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ASYMPTOTIC BEHAVIOR OF SOLUTIONS AND THEIR 
DERIVATIVES FOR LINEAR DIFFERENTIAL EQUATIONS 

JAMES E. GEHRMANN AND THOMAS L. SHERMAN 

Introduction. In this paper the asymptotic behavior of solutions and 
derivatives of solutions of linear homogenous equations of the form 

(1) Lny = y<»> + a&W»-» + • • • + an(x)y = 0, 

will be considered. The main tool that will be exploited in this investi­
gation is the relationship between solutions of (1) and solutions of the 
nonhomogeneous equation 

(2) y*> + ai(x)y<»~" + ••• + an(x)y = /(*). 

This result given in Theorem 1 is a generalization of a result of 
Svec [6] . This result is then used to examine a property which Hart­
mann [2] calls completely monotone. The results presented here are 
clearly related to those of V. A. Kondrateev [3] and in fact lead to easy 
generalizations of his results. Also related to these results is the paper 
of A. C. Lazer [4] one of whose theorems is generalized as the last 
theorem of the present paper. 

RESULTS. In what follows all coefficients au * • -, an as well as f(x) 
will be assumed continuous on an interval [a, » ) and unless otherwise 
noted, all conditions assumed will be assumed on this interval. 

DEFINITION 1. A solution of (1) or (2) is oscillatory if it has an in­
finite number of zeros on [a, o° ). A solution is nonoscillatory if it is not 
oscillatory. 

DEFINITION 2. Equation (1) or (2) is oscillatory if it has at least one 
oscillatory solution. Otherwise, the equation is nonoscillatory. The 
equation is strongly oscillatory if every solution is oscillatory. 

DEFINITION 3. Equation (1) is said to be disconjugate (on an interval 
I) if no nontrivial solution of (1) has more than n zeros (on I). 

If (1) is disconjugate it may be written in the form 

wU'"W%M')r)'")r)' = o 
where Si(x) > 0, i = 1,2, • • -, n. 
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Suppose now that equation (1) has a nonoscillatory solution <f>(x) for 
x G. [a, °° ) and set y = <f>z. Then for x sufficiently large, 

Lny = zLn<t> + <M*(n) +2?=i 1 Ûi(x) zM] = zLn<\> + 4>Ln-i*' 

where the new coefficients âi(x) may depend on <f>(x). 

DEFINITION 4. Ln_l is called the reduced operator for Ln associated 
with <j). 

In Theorem 1 a nonoscillatory condition is given for equation (2). 
For a related result see M. Medved [5]. Theorem 1 generalizes a re­
sult of S vec [6]. 

THEOREM 1. Suppose (1) is nonoscillatory and, for some solution <f> of 
(1), Ln_ly = 0 is disconjugate for large x. Assume f(x) is a one-signed 
function (i.e. f(x) ^ 0 or f(x) = 0) which is not identically zero for 
large x. Then (2) is also nonoscillatory. 

PROOF. Let <j> be the solution of (1) given in the hypothesis. Let 
y = <f>z in (2). Then 

However, by assumption, for large x, Ln_l may be written 

4 - 1 « ' = (*„-l&.-2( • • • (*2<*1* ' ) ' ) ' ) ' • • • ) ' ) ' ) ' = / / * • 

An integration of this equation results in the equation 

(3) s.-ifo.-at- • • (*2(*i*')')' •••)')'=Kl+ [ Ä 

where ax is sufficiently large to guarantee </>(x) is one signed for x > a^ 
Since fl<l> is one signed for x > a it follows that J^ f(t)l<f>(t) dt is 
monotone, hence for any Kx there is an a2(Ki) such that 1^ + faif(t)l 
(f>(t) dt is one signed for x > a2(Kl). The above procedure can now be 
repeated on (3) in the interval [a2(Kl),^)to get 

= K2+ f -±-(K1 + r ^ T ds)dx1 
2 U Sn_y \ l J«, <M«) / ' 

from which the existence of an a3(KuK2) follows as before. After n 
repetitions of this argument it is found that 
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. . . + H / Ki + \Xl i ) • • • ) ) )dsdxx " • dxn_3dxn_2dxn_1 

from which it follows that z is one signed for x sufficiently large, and 
hence y = <f>z is nonoscillatory. 

