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DOMINANCE OF 2V-TH ORDER LINEAR EQUATIONS 

J. MICHAEL DOLAN AND GENE A. KLAASEN 

ABSTRACT. Consider the nth order linear equation 

(i) y (n) + 2 Pk(*)y{n~k) = o > w h e r e p * ( « ) £ C [ Ö , O O ) 
fc = l 

for 1 ^ k ^ n. 

Introducing a new concept called dominance, the authors com­
pare the asymptotic properties of the set of oscillatory solutions 
with the set of nonoscillatory solutions for the equation (1) 
when dominance occurs. These results also give information 
about the number of linearly independent oscillatory or non­
oscillatory solutions of (1). The third order equation is given 
concentrated attention. 

Consider the nth order linear equation 

n 
(l)n t/<n> + ]£ Pk(*)y{n~k) = 0 where pk(x) Gc [a ,oo ) for 1 g k g n. 

fe=i 

A nontrivial solution of equation (l)n is said to be oscillatory on 
[a, °° ) if it has infinitely many zeros on [a, <» ); otherwise, it is said to 
be nonoscillatory. 

Many of the known results for nth order oscillation theory are cata­
logued in Swanson [ 1]. Also a good discussion for 3rd order equa­
tions can be found in Barrett [2]. 

It is the intent of this paper to compare the asymptotic properties 
of oscillatory and nonoscillatory solutions of equation (l)n by means of 
the concept of dominance. Thus if information about the asymptotic 
behavior of all nonoscillatory solutions is known for certain equations 
then asymptotic behavior of all oscillatory solutions can be determined 
and visa versa. This approach also yields information about the num­
ber of linearly independent nonoscillatory and linearly independent 
oscillatory solutions of equation (l)n. 

We conclude with an examination of third order equations, (1)3, 
as examples of types of dominance. 

1. Dominance. Let J> denote the linear space of all solutions of 
(l)n , J\l the subset of <£ of nonoscillatory solutions and G the subset 
of J> of oscillatory solution. Let J\f+ be the subset of J\f of solutions 
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which are eventually positive and J\l~ = d\l — J\!+. 

DEFINITION 1. If z G J\l and y E O then we say that z dominates 
y at c G ft, z > y at c, if there is a neighborhood, U, of c such that 
z + ky G J\l for all X G U. Similarly, we say that y dominates z at 
c G ft, j / > z at c, if there is a neighborhood, [7, of c such that 
y + kz G O for all X G (7. c may be ± oo in which case U is an 
appropriate half ray. 

DEFINITION 2. If £P Ç <̂V and *7 Ç (9 then we say that <P dominates 
O at c G ft, IP > a at c, if z > y at c for all z G <P and all t/ G Ü. 
Similarly we say that Ö dominates <P at c G ft, C7 > £P at c, if y > z 
at c for all j / G C7 and z G IP. For notational purposes we agree that 
<P > 0 and U > 0 at oo. 

Of special interest is the case when <P = J\f and D = <D. The fol­
lowing theorems indicate that c = 0 or oo are the important cases. 

THEOREM 1. If c ^ 0 is an extended real number and if O > 
M{Jt >0 } at c, thenO > J^{M >0} at k for all - oo ^ fc ^ a>. 

PROOF. We show the theorem only for the case that O > J\l at c. 

Suppose c 7̂  0 is finite and k ^ 0, k G (— oo, oo ). Let y G O 
and z Ë J , then y + Xz = (klc)[(cylk) + (cX/fc)z] ; ct//fc G (D, 
z G J and (D > ^ at c implies there exists an e > 0 such that 
c — e < cklk < c + € implies that y + kz G cD. But this describes 
a X neighborhood of k. Since we can do this for any k ^ 0. We have 
(D > J\l at ± oo as well. Also for k = 0, y + fcz = y G <D hence we 
have (D > Âf at fc for all — oo g fc ^ oo . 

