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THE CONSTRUCTIVE JORDAN CURVE THEOREM 
G. BERG, W. JULIAN, R. MINES AND F. RICHMAN 

ABSTRACT. This paper presents a constructive treatment of 
the Jordan curve theorem. It is shown that, given a Jordan 
curve, and a point whose distance to the curve is positive, then 
there is a finite procedure to decide whether the point is inside 
or outside the curve. Also, given two points that are either both 
inside, or both outside, the curve, then there is a finite procedure 
that constructs a polygonal path joining the two points, that is 
bounded away from the curve. Finally, a finite procedure is 
given for constructing a point inside the curve. 

1. Introduction. Since the publication of Bishop's book [2] on con-
tructive analysis, there has been a resurgence of interest in the con
structive approach to mathematics. The Jordan curve theorem pro
vides a pertinent illustration of this approach. The main concern of the 
Jordan curve theorem is the construction of a path joining two points 
and missing a curve. Indeed, the heart of the theorem may be stated 
as follows: Given any three points offa Jordan curve, two of them can 
be connected by a path missing the curve. The constructive approach 
requires finding an explicit, finite procedure for computing this path. 

The standard treatments of the Jordan curve theorem (see, for 
example, [1], [4], [5], [6]) do not address themselves to this 
computation, nor can they be modified easily to supply it. The usual 
approach is to prove abstract existence, by reductio ad absurdum, and 
by appeals to nonconstructive existence theorems such as the Heine-
Borel theorem. The purpose of this paper is to demonstrate that such 
an approach is neither necessary nor desirable. By viewing the prob
lem constructively, we are led to a proof that is as simple as any, while 
considerable insight is gained into a theorem which is often con
sidered to be a triviality. For when phrased in terms of an explicit 
construction of a path, the difficulty becomes apparent, even if you are 
sure that the curve has an inside and an outside. Brouwer gave the 
first constructive proof of the Jordan curve theorem in a rather for
midable paper [3]. Our approach parallels Brouwer's intuitionist 
treatment but is in the spirit of modern constructivism. 

All mathematical objects dealt with here have computational mean
ing. A point in the plane is given by a pair of real numbers. A real 
number is given by providing rational numbers which approximate 

AMS (MOS) subject classifications (1970). Primary 02E05, 57A05. 
Received by the editors October 2, 1972 and in revised form January 9, 1973. 

Copyright © 1975 Rocky Mountain Mathematics Consortium 

225 



226 G. BERG, W. JULIAN, R. MINES AND F. RICHMAN 

that real number as closely as desired. One practical effect of this is the 
impossibility, in general, of deciding whether two given real numbers 
are equal, for we can only compare their rational approximations. A 
classical example of this is the real number r that is approximated 
within 1/n by the rational number l/fen, where kn is the least integer, 
not exceeding n, such that the sequence 0123456789 appears in the 
first kn digits of the decimal expansion of 77, or kn = n if there is no 
such integer. Since we possess algorithms that compute the decimal 
expansion of ir to any number of digits, we can compute r as closely as 
we please. At present, however, we know of no finite computation that 
would settle the question of whether r is 0 or not. Thus, we must keep 
in mind that we may not be able to tell if a given point is on a given 
curve or not, or whether a curve meets some other geometric object. 

Despite the fact that we may be unable to decide whether a given 
real number r is zero, we can handle certain situations that seem to 
require such a decision. If x > y (i.e., x — y exceeds some known 
positive rational number), then we can decide from appropriate ra
tional approximations to x, y, and r which of the two inequalities, 
\r\ < x or \r\ > y holds. Thus, for any € > 0 and any real number r 
we can assert either \r\ > e > 0 or \r\ < 2e. This approximate di
chotomy will suffice. 

Although we cannot in general argue by reductio ad absurdum, we 
can use this method of proof in the following way. If A and B are the 
only possible outcomes of a finite computation, then we can demon
strate that A occurs by showing that the occurrence of B leads to a con
tradiction. 

2. What is a Jordan curve? From a constructive point of view, the 
manner of presentation of a mathematical object is an essential part of 
its nature. A Jordan curve is usually defined to be a subset of the 
plane which is homeomorphic to a circle. Constructively, we must be 
given a Jordan curve. This is accomplished by supplying a particular 
homeomorphism f from the unit circle into the plane. The function 
/ is to be viewed as an integral part of the Jordan curve, providing 
the necessary numerical data for computation. Whereas distinct 
functions may give rise to equivalent curves, we will not, in general, 
be able to decide whether two given curves are equivalent. 