REMARK. Medved [5] claims that his main theorem generalizes the 
following theorem of Svec [6]. 

THEOREM. If the equation y" 4- p(x)y = 0 is nonoscillatory and if 
f(x) is of constant sign for large x, then the equation z" + p(x)z 
= fix) is also nonoscillatory. 

One of the hypotheses of Medved's theorem is (in the case n = 2) 
that y" + p(x)y = 0 is disconjungate (what he calls 2-nonoscillatory). 
However y" + p(x)y = 0 being nonoscillatory does not imply that 
it is disconjugate, hence Medved's theorem does not generalize Svec's 
result. Our Theorem 1 does however generalize Svec's result since any 
first order equation is disconjugate. In particular if we start with 
L2y = 0 then LYz ' = 0 is disconjugate. 

DEFINITION 5. Lky = y{k) + 2fet=i afa)y{k~i} where afa) is the co­
efficient of y{n~l) in (1) (i = 1, • • -,k). The operator Lk_l is defined 
as in definition 4. 

THEOREM 2. If the equation Ln_xt/ = 0 is nonoscillatory, an(^0) 
is one signed, and, for some solution <f> of Ln_xy = 0, Ln_2y = 0 is 
disconjugate for large x, then any nonoscillatory solution of (1) has a 
nonoscillatory first derivative. 

PROOF. Let y be a nonoscillatory solution of (1). Then (1) may be 
rewritten as 

î / ( n )+ 2 afa)y^-^= -an(x)y 
i = l 

or Ln_iy' —fix) where f(x) = —an(x)y is one-signed for large x. 
The equations Ln_x2; = 0, Ln_Yz = f(x) satisfy the conditions of 
Theorem 1 and the result follows. 

COROLLARY. Under the conditions of Theorem 2, if y is a non­
oscillatory solution of (1), then y is either bounded (in which case it 
monotonically approaches a finite constant) or it tends monotonically 
to ±oo. 
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EXAMPLE. The condition that an be one-signed cannot be removed 
is shown by the equation 

Lny = y" + (sin x)y ' •+• (cos x)y = 0 

for which Ln_xy = y' + (sinx)y and Ln_xy = 0 has a solution 
y = ecos x which is nonoscillatory. Also ecos x is a solution of Lny = 0, 
however (ecos x)' = — sin x ecos x is oscillatory as is an = cos x. 

The next theorem deals with the behavior of functions which have 
nonoscillatory n-th derivatives. Ulis type of result may easily be 
applied, for example, to equations of the form yin) + an(x)y = 0. 

LEMMA 1. Let y(x) G Ck(k > 1) and suppose y{k)(x)yik~l)(x) > 0. 
Then if • y^(x) > 0 (< 0), yu)(x)-* + « (-co ) (j = 0 ,1 , • • -, k - 2). 

PROOF. Suppose y{k)(x) > 0 on [x0, co ) (the ease where y(k)(x) < 0 
is analogous). Then for any x > x0 there is an xx €E [x0, x] such that 
yik-2\x) - y{k-2\x0) = yfr-^XxX* - xx) ^ t/<fc-1)(x0)(x - xY) since 
yik~l)(x) is increasing. Hence 

(3) y*-*>(x) ^ t/(fc-2'(x0) + !/(fc- »>(xo)(* - xo), 

and, since y(fc-1)(xo) > 0, letting x—> o° on the right hand side of (3), 
j/(k_2)(x)—» -h oo. The result for lower order derivatives follows by 
induction. 

THEOREM 3. Let yŒCn(n>0) and satisfy (-l)nt/(n)(x)t/(x) > 0. 
If y > 0 ( < 0), either y—»+co(— &>) or y approaches a non-negative 
(non-positive) finite constant monotonically from above (below), and 
the derivatives of y of order less than n approach zero and alternate in 
sign, with y and y ' being of opposite sign. 