Suppose c = + oo then for j / G <D and 2 G J there is an M > 0 
such that y + kz G <D for X > M. But this implies that (D > J\l at 
2M and consequently Ö > J\l at k for — oo ^ fc ^ oo by the previous 
argument. The case, c = — oo y can be handled in a similar manner. 

As a consequence of this theorem, if O > J\l {J\! > O } at c J^ 0 
we say ( D > ^ V { ^ V > ( D } a t o o . The following is a list of all possi­
bilities for dominance between sets Ö and J\l. 

1. O > cN at 0 but not at oo 
2. O > J\l at oo 

3. (D >̂ ^V at 0 

4. oW > O at 0 but not at oo 
5. J\l > G at oo 

6. ^V :f (D at 0. 
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Cases 1, 2, 3, 4, 5 are mutually exclusive. This follows from Theorems 
4 and 5. Examples, later will be given for each of these possibilities. 

If T C S then Sp T is the vector space span of T in <£. 

THEOREM 2. If O > J\i{^N > O) at 0 then Sp O = £(Sp JV = <£). 

PROOF. We will argue the case that O > J\l at 0 only. If J\l = 0 
then the result is obvious. Suppose J\î ^ 0 and suppose {j/1? • • •, 
yq>

zq+i> ' ' %zn) i s a basis for S such that {yu • • *,t/Q}C (D C 
Sp{t/1? • • *,t/q}. Since O > J\! at 0 there exists a A ^ 0 sufEciently 
small such that yx 4- X^+i G £). This contradicts the linear inde­
pendence of the set {j/1? • • -, yqy zq+i} hence </ = n. 

Next we have a characterization of (D > Âf at oo and J\l > O at oo . 

THEOREM 3. O > J\l at oo if and only if O ^ 0 and SpJ\! = 
JV U {0}. M> O at oo if and only if JV ji 0 önd Sp O = 
cD U {0}. 

PROOF. We will argue the first statement only. Of course J\l C Sp d\l. 
Suppose y E SpJ\! — J\l U {0} then y E O. Hence y is a linear 
combination of elements in J\l. Choose a y with this property such that 
y possesses the smallest linear combination; that is, 

n 

y = 2 ^ i where n is a minimum, and z{ E J\l. 
l 

Consequently o^ ^ 0. Let yx = — c^ - 1 y G (D. Then (D > *ty at 
oo implies zY + AJ/Ì G O for all X ^ 0, in particular zx + yY G (D. 
But Si + ft = Zi - « f 1 » = a f ^ i - y) = « i - 1 ( S § ^ i ) = 
^ 2 <*i ~ lai^i £ ^ a n d this contradicts the minimality of n. Hence no 
such y exists and Sp J\! = <̂V U {0}. 

Conversely, suppose <D / 0 , Sp ^ = J\f U {0}. Let y E O and 
z G Âf. If there is a X ^ 0 such that z + \y E J\! then \y = (z + \y) 
— z is in (D and is a linear combination of elements of J\l. From this 
impossibility we conclude that O > J\l at oo . 

The next theorems relate dominance to asymptotic properties of 
solutions of (l)n. 

THEOREM 4. (i) J\! > O at oo for (l)n if and only if limx^aof/(x)/z(x) 
= 0/orally E O andzEJ\l. 

(ii) (D > Ö/V af oo ^or (l)n if and only if lim infx_^„y(x)lz(x) = — oo 
and lim supx_00y(x)/2;(x) = oo /or ally EL Q and zEJ\l. 

PROOF, (i) l{yiEJ\i,y2EO,J\!> O at oo ? then there is an open 
set U containing oo such that yx + \y2 G J\J for each real number 
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k G U. Assume that a = linir^Jyoly^ix) < 0. 
Let fi G (a, 0) and such that — Il/x G U then there exists a diver­

gent sequence {tn}*=1 —» oo such that (j/2/j/i)(£n) < /A, n = 1, 2, 3, • • •. 
Hence, — /A 4- (t/2/t/i)(£n) < 0. Since ß = limx_>oo(t/2/?/i)(*) = 0, there 
is a divergent sequence {rn}—» oo such that (y^yù^n) > M-

Consequently, — /x 4- (y2lyI)(T„) > 0. Hence, y2— (l/pt)j/2 G <D 
which is a contradiction. Consequently a = 0 = ß. 