To locate a curve in the plane, to within e > 0, we need to construct 
a finite number of points on the curve, such that every point on the 
curve is within e of one of these finitely many points. This may be 
done by selecting equally spaced points around the unit circle, such 
that the distance between adjacent points is sufficiendy small, and 
looking at their images under f. However, we have to know how 
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close points x and y on the unit circle must be, for the distance between 
f(x) and f(y) to be less than e — that is, we need to know a modulus 
of continuity, <o, for/. 

In addition, we need a modulus of continuity for / - 1 , the inverse 
of/. For suppose our Jordan curve looks like Figure 1, and we are 
required to construct a path from a to h that misses the curve. In 
order to find our way through the narrow passage, with only a finite 
number of points on the curve to guide us, we must have information 
about its width. This data is supplied by the modulus of continuity 
for / _ 1 . Roughly speaking, the distances from a to b to the curve, 
together with co, yield a lower bound for \x — y\. The modulus of 
continuity for f~l converts this to a lower bound for \f(x) — f(y)\. 
Since we may not be able to compute the values of such a modulus 
from / and co, we must include it as part of the data given with the 
curve. This is most simply done by redefining co to be the minimum 
of the moduli of continuity o f / and f~l. Then o) serves as a com
mon modulus of continuity for / and / _ 1 . We will also need the 
more general notion of a closed path. 

Hx) 

fty 

Figure 1 
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DEFINITION. A closed path is a subset/ of the plane, together with a 
continuous function f from the unit circle C onto / , and a positive 
function co that serves as a modulus of continuity for f; i.e., for any 
8 > 0 and zx,z2 £ C, if l^ - z2\ < <o(8), then |/"(Äi) ~" f(z2Ì\ < 8. 
A closed path is a Jordan curve if, in addition, / is a homeomorphism 
and co serves also as a modulus of continuity for f~l; i.e., for any 
Ô > 0 and zx, z2 E C, if |/(Äi) "" /(*2)l < <»(8), then l^ - z2\ < 8. 
It will be convenient to require that a>(8) < ^ min(l, 8). 

The map / and the modulus co are integral parts of the closed 
path. Nevertheless, we shall abuse the language in the customary way, 
and refer to the closed path (J, / , co) simply as / . If the words "unit 
circle" are replaced by the words "unit interval" in the above defini
tion, then we have the definition of a path (joining f(0) and / ( l ) ) 
and a Jordan arc. 

If / is a closed path, and a is a point in the plane, then the distance 
from a to J can be computed (as closely as we wish). To compute the 
distance within 1/n, place points around the unit circle at intervals of 
length less than co(0.5/n), and compute the distances from a to the 
images of these points to within 0.5/n. Then the smallest of these 
numbers is the desired approximation. If the distance from a to J 
is (known to be) positive, that is, if we have some rational number 
r > 1/n which approximates the distance to within 1/n, then we say 
that a is off J. To say that a is on J means a = f(z) for some z on C. 

A path Jx is bounded away from a path J2 if, for some 8 > 0, 
|xx — x2| = ô for each xx onJl and x2 onJ2. A polygonal path P joining 
the points a and b is a sequence of points a = a0, ai? • • -, an = b, to
gether with the line segments a ^ ö j , 1 = i = n. A polygonal path P 
joining a point to itself may be identified with a unique, uniformly 
parameterized, closed path. If, in addition, F is simple — that is, if 
n = 3 and any two nonconsecutive line segments of P are bounded 
away from each other (and, for n = 3, vertices are bounded away from 
opposite sides) —then this closed path becomes a Jordan curve by 
appropriately altering co. 

JORDAN CURVE THEOREM. Given a Jordan curve, J, we can construct 
two points a and b, off J, such that 

(1) Given any point c off J, we can construct a polygonal path that 
is bounded away from J, and that joins c to one of the two points, a or 
b. 

(2) Any polygonal path joining a and b comes arbitrarily close to J. 

Since / is bounded, any two points sufficiently far from / can be 
joined by a polygonal path that is bounded away from / . These points, 
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and the points off/ that can be joined to them by such paths, are said 
to be outside J. The other points off/ are said to be inside J. Our first 
problem is to develop a procedure for deciding whether a point off 
/ is inside / or outside / . 

