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THE LATTICE OF TOPOLOGIES: A SURVEY 
ROLAND E. LARSON AND SUSAN J. ANDIMA 

In 1936, Garrett Birkhoff noted that inherent in the study of topology 
is the notion of the comparison of two different topologies on the same 
basic set. In his paper, On the combination of topologies, Birkhoff 
first explicitly described this comparison by ordering the family of all 
topologies on a given set, and looking at the resulting lattice. Birk-
hofFs ordering was the natural one of set inclusion; that is, if U and 
Ü ' are both topologies on a given set, Ü is less than or equal to Ü ' iff 
U is a subset of D ''. 

The topological definitions of this paper coincide mainly with those 
of W. J. Thron as found in Topological Structures, and the lattice 
definitions follow Garrett BirkhofFs Lattice Theory. However, for the 
reader's convenience we will begin with some lattice-theory pre­
liminaries, as well as listing several of the less familiar topological 
definitions in the glossary. In order to make reading easier, a con­
sistent notation will be used throughout the paper; however, it should 
be noted that in some of the entries in the bibliography, the lattice 
considered is the dual of the lattice of topologies to which we refer. 

This survey is divided into five sections. The first two sections deal 
with the lattice of topologies and the lattice of Tx-topologies. The 
third section contains short summaries of lattices of different subsets of 
the set of topologies, while the fourth section summarizes lattices of 
structures which contain, or partially contain, the set of topologies. 
The final section discusses minimal and maximal topologies. 

Before proceeding, we should remark that we have consciously 
omitted some of the more detailed results. Furthermore, in a survey 
of this nature, we have surely overlooked work which should have 
been included. We gladly welcome any additions or corrections. 

Lattice Terminology and Notation. A partially ordered set, (L,^) 
is a set L on which a binary relation ^ has been defined. The relation 
is reflexive, anti-symmetric and transitive. 

A partially ordered set (L, ê ) is called a lattice if any two elements 
in the set have a greatest lower bound or meet denoted by a A b and 
a least upper bound or join denoted by a V b. 

A lattice is called complete if any of its subsets have a meet and join 
in the set. 
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(L, ^ ) is called the dual of the lattice (L, ^ ) . 
(A, ^ ) is called a sublattice of (L, ^ ) if A Ç L and finite meets and 

joins are preserved. (A, ^ ) is called a complete sublattice of (L, = ) 
if arbitrary meets and joins are preserved. 

By "a covers b" in a lattice (L, = ) we mean b^ a and b^ c^ a 
implies b = c or c = a. 

The teas£ element of a lattice is designated O and the greatest ele­
ment is designated L 

An atom is an element which covers the least element. A lattice is 
atomic if every element other than O can be written as the join of 
atoms. 

An anti-atom is an element which is covered by L A lattice is anti-
atomic if every element other than / can be written as the meet of 
anti-atoms. 

An element a is called the complement of b in a lattice if a A b = O 
and a V b = I. A lattice is called complemented if every element has 
at least one complement, uniquely complemented if every element has 
exactly one complement. 

A lattice is called distributive if a A (b V c) = (a A b) V (a A c) 
and a V (b A c) = (a V b) A (a v c) for all a, b, c in the lattice. 

A lattice is called modular if a = c implies a v (b A C) = (a v b) 
A c . 

A lattice L is called upper semi-modular iff for distinct a and b in L 
such that a and b both cover c, then a M b covers both a and b. Lower 
semi-modular is defined dually. 

If L is a complete atomic lattice with the set of atoms A, then L 
is called tall iff for every PC. A, where p = V {a | a G ?} , {a | a G 
A, a ^ p) = Pi {B | F Ç B Ç A, a, bGB and c^a v b implies 
c £ B } , 

A map from a lattice L to a lattice K is called a lattice homomor-
phism if it preserves finite meets and joins. The map is called a com­
plete homomorphism if it preserves arbitrary meets and joins. A 
lattice isomorphism is a lattice homomorphism which is one to one 
and onto. 