Conversely, suppose for all ylEJ\l, y2 G G that limx^oo(i/2/t/i)(a:) 
= 0. Since, for each real number X, yx + Xj/2

 = !/i [1 + MWi/i)] 
holds eventually, limx^« [1 + k(y2ly\)] (*) = 1. 

It follows that j/i + Xt/2 G ö/V, À real. 
Consequently J\l > O at oo . 
(ii) Suppose 

(D > Âf at oo 

then yi G (D and y2 E. J\l implies that 
!/i + AJ/2 £ ^ f° r e a c n r e a l number k in some neighborhood U 

of oo. 
Assume t/2 is eventually positive, then for each k < 0 for which 

k EU, there is a divergent sequence of numbers {£n}£=i such that 
(î/i + *!/2)(O = 0> hence, (yily2)(tn) = -X, n = 1, 2, • • •. Conse­
quently, limJC_>oo(t/i/y2)(x) = oo y since U is a neighborhood of oo. 
Similarly, limx_^oo(t/i/t/2)(x) = - oo . 

The argument for the converse is quite apparent. 

THEOREM 5. (i) J\f > O at 0 for (l)n if and only if Urn supx_>«,|t/(x)/ 
z(x)| < ^ for all z EJ\I andy G cD. 

(ii) <D > <sA/ of 0 /or (l)n if and only if lim infx^ „y (x)lz(x) < 0 < 
lim supx_„ ooy(x)lz(x) for ally G (D and 2 Ê ^ V . 

PROOF. Let t/ G <D and z E J\l where J\l > O at 0. Then there is a 
Xo > 0 such that |X| = X0 implies z + ky G J\l. In particular z ±X0 

yEJ\l or equivalently X0z[(l/X0) ± (t//z)] G «s/V and hence 
(1/X0) ± (ylz) is eventually positive or negative. Hence \y(x)lz(x)\ 
= 1/X0 for x sufficiently large and lim supx_,oo\y(x)lz(x)\ < oo. If, 
conversely, lim sup*^ «, |y(x)lz(x) | < Xo < °° then for |X| > X0, 
|X ± (y(x)lz(x))\ ^ |A| - \y(x)lz(x)\ > k0 - \y(x)lz(x)\ > 0 for x 
sufficiently large. Hence z(x) ± (llk)y(x) G J\l for |X| > X0 which 
means that J\f > O at 0. 

Secondly, suppose (D > J\l at 0 and y E O, z E J\l. Then there is 
a X0 > 0 such that y ± k0z G O and consequently (j//z) ± X0 is 
oscillatory; that is, lim supx^O0(y(x)lz(x)) ^ X0 and lim mfx^O0(y(x)lz(x)) 
= — Xo and consequently lim swpx^aoy(x)lz(x) è X0 > 0 > —X0 = 



DOMINANCE OF N-TH ORDER LINEAR EQUATIONS 267 

lim inlx^,aay(x)lz(x). Conversely, if lim infx_+„y (x)lz(x) < 0 < 
lim supx_>oot/(x)/z(3c) then a X0 > 0 can be found such that 

lim inf ^f\ < -k0 < 0 < Ào < lim sup ^f\ and 

the remainder of the argument is obvious by reversing the above steps 
with Ao replaced by any X such that |X| = Xo-

One observes as a consequence of theorems 4 and 5 that when one 
form of dominance occurs then if specific information about the 
asymptotic properties of J\I{Ö} is known then information about 
O {J\l} follows from these theorems. 