3. The index. To determine whether a point is inside or outside 
of a Jordan curve, we compute a number called the index of the point 
with respect to the curve. This number is most naturally introduced 
in its computational form — with respect to a sequence of points, rather 
than with respect to a curve. We denote the distance between two 
points, a and b, by \a — b\. Throughout this paper, if we are dealing 
with a sequence xl9 • * •, xn, then xn + 1 is understood to mean xv 

DEFINITION. A sequence of points xi9 • • -, xn is said to be admissible 
for the point a if \x{ — xi+i\ < \a — Xj\9 for 1 ^ i ^ n, and 1 ^ j ^ n. 
If*!, • • -, xn is admissible for a then the index of xi9 • • -, xn with respect 
to a is defined by 

1 n 

ind(a;X!, • • -,xn) = — ]T a n g l e x ^ x ^ , 

where all angles are taken (strictly) between — n73 and zr/3, and clock
wise angles are taken to be negative. 

The constructive theory of angles in the Euclidean plane is straight
forward and will be assumed. The admissibility condition is more 
than is necessary to insure an unambiguous interpretation of the term 
"angle Xiaxi+l" in the definition of index. However, this notion of ad
missibility facilitates comparison of related sequences (see Proposition 
3). The index is supposed to measure how many times the sequence 
xi> ' ' ' » xn g o e s around the point a. 

PROPOSITION 1. If xl9 ••• ,*„ is admissible for a, then 
ind(a; xi9 • • *, xn) is an integer. 

PROOF. In this proof we shall use a capital A in the word angle 
when the angle under consideration is not necessarily between — 7r/3 
and 7T/3. Let i^ = J j = 1 angle Xiaxi+l — Angle Xiaxj+l, where Angle 
xxaxj+! is determined up to an integral multiple of 27r. ThenAj— Aj_l = 
angle Xflxj+l — Angle xlaxj+l -f Angle xxaXj is an integral multiple 
of 2TT for l â j ê n . But AQ = —Angle x^axi is an integral multiple of 
2n. Hence, A„ is an integral multiple of 2TT. But ind(a; xl9 • • -,xn) = 
{An + Angle Xiaxn+i)l27r is then an integer, since xn + 1 = xx. 

PROPOSITION 2. Ifyi,'--,ynisa circular permutation of the admis
sible sequence xl9 • • -,xn, then yu • • -,yn is admissible, and 
ind(a; yl9 • • -, yn) = ind(a; xl9 • • -, xn). 
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PROOF. This follows directly from the definition. 

PROPOSITION3. Ifxx, • • ',xnandxl9 • • -, Xp v, xj+u • • -, xn are admis
sible for a, then ind(a; xi9 • • -, xn) = ind(a; xl9 • • -, Xp v, xj+l, • • -, xn). 

PROOF. The admissibility of the two sequences implies that the dis
tance between any two of the points Xp xj+i, and v, is less than the dis
tance from any one of them to a. Hence, angle Xjaxj+i = angle Xflv + 
angle vaxj+l, and the proposition follows. 

The index of a closed path with respect to a point is computed by 
approximating the path with a sequence of points. We say that 
yi> ' ' m>yn i s a ö-mesh on / if tjj = f(xj), where the Zj are 
arranged consecutively around the unit circle C in the counter
clockwise sense, starting at zY = (1,0), and \zj+l — Zj\ < (o(8) for 
1 = j = n. Observe that in a S-mesh the points on / between y{ and 
yi+l are within 8 oîy{ and t/i+1, not merely within 8 of some yp 

DEFINITION. Let / be a closed path, a a point whose distance from 
/ is at least Ô, and yY, • • -, yn a ô-mesh on / . Then the index of J with 
respect to a (or, the index of a with respect to J) is defined to be 
ind(fl; yl9 • • -, t/n), and is written ind(a; / ) . 

Note that since yl9 • • -, yn is a S-mesh on / , and \a — y^\ ^ 8 for 
l = j ^ n, then yl9 • • *,t/n is admissible for a. To show that the 
definition does not depend on the choice of ô-mesh, let xi9 • • \xm 

be another 6-mesh on / . Then we may interleave the xs and j/'s to form 
an admissible sequence zÌ9 • • -, zm+n. Repeated application of Proposi
tion 3 then shows that ind(a; j / b • • -, yn) = ind(a; zl9 • • -, zm+n) = 
md(a;xl9 • • -,xm). 

If / is the perimeter of a square, described in the counterclockwise 
sense, then it is easily seen that ind(a; / ) = 0 for points outside / , and 
ind(a;/) = 1 for points inside / . Although we do not reduce the 
general Jordan curve theorem to the Jordan curve theorem for poly
gons, but rather attack the general case directly, the next result, 
relating the index of a Jordan curve to the index of a nearby polygon, 
is central to the development. Here, for the first time, we need / to 
be a Jordan curve, and we make use of the fact that to is also a modulus 
of continuity for f~l. 