PROOF. The proof will be given for the case n odd (n > 1) and 
y(x) > 0, other cases are proved analogously. Suppose y-fi -h °°. 
The assumptions y(x) > 0 and yn)(x) < 0 imply y{n~l)(x) > 0 for x 
sufficiently large. For if this were not the case, then, since yin)(x) < 0, 
there is an xx such that for x ^ xi9 j/ (n-1)(x) < 0, and this, by Lemma 
1, would contradict y > 0. Now for x sufficiently large y{n~2)(x) < 0, 
for if not then t/(n_1)(x) > 0 implies, for large x, t/(n_2)(x) > 0 which by 
Lemma 1 implies y(x) —» + co which is a contradiction. Similarly it 
can be shown that y{n~j)(x) > 0 for large x; j = 1, 3, 5, • • -, n — 2, and 
y{n~j)(x) < 0 for large x; j = 2, 4,6, • • -, n — 1. To complete the proof, 
it need only be observed that if y(k)(x)-fi0 for some k, 0 < k < n, 
then j/(fc)(x) approaches a nonzero constant (since y{k + l)(x) fi 0 for 
large x) which in turn implies \y(k~j)(x)\-^ co, j = 1, 2, • • -, k, contra­
dicting the assumption y > 0 and y-fi +°° . 
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COROLLARY. Let y G Cn[x0, oo ), (n > 0) and satisfy ( — l)nyn(x)y(x) 
< 0 on [x0, oo ). If y > 0 ( < 0) either y—» + oo (— oo ) or y approaches 
a positive {negative) finite constant monotonically from below (above) 
and the derivatives of y of order less than n approach zero and alter­
nate in sign with y and y ' being of the same sign. 

PROOF. The proof is essentially the same as that of Theorem 3. 

THEOREM 4. Suppose in equation (1) the coefficients alternate in 
sign (i.e., signai ^ signa i + 1 , i = 1,2, • • •, n — 1) and limx_>ooai(x) 
= 0 (i = 1, 2, • • *,n — 1) and \an(x)\ > d, d a positive constant. 
Suppose also Lky = 0, fc=l,2, • • • , n — 1 are nonoscillatory, and 
there are solutions fa ofLky = Ofor which Lk-\y

 = 0 are disconjugate 
for large x (k = 2, 3, • • -, n — 2). Then any nonoscillatory solution 
y(x) of (1) is either unbounded and tends monotonically to ± oo or 
is bounded and satisfies 

(i) sgn y ' = sgn y™ = sgn t/<5> 
sgn y" = sgn y^ = sgn t/<6> 
sgn y ' ^ sgn y" and sgn t/(n~1} ^ sgn t/(n) 

(ii) lim^oot/^x) = 0, fc = 1,2, • • -, n - 1 
(iii) limx^oet/(x) = finite constant. 

PROOF. Assume n odd and y > 0 (other cases are similar). Assume 
also y is bounded (if it were unbounded the corollary to Theorem 2 
gives the result). By Theorem 2, y' is nonoscillatory, and since y is 
bounded so is y' [1, page 141]. Hence an_it/'—»0 as x—» oo. If 
t/ ' < 0 then an_xy ' + önt/ 7̂  0 since y and y ' are of opposite sign as 
are an^Y and an. On the other hand if y ' > 0 then yy£ 0 and hence 
ant/ is bounded away from zero and consequently for large x so is 
an-iy ' + a

ny- Since an_ij/ ' + anj/ jt 0, Theorem 2 can now be applied 
again to give y' nonoscillatory. Since y is bounded and y' is non­
oscillatory y ' —> 0 as r--> 00 and hence y 'y" < 0 and y ' is bounded 
[1]. This in turn implies an_2y" + an-\y' ~^ 0 giving again as above, 

an-2y" + anJ/ ' + anî/ ^ 0 f° r large x. The above steps need only be 
repeated to give the result. The following corollary involves only 
minor modifications of the proof of Theorem 4. 