In the case that p{ are constants in (l)n one can determine dominance 
in terms of the roots of the characteristic equation 

n 

Let R be the set of real roots and C be the set of complex roots of this 
equation then the following results can be obtained as a consequence 
of theorems 4 and 5. 

(i) O > J\l at » if and only if max {r | r G R} < min{Re c | c £ C } 
(ii) J\f > Ö at oo if and only ifmin{r | r G R} > max{Re c \ c G C} 

(iii) J\l > O only at 0 if and only if min {r | r G R} = 
max {Re c |c G C} = /c 

and £/ie multiplicity of complex roots with real part equal k is 1. 
In all other cases there is no dominance. 

If the pk are all constants for k = 1,2, • • -, n the adjoint of (l)n has 
a characteristic equation of the form ( — r)n + 5)îUi Pk("~r)n~k — 0. 
Hence if cD * and ^W* are respectively the oscillatory and nonoscillatory 
solutions of the adjoint equation then O > J\f at oo if and only if 
j\l* > (0 * at oo and J\l > (9 at oo if and only if O * > ^A/* at oo . 

An open question is whether this result is true for arbitrary co­
efficients pk. 

EXAMPLE. The fourth order equation yIV — y = 0 satisfies no domi­
nance property for it has a fundamental set of solutions {ex, e~x, 
sin x, cos x) and since 

,. sin x ~ j ,. . c sin x 
hm = 0 and lim int —— = — oo 
x-oo e? *-*«> e x 

no type of dominance can occur as a result of theorems 4 and 5. 
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2. Third Order Linear Equation. It will be shown that for Q and 
Cn equations, as defined by Hanan [3], that dominance results can 
be obtained. To this end we review the definitions of C1 and Cn. 

Definition. The linear third-order equation, (1)3, is said to be in 
Ci[b, °° ) {CH[b, oo )} if for each number c G (&, oo) and nontrivial 
solution y of (1)3 satisfying the conditions y(c) = 0 = y'(c) it is true 
that y(x) ^ 0 for x G [b, c) {x G (c, oo )}. 

THEOREM 6. If (1)3 G C J a , t?) and O / 0 then O > JV at 0. 

PROOF. It is known-that JM j£ 0 if (1)3 G Ci [a, oo ). Let y G (D 
and z G ^V. If b > a is such that z(x) > 0 on [b, oo ) then {t/(x)/z(x) | 
fo = x < oo } must contain an open neighborhood of 0, say ( — Xo,Xo), 
otherwise y(x) ^ 0 or y(x) ^ 0 which implies y(x) has infinitely many 
double zeros contrary to Ci[a, oo ). But then for each A G ( — X0, X0) 
there is an x0 G [b, oo ) such that y(x0)lz(x0) = X or y(x) — Xz(x) has a 
zero for each X G (—À0> ^o)- By a theorem of Hanan [2, Theorem 3.4] 
since O ji 0,y- XzG O foral lXG(-X0 ,Xo). 

THEOREM 7. / /(1)3 G Cn [a, oo ), then JV > O at 0. 

PROOF. It is known that cN ^ 0 if (1)3 G Cn[a, oo ). If cD = 0 
then /̂V > (D at 0 vacuously. Hence let z G V̂ and y G O. Suppose 
z is eventually positive. Then there are numbers xx and x2, a ^ Xi ^ x2, 
such that z(x) > 0 on [xl7 x2] , f/(xx) = t/(x2) = 0, and y(x) < 0 on 
(xl5 x2). Hence there is a X0 > 0 such that z + A0J/ has a double zero 
on (*!, x2). The Cjj[a, oo ) condition implies that z + k0y G <̂ V+. Let 
0 g \ < \ 0 then z + Xt/ = (X/X0)(z + X0y) + (1 - (X/X0))z G JV + 

because both terms are in JM+. By a similar argument one can show 
there is a /Xo < 0 such that if /x0 < /Lt < 0 then z + jxy Œ. J\l and hence 
V̂ > O at 0. Barrett [2] , Hanan [3], Jones [4], Lazer [5], and Utz 
[6] have studied the behavior of solutions of 

(3) y ' " 4- p(x) y ' + q(x)y = 0, where p, 9, G C[a, 00 ) 

for various sign conditions on p and q. Using these same sign condi­
tions, dominance results can be obtained for this equation. 