A lattice (L, = ) is called self dual if it is lattice isomorphic to 

I. The Lattice of Topologies on a Set. If X is a set, let 2(X) = 
{ Ü | *7 is a topology on X}. 

THEOREM 1.1. 2(X) forms a complete lattice under set inclusion. 
The least element is the indiscrete topology and the greatest element 
is the discrete topology. The least upper bound of two topologies U 
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and Ü ' is the topology generated by {G Pi G ' | G G <7, G ' G U ' } , 
and the greatest lower bound is given by U H Ü '. [19] 

Orders other than set inclusion have been defined on 2(X), [85], 
[ 121] but these are not considered in this survey and accordingly we 
will henceforth use 2(X) to represent both the set of topologies on X 
and the lattice of topologies on X. 

Atomic and Anti-Atomic Properties of 2(X). 

THEOREM 1.2. 2(X) is an atomic lattice. The atoms are topologies 
of the form {0, G, X}, where 0 f G f X. / / |X| = n, 2(X) contains 
2n — 2 atoms. IfX is infinite, 2(X) contains 2lxl atoms. [ 117] 

If Hi is an ultrafilter on X and x G X, such that x (£ H Hx, then the 
topology (J(x,<lt)= {G | x (f G or G G ^U} is called an ultratopology 
on X. An ultratopology 0(x, <!£) is called principal or non-principal 
depending on whether the ultrafilter Hi is principal or non-principal. 

THEOREM 1.3, 2(x) is an anti-atomic lattice. The anti-atoms are the 
ultratopologies. If |X| = n, X(X) contains n(n — 1) anti-atoms. If 
X is infinite, 2(X) contains 22 anti-atoms. [37] 

Vaidyanathaswamy described the principal ultratopologies on a set 
and recognized that they were anti-atoms, but the proof of Theorem 
1.3 is due to Fröhlich. 

Cardinality of 2(X). When Fröhlich realized that the ultratop­
ologies on a set can be described in terms of ultrafilters on the same 
basic set, he was able to conclude that the number of topologies de­
finable on an infinite set, X, is the set-theoretic maximum; that is, 
22 . The number of topologies definable on a finite set involves 
much more computation. 

THEOREM 1.4. |2(X)| = 22'xi if X is infinite. [37] 

There is no known formula for the number of topologies on a finite 
set, although there has been considerable investigation into this 
problem. These investigations have led to the following partial 
results. 

THEOREM 1.5. If |X| = 1, 2, 3, 4, 5, 6, or 7, | J (X) | = 1, 4, '29, 355, 
6,942, 209,527, or 9,535,241. If |X| = n / 1, 2" ^ \X(X)\ g 2^~l\ 
[29], [35], [62] 

The cardinality of 2(X), when X = 5 or 6, is listed incorrectly in 
[97]. 
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The Irregular Lattice Structure of 2(X). The following three 
theorems help to point out the complex structure of 2(X). 

THEOREM 1.6. If\X\ > 2, 2(X) is non-distributive, non-modular, and 
neither upper nor lower semi-modular. [ 117], [ 100], [67] 

Let X = {a,b,c} and let ^U be the principal ultrafilter of a. The 
following diagram from [67] illustrates Theorem 1.6. 

{0,{a},{b},{a,b},X} 

{0,{a},{a,c},{a,b},X} 

{0,{a},{a,b},X} 

It is interesting to note that if X is finite and contains more than 
three elements, that there are more atoms in %(X) than anti-atoms. 
However, if X is infinite, the reverse is true. This points out the fol­
lowing theorem. 

THEOREM 1.7. If\X\ > 3, £(X) is not self-dual [100] 

THEOREM 1.8. 2(X) is tall iffX is finite. [41] 

Lattice Embeddings in 2(X). 

THEOREM 1.9. For any lattice L, there exists a set X, such that L 
may be embedded in 2(X). 

This is an extension of Whitman's well-known result that any lattice 
may be embedded in the lattice of partitions on some set. [123] 
Since the lattice of all partition topologies on X forms a complete sub-
lattice of 2(X), [117] and since the lattice of partition topologies 
on X is isomorphic to the dual of the lattice of all partitions on X, [89] 
the result follows. 

Morphisms of 2(X). 