COROLLARY 1. Suppose in equation (1) the coefficients alternate in 
sign and an =̂  Ofor large x. Suppose also Lky = 0 (k = 1, 2, • • -, n — 1) 
are nonoscillatory, and there are solutions fa of Lky = 0 for which 
Lfe_ij/ = 0 are disconjugate for large x (k = 2, 3, • • -, n — 2). Then 
any nonoscillatory solution y(x) of (I) is either unbounded and tends 
monotonically to ± oo or is bounded. If y is nonoscillatory, bounded 
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and y '(x)y(x) < 0 then 
(i) sgn y ' = sgn t/<3> = • • -, sgn y = sgn y" = • • -, and sgn y / 

and (ii) and (iii) of Theorem 4 ZioM. 

COROLLARY 2. Suppose in addition to the hypothesis of Corollary 1 
it is assumed that ( — l ) n a n = 0. T/^n (1) has no nonoscillatory solu­
tions which are asymptotic to zero. 

PROOF. Suppose y is a positive nonoscillatory solution and y > 0 as 
x -» oo . Then y ' < 0 and by the above theorem y" > 0, y ' " < 0, etc. 
In particular if n is even t/(n) > 0. However, y^n) = —^loLön_iy

(i) ^ 0 
which is a contradiction. A similar contradiction is arrived at for n 
odd. 

It should be noted that the conditions of the above theorem and 
corollary are satisfied by t/(n) + p(x)y = 0 where (— l)np(x) > d > 0. 
In a paper of V. A. Kondrateev [3] some properties of the equation 
t/(n) + py = 0 were investigated where the equation was assumed to 
have property A. 

DEFINITION 6. A differential equation has property A if all solutions 
are either oscillatory or are asymptotic to zero. 

It can be easily seen that the results of Kondrateev hold equally well 
for the equation Lny = 0 under conditions similar to those described 
above. In fact, Corollary 2 of Theorem 4 is such a generalization. The 
next theorem also generalizes a result of Kondrateev. 

First a lemma will be stated which is an immediate consequence of 
writing (1) in vector matrix form (see Hartman [2, pages 506-508] ). 

LEMMA 2. Suppose in (1) ( — 1 ) ^ ^ 0 (i = 1, 2, • • -, n). If y(x) is 
a solution of (1) satisfying y(c)^0, y'(c)^=0, y"(c) ^ 0, • • -, 
( _ ! ) n - y n - i ) ( c ) > o, then y(x) > 0, y'(x) < 0, y"(x) > 0, • • -, 
( - l ) » - y » - i ) ( x ) > Oforx < c. 

THEOREM 5. 1/(1) has property A, ( — l^a^x) ^ 0 or ( — Ifa^x) = 
0(i = 1, 2, • • -, n~l),an(x) =£ 0forlargex,Lky = 0(k = 1, 2, • • -, n — 1) 
are nonoscillatory, and there are solutions <\>k of Lky = 0 for which 
Lk_xy = 0 are disconjugate for large x (k = 2, 3, • • -, n — 2); then 
any solution o/(l) which has at least one zero is oscillatory. 

PROOF. If ( — l)nan = 0 the result is immediate from Corollary 2 of 
Theorem 4. If ( — l)nan ^ 0 then, since property A holds, if y is a non­
oscillatory solution, there is a c such that y (or possibly —y) satisfies 
y > 0, yf < 0, • • -, ( - l ) n - y n - i ) > 0 for x ^ c, which, by Lemma 2, 
means it could not have vanished for x < c. 
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The final lemma and theorem generalize a result of Lazer [4] 
and give a sufficient condition that a nonoscillatory solution of (1) be 
asymptotic to zero. 

DEFINITION 7. Let Wn__k[yx, • • -, yn_k] (x) = det (y^), i = 1, 
• • -, n — k;j = 0, • • -, n — k — 1. 

