} \left(\frac{x}{p}\right) \left(\frac{(x+\bar{x})^2 - 2}{p}\right) = \sum_{x=0}^{p-1} \left(\frac{x}{p}\right) \left(\frac{x^4 + 1}{p}\right)$$

$$= \sum_{x=0}^{p-1} \left(\frac{x^8+1}{p} \right) - \sum_{x=0}^{p-1} \left(\frac{x^4+1}{p} \right).$$

If $p \equiv 5 \pmod{8}$, the biquadratic and octic residues modulo p coincide, so that B = 0 in this case.

For $p \equiv 3 \pmod{4}$, (2.2) gives

(3.2)
$$2B = \sum_{n=1}^{p+1} (-1)^n \left(\frac{\theta^{2n} + \overline{\theta}^{2n}}{p} \right)$$
$$= \sum_{n=1}^{p+1} \left(\frac{\theta^{4n} + \overline{\theta}^{4n}}{p} \right) - \sum_{n=1}^{p+1} \left(\frac{\theta^{2n} + \overline{\theta}^{2n}}{p} \right).$$

As $\theta^{(p+1)/2} = -1$ and (-1/p) = -1, the transformation $n \to (p+1)/4$ + *n* shows that the second term in (3.2) is its own negative, and so $2B = \sum_{n=1}^{p+1} ((\theta^{4n} + \overline{\theta}^{4n})/p)$ in this case. If $p \equiv 7 \pmod{8}$, the transformation $n \to (p+1)/8 + n$ applied to (3.3) shows that 2B = -2B, so that B = 0 in this case as well.

4. The Jacobi sums. For $p \equiv 1 \pmod{8}$ and $p \equiv 3 \pmod{8}$, some special Jacobi sums are needed. First, let D denote the ring of integers of the number field $Q(\sqrt{2}, i) = Q(\omega)$, where $\omega = \exp(2\pi i/8)$. D is a unique factorization domain. If π denotes a prime factor of p in D, then $k = D/(\pi)$ is a field of $N(\pi)$ elements, where

(4.1)
$$N(\pi) = \begin{cases} p & \text{if } p \equiv 1 \pmod{8}, \\ p^2 & \text{if } p \equiv 3 \pmod{8}. \end{cases}$$

We define a character $\chi = \chi_{\pi}$ of k by specifying

(4.2)
$$\chi(\xi) = \omega^{\lambda} \quad \text{if } \xi^{(N(\pi)-1)/8} \equiv \omega^{\lambda} \pmod{\pi},$$

for elements ξ of D not divisible by π . The function χ defined by (4.2) is related to the Legendre symbol by

(4.3)
$$\left(\frac{a}{p}\right) = \begin{cases} \chi^4(a) & \text{if } p \equiv 1 \pmod{8}, \\ \chi(a) & \text{if } p \equiv 3 \pmod{8}, \text{ for all } a \text{ in } Z. \end{cases}$$

When $p \equiv 3 \pmod{8}$ we have

$$\theta^{(p^2-1)/8} = (\theta^{(p+1)/4})^{(p-1)/2} = (\pm i)^{(p-1)/2} = \pm i$$
, so that $\chi(\theta) = \pm i$.

Replacing θ by $-\theta$ if necessary we can assume without loss of generality that $\chi(\theta) = i$.

Since our Gauss and Jacobi sums involve only characters which are powers of X, we set $J(m, n) = J(X^m, X^n)$ and $G(m) = G(X^m)$ to simplify notation. Also, $\bar{\alpha}$ and α' denote the conjugates of α in D with respect to *i* and $\sqrt{2}$, respectively. Thus $\bar{\omega}' = \omega^3$, for example.

For p = 8k + 1, the central role is played by the Jacobi sum J(1, 4).

Lemma 4.1. For p = 8k + 1, $J(1, 4) = \pm \pi \overline{\pi}'$.

PROOF. As $\sum_{y=0}^{p-1} y^n \equiv 0 \pmod{p}$ wherever $p-1 \not \mid n$, we have

(4.4)
$$J(1,4) \equiv \sum_{y=0}^{p-1} y^{(p-1)/8} (1-y)^{(p-1)/2} \equiv 0 \pmod{\pi}$$
 in D .

Since $y^{(p-1)/8} \equiv \omega^{\lambda} \pmod{\pi}$ implies $y^{3(p-1)/8} \equiv \omega^{\lambda} \pmod{\pi}$, we have

(4.5)
$$J(1,4) \equiv \sum_{y=0}^{p-1} y^{3(p-1)/8} (1-y)^{(p-1)/2} \equiv 0 \pmod{\bar{\pi}'} \text{ in } D.$$

As π and $\overline{\pi}'$ are non-associated primes of D, (4.4) and (4.5) imply

(4.6)
$$J(1,4) = \gamma \pi \overline{\pi}'$$
, for some γ in D .