LEMMA. Let J be a Jordan curve, 8 a positive number, and P a 
simple closed polygon with sides of length less than 0.3CO(CÜ(8)), each 
of whose vertices is closer than 0.3U>(CU(8)) to J. Then there is an 
integer m such that ind(a; P) = m ind(a; / ) for any point a whose dis
tance from J is at least 28. 
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PROOF. Let yi9 • • -,yn be a 0.05cü(u>(8))-mesh on / . Let x1? • • -,xs 

be a consecutive listing of the vertices of P, and choose k{ so that 
\xi ~ ykil < 0.35<w(a>(8)). Then by repeated application of Proposi
tion 3, ind(a; P) = ind(a; xx, • • •, xs) = ind(a; xi9 y*,, Jf ,̂ * ' ', J/ks) = 
ind(fl;yfcl, ••%t/fes). If %• = /(%), for l g j g n , then K - z * | + 1 | < . 
Ö>(8) < ^ , because |t/fci - yki+11 g |t/fci - x{\ + \x{ - xi+1\ + 
l*t+i "~ !/fc«+i I < Û>(Û>(8)). Let Zf denote the sequence of z's, starting at 
zki and going to zk.+ 1 along the shorter arc of C, and let Y* denote the 
corresponding sequence of t/'s. Then each term in Ẑ  is within G>(8) 
of zk. and 2fc , so each term in Yf is within 8 of j / ^ and yki+l • It fol
lows, by repeated application of Proposition 3, that ind(a; P) = 
ind(a; yki, • • -, yks) = ind(a; Yl9 • • *, Y8)9 where YL, • • -, Ys is to be 
thought of as the sequence of y's resulting from the concatenation of the 
Y's. Notice that any subsequence of the form yiy^yu or y{yi9 may be 
replaced by yt without changing the value of the index. Thus, we may 
reduce the sequence Yi9 • • *, Ys to a sequence which either consists of 
the single term yk^or consists of a circular permutation of the sequence 
i/i> ' ' '> yn>

 o r °f th e sequence yn, • • -, yl9 repeated a positive integer 
number of times. In any event, ind(a; P) = m ind(a; / ) for some integer 
m. Observe that m is independent of a. 

4. The connection. If we are given two points a and b that are off 
the Jordan curve / , then we may compute the integers ind(a; / ) and 
ind(fc; / ) . These integers tell the whole story regarding the possibility 
of joining a and b by a polygonal path that is bounded away from / . 
First we show that if two points can be joined by a path that is 
bounded away from / , then they necessarily have the same index. In 
fact, this much holds if/ is simply a closed path. 

PROPOSITION 4. Let J be a closed path, and S a set of points whose 
distance to J exceeds 8 > 0. Then ind(a; / ) is uniformly continuous on 
S as a function of a. 

PROOF. Let xi9 • • -,xn be a 8-mesh on / . Suppose a and b are in 
S, and \a — b\< e8/4n, where 0 < € < 1. Then 

|angleg{OXj+1 — angle Xibxi+l\ ^ \angie ax^b] + (angle axi+lb\ 

g 4\b - a\lô < ein. 

Thus, | i n d ( a ; / ) - i n d ( & ; / ) | < € . 

COROLLARY. If a and b can be joined by a path that is bounded away 
from the closed path J, then ind(a; J) = ind(fo; / ) . 
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PROOF. Suppose a and b are joined by a path P bounded away from 
/ . By Proposition 4 we can find an e > 0 such that, if p and q are on 
P and \p — q\< €, then |ind(p;/) — ind(g;/) | < 1, so, since the index 
is an integer, ind(p;/) = ind(qf;/). Choose a sequence of points 
a = a0, aiy • - -,an= b on P such that \a{ — ai_Y\ < e, 1 ^ i ^ n. 
Thenind(a;/) = ind(a0;/) = ind(a i ; / ) = • • • = ind(an;/) = ind(fo;/). 

The converse of this corollary, for Jordan curves, is the core of the 
Jordan curve theorem. We prove a little more. 

THEOREM 1. If a and b are off the Jordan curve J, then either a and 
b can be connected by a polygonal path which is bounded away from 
J, or ind(a; / ) and ind(b; J) differ by 1. 