LEMMA 3. Suppose in (1) ( - l ^ â O (f = 1,2, • • *,n). If y^x), 
' • ',yn-\(x) are linearly independent solutions of (1) with t/j0)(x0) 
= 0 for some fixed j (0 ^j ^ n — 2) and i = 1, • • -, n — 1; £/ien 
Wn_x(x) = Wn_1[t/1, • • ',yn-i\ (x) is not zero for x > x0. 

PROOF. Suppose there is an xx > x0 such that Wn_1(x1) = 0. Then 
there are constants c1? c2, * * •, cn_x such that 

2^ ( f c ) (* i ) = 0 (fc = 0,l, . . - , n - 2 ) 
i = l 

with Ci2 + c2
2 + • • • + c2_i / 0. Let z(x) = Yl=i ^ylx). Then 

z(x) is a solution of (1) which satisfies z{k)(x{) = 0 (k = 0 ,1 , • • -, 
n — 2) and by hypothesis Z^XQ) = 0. However, z(x) may be made, 
by multiplication by — 1, if necessary, to fit the hypotheses of Lemma 
2, which, in particular, implies Z^\XQ) / 0. This contradiction gives 
the desired result. 

THEOREM 6. If in the equation 

(4) yi") + an_x(x)y ' + an(x)y = 0 (n ^ 3) 

n is odd, an_i(x) â 0, an(x) > 0, JJ'xn~ian(x)dx = » , £/i#n any non-
oscillatory solution y(x) of (A) which satisfies y{x)y'(x) < 0 for large x 
is asymptotic to zero. 

PROOF. Let j/j(x), i = 1,2, • • *, n — 1 be linearly independent solu­
tions of (4) satisfying for some x0, yiU)(x0) = 8ij? i = 1, 2, • • •, n — 1; 
j = 0 ,1 , • • % n — 2, where 6̂ - = 1 if i = j and 8*,- = 0 if i ^ j . 
Since t/i(x0) = 0, i = 1, 2, • • -, n — 1, Lemma 3 shows Wn_x(x) = 
Wn_x [yl9 • • -, (/„_!] (x) / 0 for x > x0, and since W^XQ) = 
W^ixo) = - • • = W{:_~i2) (*o) = 0 and W ^ (x0) = 1, then 
W ^ x ) > 0 for x > x0 and 0^j^n-2. Let D(x) = det(j^), 
i,j = 1,2, • • -,n — 1. Then D'(x) = an(x)Wn_1(x), and hence D(x) 
= 1 + JXûn(OWn_!(f)df. However, 

W r / f e = 1 - V l W W n - ^ ) + r ^ W W ^ x W ^ S 1, 
J *0 
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for x ̂  x0, since Wn_i(x) > 0, an_l ^ 0, and an ^ 0. Repeated inte­
gration of this last inequality gives W^ix) ^ 1, W%S?\x) è x - % 
W(»Z3)(x) S (l/2)(* - x0)2, • • -, WB_1(x) ^ (l/(n - l)!)(x - Xo)-1 . Sub­
stituting this last estimate for Wn_1 into the expression for D it is 
found that D(x) è * + /^ ((* - x0)

n-ll(n - 1)!) aJit) dt9 and hence 
limx_>00D(x) = oo. Let j/(x) be any solution of (4) satisfying y(x)y'(x) 
< 0 for x ̂  x0. It can be assumed without loss of generality that 
y(x) > 0, y'(x) < 0 for x ^ x0, and hence by Theorem 3, y(x) > 0, 
y'(x) < 09y"(x) > 0, • • •,y<n-1)(x) > 0, y(»\x) < O f o r x ^ x0. 

Now by Liouville's Identity W(x) = Wn[y,yl9y2, ' ' m,yn-i](x) 
= W(x0) = t/(x0). Also by expanding W(x) by minors along the first 
column it is found that y(x0) = y(x)D(x) - y'(x)W%-*\x) + 
y"(x)W£-V(x) - • • • + t/(n"1)(x)Wn_1(x) > t/(x)D(x). Hence, since 
D(x)—» <» as x —> oo ? it follows that t / (x ) -^0asx -><» , and the proof 
is complete. 
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