Now by (1.3) and (1.5), $\overline{J(1,4)} = J(3,4) = G(3)G(4)/G(7) = G(1)G(4)/G(5) = J(1,4)$ showing that J(1,4) is in $Z[\sqrt{-2}]$. Since $\pi\bar{\pi}'$ is in $Z[\sqrt{-2}]$, γ is in $Z[\sqrt{-2}]$ as well. Computing norms in (4.6) gives, by (1.4), that γ is a unit of $Z[\sqrt{-2}]$, so $\gamma = \pm 1$ as required.

LEMMA 4.2. For p = 8k + 1, $J(1, 4) = c + d\sqrt{-2}$, where $c \equiv (-1)^{k+1} \pmod{4}$ and $p = c^2 + 2d^2$.

PROOF. By lemma 4.1 and its proof, J(1, 4) is a prime factor of p in $Z[\sqrt{-2}]$. Thus, since we do not distinguish d from -d, $J(1, 4) = \pm (c + d\sqrt{-2})$, with d even and $c \equiv (-1)^{k+1} \pmod{4}$. The correct sign is obtained by using an idea of Davenport and Hasse [2]. For $1 \leq y \leq p - 2$, $((y + 1)/p) + 1 \equiv 0 \pmod{2}$, and

$$\chi(y) \equiv \left\{ \begin{array}{ll} 1, & \text{if} \left(\frac{y}{p}\right) = 1, \\ \\ \omega, & \text{if} \left(\frac{y}{p}\right) = -1 \end{array} \right\} \pmod{\sqrt{-2}},$$

so that

(4.7)

$$\sum_{y=1}^{p-2} \{X(y) - 1\} \left\{ \left(\frac{y+1}{p}\right) + 1 \right\}$$

$$\left(\frac{y}{p}\right) = 1$$

$$+ \sum_{y=1}^{p-2} \{X(y) - \omega\} \left\{ \left(\frac{y+1}{p}\right) + 1 \right\} \equiv 0 \pmod{2\sqrt{-2}}.$$

$$\left(\frac{y}{p}\right) = -1$$

After some simplification of (4.7) we obtain

$$J(1,4) \equiv \frac{1}{2}(p-5) + \frac{\omega}{2}(p-1) + \chi(-1) \pmod{2\sqrt{-2}},$$

or

(4.8)
$$J(1,4) \equiv (-1)^k - 2 \equiv (-1)^{k+1} \equiv c \pmod{2\sqrt{-2}}.$$

As d is even, we have $J(1, 4) = c + d\sqrt{-2}$, completing the proof.

For p = 8k + 3, the central role is played by a factor of the Jacobi sum J(1, 3). Following Whiteman, we consider the Eisenstein sum

(4.9)
$$K = \sum_{b=0}^{p-1} \chi(1+bi),$$

which satisfies (see [6], lemma 2)

and also (as can be shown by a straightforward calculation)

(4.11)
$$J(1,3) = -K^2$$
,

showing that K is indeed a factor of the Jacobi sum J(1, 3).

LEMMA 4.3. For p = 8k + 3, let $L = \sum_{n=1}^{p+1} \chi(\theta^n + 1)$. Then L is in $Z[\sqrt{-2}]$, and $-\overline{L} = K$.

Proof.

$$\bar{L}' = \sum_{n=1}^{p+1} [\chi(\theta^n + 1)]^3 = \sum_{n=1}^{p+1} [\chi(\theta^n + 1)]^p$$
$$= \sum_{n=1}^{p+1} \chi(\theta^{np} + 1) = \sum_{n=1}^{p+1} \chi(\theta^n + 1) = L,$$

so that L is in $Z[\sqrt{-2}]$. For $0 \leq b \leq p-1$, the numbers (1-bi)/(1+bi) are distinct, and different from -1. As $((1-bi)/(1+bi))^p = (1+bi)/(1-bi)$, each of them satisfies $y^{p+1} = 1$, and so these p elements of $GF(p^2)$ are simply θ^n , $1 \leq n \leq p+1$, $n \neq (p+1)/2$. Therefore

$$\left\{ \begin{array}{l} \theta^n + 1 \end{array} \middle| 1 \leq n \leq p+1, n \neq \frac{p+1}{2} \end{array} \right\}$$
$$= \left\{ \frac{2}{1+bi} \middle| 0 \leq b \leq p+1 \right\},$$

so that

$$K = \sum_{b=0}^{n-1} X(1+bi) = \sum_{n}' X\left(\frac{2}{\theta^{n}+1}\right)$$
$$= -\sum_{n}' \overline{X}(\theta^{n}+1) = -\overline{L},$$

as required, where the dash (') indicates that the summation is over those n satisfying $1 \le n \le p + 1$, $n \ne (p + 1)/2$.

LEMMA 4.4. For $p = 8k + 3 = c^2 + 2d^2$, with $c \equiv (-1)^{k+1} \pmod{4}$, we have $L = \pm (c + d\sqrt{-2})$. (The ambiguity of sign is resolved in § 5).