PROOF. Let the distances from a and b to / be at least 28 > 0. If 
\a — b\ < 28, then a and b can be connected by a straight line that is 
bounded away from / . If \a — b\ > 8, enclose / , a, and b in a circle 
that stays at least 8 away from them, and tesselate the interior of 
this circle with regular hexagons of diameter h < 0.1CÜ(Ü>(8)), SO that 
a lies at the center of a hexagon Ha, and b lies at the center of a hexa
gon Hb. Let L denote the class of straight line segments joining 
centers of adjacent hexagons. Paint these segments red or green, so 
that every red segment comes within 2h of/, and every green segment 
stays at least h away from / . Now color green those hexagons whose 
centers are connected to a by a sequence of green segments. Color Ha 

green. Color the rest of the hexagons red. If Hb is green, then a and 
b are connected by a sequence of green segments, which constitute 
a polygonal path that is bounded away from / . We shall show that if 
Hb is red, then ind(a; / ) and ind(fo; / ) differ by 1. 

Connect b to a by any simple sequence S of segments from L. Let 
Hv be the first green hexagon that this sequence enters, starting from 
b, and let v be the center of Hv. let Hw be the (red) hexagon from 
which Hv was entered, and let w be its center. Notice that the seg
ment joining the centers of two adjacent hexagons of differing colors 
must be red. An edge common to hexagons of differing color is 
called a separating edge. For instance, the edge E, crossed by the 
segment vw is a separating edge. No separating edge can join the 
border of the tesselated region, since every separating edge is crossed 
by a red segment, which is closer to / than 2h. 

Each vertex not on the border of the tesselated region lies on exactly 
three edges, and exactly three hexagons. Examination of the possible 
colorings of these three hexagons shows that either zero or two of 
these edges are separating. It follows that each end of a separating 
edge is joined to exactly one other separating edge. Thus the edge 
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E lies on a unique path comprised of separating edges. This path 
forms a simple closed polygon P since it is finite, and each vertex lies 
on exactly two edges. 

Since Hv is green, a is connected to v by a sequence of green seg
ments. Since every green segment is at least h/4 away from any 
separating edge, ind(a; P) = ind(t>; P). Also, since the segments of S 
joining b to w lie in red hexagons, they are at least h/4 from any 
separating edge, so ind(fo; P) = ind(u;; P). Construct a square Q in 
Hv on the edge E (see Figure 2). Replace the edge E in the polygon 
P by the other three sides of the square Q. Call the resulting polygon 
P ' . Choose orientations so that ind(x; P ' ) = ind(x; P) + ind(x; Q) for 
x = v and x = w. Since i w is bounded away from P ' , we have 
ind(ü; P ' ) = ind(it>; P ' ) . But ind(t;; Q) and ind(w;; Ç) differ by 1, so 
ind(ü; P) and ind(a>; P) differ by 1. Hence, ind(a; P) and ind(fo; P) 
differ by 1. 

Figure 2 

Since any point on a separating edge is closer to / than 2.5/i, the 
hypotheses of the lemma are satisfied, so ind(a; P) = m ind(a; / ) , and 
ind(fo; P) = m ind(b; / ) , for some integer m. Hence \m\ = 1, and 
ind(a; / ) and ind(fo; / ) differ by 1. Q.E.D. 



234 G. BERG, W. JULIAN, R. MINES AND F. RICHMAN 

Note that ind(a; / ) = 0 if a is sufficiently far away from / . Hence, 
a point a off/ is outside / precisely when ind(a; / ) = 0. Since indices 
of points off / cannot differ by more than 1, then, after possibly re
orienting / , every point off/ has index either 0 or 1. Thus, any two 
inside points have index 1, so they can be connected by a polygonal 
path which is bounded away from / . There remains the problem of 
finding a point of index 1. 

5. Getting in. To construct a point inside / , that is, a point with 
index different from 0, we construct a finite number of points, follow
ing the ideas in [5], and show that they cannot all have the same 
index. If A and B are polygonal paths, joining a and b and b to c 
respectively, we let A + B denote the path joining a to c comprised 
of the line segments of A followed by those of B. 

THEOREM 2. Let c be a point on the Jordan curve J. If 8 > 0, then 
there exist points a and b, within ô of c, such that ind(a; / ) ^ ind(£>,/). 