THEOREM 8. If p ^ 0 and q > 0 for x G [a, 00 ) and ( 9 ^ 0 £/ien 
(D > J\lat0. 

This theorem is deduced by observing that Lemma 1.1 of Lazer [5, 
p. 436] implies that (3) G CY [a, 00 ) and hence O > JV at 0 as a con­
sequence of theorem 6. 

LEMMA. Suppose p ^ O and 9 > 0 on [a, 00 ). if Q ^ 0 ^ n 

either l i m ^ ^ x ) = 0 for all z G. JM or limx_> ooz(x) ^ 0 /or z G «s/V. 
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PROOF. By Theorem 1.2 of Lazer [5; p. 439] every nonoscillatory 
solution has a limit at oo. Suppose limx_>«,%i(:x:) = 0 ^ limx^00z2(x) 
where zly z2 G. J\l+. Since zx and z2 are both positive, for x0 G [a, oo ) 
there is a A o > 0 such that z2(x0) — Aozi(*o) < 0- Then the solution 
with a zero in [x0, oo ). This contradicts Theorem 1.2 of Lazer [5], 
and we have proved the Lemma. 

THEOREM 9. Suppose p ^ 0 and q > 0 on [a, oo ). If O ^ 0 
and fhere is a solution z0€zJ\f + such that linv^oo%o(x) f^ 0 £foen 
<D > *A/ a* oo . 

PROOF. Let z G J\!+ and t/ G£>. Then limx^oo2;(x) > 0 by the pre­
vious Lemma. Since O > J\l at 0, lim infx_+„y(x)lz(x) < 0 < 
limsupx^ooy(x)lz(x). Iflimsupx^ooy(x)/z(x) = k< oo?then 

lim supx_+oo[y(x) — kz(x)]lz(x) = 0 

and y — kz E. J\l. But then y — kz has a finite nonzero limit. This is 
impossible and hence lim s\ipx_+ooy(x)lz(x) = oo. Similarly 
lim infx_>«,y(x)/z(x) = — oo and O > JM at oo . 

THEOREM 10. Ifp ^Oandq^O then JV>0 atOfor (3). 

The sign conditions easily imply that (3) Œ Cn[a, oo ) and hence 
Theorem 7 implies Theorem 10. 

Recent results of Dolan and Klaasen [7] on the third order equa­
tion 

(4) y ' ' ' 4- p(x)y = 0, where p(x) G C [a, oo ) 

yield information about dominance for this equation by comparing it 
to equations of Euler. 

Dolan and Klaasen [7] have shown that equation (4) is in C7[£>, oo ), 
in C/j[fo, oo )? or disconjugate on [b, oo ) for some b ^ a as p(x) = 
-2V3/9x3 , p(x) ^ 2V3/9*3 or |p(x)| ^ 2V3/9*3 for sufficiently 
large x. Hence, as a consequence of Theorem 6 and Theorem 7 we 
have: 

THEOREM 11. (i) If <D / 0 and p(x)^ -2V3/9x 3 for large x 
then O > J\l atO. 

(ii) Ifp(x) g 2V3l9x3for large x then JV > O atO. 
(iii) If \p(x) | ^ 2 V3/9x3/or Zarge x then JV > O at oo . 

If we consider Euler equation 

(5) y"' + (KJXz)y = 0 

then if K > 2V3/9 we have that <D > ^ at °° and if K < - 2 V 3 / 9 
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then J > (D at a». This suggests attempting similar results for (4) 
where p(x) > 2V3/9*3 or p(x) < — 2V3/9*3. No results in this direc­
tion have been proved. Kondratév [8] gives some information about 
behavior of solutions in this case. 
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