THEOREM 1.10. If \X\ ^ 2, 2(X) has only trivial lattice homomor-
phisms. That is, any lattice homomorphism of X(X) onto a lattice L, 
is either a lattice isomorphism or L consists of a single element. [41] 

THEOREM 1.11. If X contains one or two elements, or X is infinite, 
the group of lattice automorphisms of 2(X) is isomorphic to the sym-
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metric group on X. IfX is finite and contains more than two elements, 
the group of lattice automorphisms of 2(X) is isomorphic to the direct 
product of the symmetric group on X with the two element group. 
[41], [37] 

In the proof of Theorem 1.11, Hartmanis used the atomic structure 
of 2(X). Later, Fröhlich proved the same theorem using the anti-
atomic structure of 2(X). Theorem 1.11 has the following consequence. 

If X is an infinite set and F is any topological property, then the set 
of topologies in 2(X) possessing property P may be identified simply 
from the lattice structure of 2(X). This follows from Theorem 1.11 
since the only lattice automorphisms of 2(X) for infinite X are those 
which simply permute the elements of X. Therefore, any automor­
phism of 2(X) must map all the topologies in 2(X) onto homeomorphic 
images. Thus the topological properties of elements of 2(X) must be 
determined by the position of the topologies in 2(X). An example is 
shown in the following theorem. 

THEOREM 1.12. If U is an anti-atom in 2(X), then Ü is T1 iff O 
possesses no maximum complement in 2(X). [96] 

Complementation of 2 (X). Of all the questions concerning the lattice 
structure of 2(X), the question of complementation seems to have 
aroused the most interest. For more details on the origins of this prob­
lem, some of the partial solutions, and other aspects of its interesting 
history, see Schnare. [94] 

THEOREM 1.13. X(X) is complemented. [100], [118] 

THEOREM 1.14. If X is infinite, every topology in X(X), other than the 
discrete or indiscrete topologies, has at least |X| complements in 2(X). 
[95] 

THEOREM 1.15. If X is infinite, there exists a subset of 2(X), of car­
dinality \X\ such that any two elements in the subset are comple­
ments of each other. [3] 

II. The Lattice of TY-Topologies. Investigations into the lattice of 
Ti-topologies have shown that this lattice possesses a substantially 
different lattice structure than the lattice of topologies. The following 
theorems point out some of these differences. 

Let A(X) be the set of all Tl -topologies on X, and let ^ = 
{ G | G C X , X - Gis finite} U { 0 , X } . 

THEOREM 2.1. A(X) is a complete sublattice of 2(X). The least ele­
ment in A(X) is the cofinite topology, <3, and the greatest element is 
the discrete topology. [19] 
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Atomic and Anti-atomic Properties of A(X). One of the first distinc­
tions between the two lattices is seen in the atomic structure. While 
the lattice of topologies is atomic, the lattice of 7\ -topologies is not. 

THEOREM 2.2. A(X) possesses atoms, but is not atomic. The atoms 
are precisely the topologies of the form ^ U {x}. [117], [8] 

To see that A(X) is not atomic, we need look no further than the 
usual topology on the reals. In fact, if X is the set of real numbers, the 
usual topology on the reals is greater than ^ , but not greater than any 
of the atoms in A(X). 

Vaidyanathaswamy incorrectly claimed that A(X) possessed no anti-
atoms. This was corrected by Liu in 1959. [74] 

THEOREM 2.3. U is an anti-atom in A(X) iff *J = {G\x (f G or 
G G. ^U}, where x G X and ^Uis a non-principal ultrafilter on X. [74] 

THEOREM 2.4. A(X) is anti-atomic. [37] 

Cardinality of A(X). A second difference can easily be seen in the 
cardinality of A(X) and 2(X) when X is finite. 

THEOREM 2.5. |A(X)| = 1 if X is finite and |A(X)| = 22* if X is 
infinite. [37] 

Complementation of A(X). Even though several types of Tr 

topologies do have complements in A(X), [2], [101], [102], [103] 
there are T^-topologies which do not possess complements in A(X), 
which leads to the following distinction between X(X) and A(X). 