PROOF. Let c = f(z) and d = f{ — z). Consider a square with 
boundary Q, center c, and edge of length e, where e < min(ô, \c — d\). 
Place points ply • • - ,pn around Q so that the distance between 
adjacent points is less than 0.5a>(co(e/4)). Paint the segments 
PiP2> ' ' '^Pn-iPny PnPi r e d o r green, so that each red segment is 
bounded away from / ( C J , while each green segment is bounded 
away from /(C2) , where Cl and C2 are the two halves of the unit 
circle C between z and —z. This is possible because f(C{) and 
/(C2) don't get too close together near Ç. More precisely, if x G CÌ9 

y G C2, and |/(*) - f(y)\ < a>(a>(e/4)), then \x - y\ < co(e/4), 
thus either the arc xzy or the arc x( — z)y has diameter less than 
ù)(el4). So \x - z\ < o)(el4) or \x + z\ < a>(el4). Thus, \f(x) - f(z)\ 
< e\4 or |/(x) — / ( — z)\ < e/4, so f(x) (and, similarly, f(y)) 

is at least e\4 away from Q. 
If all the segments are the same color, then c and d are joined by a 

Jordan arc, f(Ci) or /(C2) , that is bounded away from Ç. Hence, 
by the corollary to Proposition 4, ind(c; Ç) = ind(d; Ç). However, 
it is clear that ind(c; Q) = 1 while ind(d; Q) = 0. Let wi9 • * ',wk 

be those points that are common endpoints of segments of different 
colors. We may assume that their points are arranged consecutively 
around Q, that Wjtvj+i is red if j is even, and that WjWj+l is green if 
j is odd (note that k must be even; and recall our convention that 
wk+i = Wi). Since Wj is off/, we may compute ind(t^;/) . Suppose 
the numbers ind(i^;/) are equal for l^j^k. Then, by Theorem 1, 
we can find polygonal paths P, joining Wj to wj+l, for 1 ^j ^ k, that 
are bounded away from / . 
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Since f(Ci) joins c to d and is bounded away from Pj + wj+lwj9 

if j is even, we have ind(c;Pj 4- wj+lWj) = ind(d; Pj + i t ^ t ^ ) , for 
j = 2, 4,6, • • -, k. Similarly, if P — w^w^ + P2 + w3w4 + P4 + 
• • • + tujt.iiffc + Pk, then ind(c; F) = ind(d; F), since /(C2) joins c 
and d and is bounded away from F. Now Q = o^a^ + w2w3 + • • • 
+ t^fc-i^/t + ^fc^i» so it follows directly from the definition of index 

that ind(x; Q) = ind(x; F) — ] ^ even ind(x; Pj + ii^+xt^), for x = c 
and x = d. Thus ind(c; Q) = ind(d; Q). But ind(c; Q) = 1 and 
ind(d; Q) = 0. Hence, there exist i and j such that ind(u;i; / ) ^ 
ind(t^; / ) . 

Theorem 2 also shows that / is the common boundary of the inside 
points and the outside points. 

COROLLARY. Every point on J is a limit of points inside (outside) 
J. Conversely, if a is a limit of inside (outside) points, but a is not an 
inside (outside) point, then a is on J. 

PROOF. The first statement follows immediately from Theorem 2. 
To prove the second, we note that a cannot be a positive distance 
from / , for then a, being a limit of inside points, would be inside, by 
Proposition 4. Let Mn be a 0.3/n-mesh on / , for n = 1, 2, 3, • • \ 
Then there is a yn = f(xn) in Mn, such that \a — yn\< Un, lest 
\a — yn\ > 0.5/n for all yn in Mn, and hence \a — y\ > 0.2/n for all 
y on / . The yn form a Cauchy sequence on / converging to a. Thus 
the xn form a Cauchy sequence on the unit circle C. If x is the limit 
of the xn, then x is on C and f(x) = a, so a is on / . 

6. The arc. A slight modification allows us to show that a Jordan 
arc does not separate the plane. If/ is a Jordan arc, and a is a point off 
/ , then we define ind(a; J) to be 0. A 8-mesh on / is defined to be the 
image of a sequence of points 0 = zY < z2 < • • • < zn = 1, where 
zi+i — Zi < (o(8), for 1 ^ i ^ n — 1. To show that the lemma then 
holds with / a Jordan arc and 8 < <o(l), we observe, in the penultimate 
sentence of the proof, that the case of a circular permutation of 
yi, * * -,yn, or of yn, • • ',yx, cannot occur because \yx — yn\= <o(l) 
is too large. Then Theorem 1 holds with / a Jordan arc, so every pair 
of points off / can be connected by a polygonal path that is bounded 
away from / . 
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