PROOF. From (4.10) and lemma 4.3 we have $p = L \overline{L} = \pi \overline{\pi}$, so that $L = \pm \pi$ or $\pm \overline{\pi}$, showing that L can be written in the form $\pm (c + d\sqrt{-2})$ with $c \equiv (-1)^{k+1} \pmod{4}$ and $c^2 + 2d^2 = p$.

5. Completion of the proof. For p = 8k + 1, we have

(5.1)
$$\sum_{x=0}^{p-1} \left(\frac{x^8 + 1}{p} \right)$$

$$= \sum_{x=0}^{p-1} \left(\frac{x+1}{p} \right) \{ 1 + \chi(x) + \chi^2(x) + \cdots + \chi^7(x) \},\$$

and

(5.2)
$$\sum_{x=0}^{p-1} \left(\frac{x^4 + 1}{p} \right)$$
$$= \sum_{x=0}^{p-1} \left(\frac{x+1}{p} \right) \{ 1 + \chi^2(x) + \chi^4(x) + \chi^6(x) \}.$$

which, with (3.1) gives

(5.3)
$$2B = J(1,4) + \overline{J(1,4)'} + J(1,4)' + \overline{J(1,4)}.$$

From lemma 4.2, 2B = 4c, so that B = 2c as required.

For p = 8k + 3, we rewrite (3.3) by introducing X, and obtain

(5.4)
$$2B = \sum_{n=1}^{p+1} \chi(\theta^{8n} + 1) = \sum_{n=1}^{p+1} \chi(\theta^{4n} + 1),$$

as p + 1 = 4(2k + 1) implies that the fourth powers and eighth powers in the cyclic group $\langle \theta \rangle$ coincide. Setting

$$S_j = \sum_{n=1}^{p+1} \chi(\theta^{4n+j} + 1), \text{ for } j = 0, 1, 2, 3,$$

we have the equalities

 $2B = S_0$,

(5.5)

$$4L = S_0 + S_1 + S_2 + S_3 = \pm 4(c + d\sqrt{-2}).$$

Now (see [6], p. 551) $S_1 = iS_3$ and $S_2 = 0$, giving

(5.6)
$$\pm 4(c + d\sqrt{-2}) = 2B + (1 + i)S_3.$$

From (1.6) we obtain, for p = 8k + 3, as $\chi(\theta) = i$, $\chi^2(\theta^m + 1) = {\chi(\theta^m + 1)}^{p-1} = \chi(\theta^{mp}) = {\chi(\theta^m)}^3 = \omega^{6m}$, so that

(5.7) $\chi(\theta^m + 1) = \pm \omega^{3m}.$

Hence $\chi(\theta^{4n+3}+1) = \pm \omega$, so that $S_3 = e\omega$, where $e \in \mathbb{Z}$, giving (5.8) $(1+i)S_3 = e\sqrt{-2}$.

From (5.5), (5.6) and (5.8) we have $B/2 = S_0/4 = \pm c$. But

$$S_0/4 = \frac{1}{4} \sum_{n=1}^{p+1} \chi(\theta^{4n} + 1) = \sum_{n=1}^{2k+1} \chi(\theta^{4n} + 1)$$
$$= \sum_{n=1}^{2k} \chi(\theta^{4n} + 1) - 1,$$

and

$$\sum_{n=k+1}^{2k} \chi(\theta^{4n}+1) = \sum_{m=1}^{k} \chi(\theta^{-4m}+1) = \sum_{m=1}^{k} \chi(\theta^{4m}+1).$$

Since (from (5.7)) $\chi(\theta^{4m} + 1) = \pm 1$, we have

$$\frac{B}{2} = 2 \sum_{m=1}^{k} \chi(\theta^{4m} + 1) - 1 \equiv 2k - 1 \equiv (-1)^{k+1} \equiv c \pmod{4}.$$

Since c is odd and $B/2 = \pm c$, we must have B/2 = c. This completes the proof.

References

1. B. W. Brewer, On certain character sums, Trans. Amer. Math. Soc. 99 (1961), 241-245.

2. H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fallen, J. Reine Angew. Math. 57 (1935), 151-182.

3. R. E. Giudici, J. B. Muskat, and S. F. Robinson, On the evaluation of Brewer's character sums, Trans. Amer. Math. Soc. 171 (1972), 317-347.

4. K. Ireland and M. I. Rosen, *Elements of number theory* Bogden and Quigley, Tarrytown, New York, 1972.

5. A. R. Rajwade, Arithmetic on curves with complex multiplication by $\sqrt{-2}$, Proc. Camb. Phil. Soc. 64 (1968), 659–672.

6. A. L. Whiteman, A theorem of Brewer on character sums, Duke Math. J. 30 (1963), 545-552.

7. K. S. Williams, On Salié's sum, J. Number Theory 3 (1971), 316-317.

ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85281 CARLETON UNIVERSITY, OTTAWA, ONTARIO, CANADA