THEOREM 2.6. A(X) is not a complemented lattice. [7], [56], 
[101] 

There is an interesting anecdote connected with the history of 
Theorem 2.6. The result of Theorem 2.6, as well as an appropriate 
counterexample was given as a concluding remark, although not set 
off as a theorem, in Bagley's paper in 1955. [7] In 1958, and using 
Bagley's paper as a reference, Hartmanis [41] gave a partial solution 
to the general complementation problem, but left the complementation 
of A(X) as an open question. Then, in 1966, again using Bagley's and 
Hartmanis' papers as references, A. Steiner answered the general 
complementation problem, but left complementation of A(X) as still 
unanswered. [100] Finally, in the latter part of 1966 A. Steiner pub­
lished the result of Theorem 2.6. [ 101] 

Modularity of A(X). A fourth difference between the two lattices 
can be seen in the local behavior of elements of A(X). 
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THEOREM 2.7. A(X) is not modular, and hence not distributive. [8] 

The following example to illustrate Theorem 2.7 is taken from [67]. 
Let X be an infinite set such that A and X ~ A are both infinite. Let 
^ be the cofinite topology on X and choosing x (f A, let 

gx= g\j { 0 , A , X } 

^ 2 = ^ V { 0 , A U { x } , X } 

^ 3 = 9 V { 0 , {x},X} 

g4= g\J { 0 , {*},A,AU{s},X}. 

The following diagram is valid. 

^ 4 

91 

Gi 

THEOREM 2.8. A(X) is both upper and lower semi-modular. [67] 

THEOREM 2.9. Any nontrivial interval in A(X) contains a covering 
relation. [68] 

Lattice Embeddings in A(X). 

THEOREM 2.10. If Lis any finite distributive lattice, there exists a set 
X and topologies U and ¥ ' in A(X) such that L is isomorphic to the 
interval between O and O '. [68] 

Morphisms of A(X). 

THEOREM 2.11. If X is infinite, the group of automorphisms of 
A(X) is isomorphic to the symmetric group on X. [34] 

THEOREM 2.12. If X is infinite, the lattice of complete homomor-
phisms of A(X) is isomorphic to the lattice of finite subsets of X and 
the set X ordered under set inclusion. [41] 

III. Lattices of Subfamilies of 2(X). Before proceeding with this 
section, we present the following chart which shows how several 
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topological properties are preserved under lattice operations in 2(X). 
For proofs or references, see [39]. 

In the chart, we will use the following notation: 

^ preservation under weakening of topologies. 
A preservation under arbitrary meets. 
A preservation under finite meets. 
^ preservation under strengthening of topologies. 
V preservation under arbitrary joins. 
v preservation under finite joins. 

+ indicates that the topological property is preserved. 

Property 

Tx 

T0, TD, T2, and totally 
disconnected 

1̂ 3, T3a, regular, 
completely regular, and 
zero-dimensional 

1st and 2nd countable 

principal 

bicompact, Lindelöf, 
[connected, and separable 

locally connected 

T4, T5, normal, 
completely normal, 
paracompact, and 
|locally bicompact 

Preservation under lattice operations 

^ A A ^ V v 

-

-

-

— 

— 

+ 

-

-

+ 

-

-

— 

+ 
1 + 

+ 

-

+ 

-

-

-

+ 

+ 

+ 

-

+ 

+ 

-

— 

— 

-

-

-

+ 

+ 

+ 

— 

— 

-

-

-

+ 

+ 

+ 

+ ! 
+ 

-

-

-

This listing points out that of the above common properties, the 
Tx separation axiom holds a special place, in that it is preserved under 
arbitrary meets and joins in 2(X). Of course, subfamilies of 2(X) may 
form lattices under set inclusion even if they do not preserve arbitrary 
meets and joins in 2(X). We present five such examples. 
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The Lattice of Principal Topologies. A topological space is called 
principal if it is discrete or if it can be written as the meet of principal 
ultratopologies. A. Steiner proved that this is equivalent to requiring 
that the arbitrary intersection of open sets is open. 

While A(X) possesses a lattice structure which is quite different 
from 2(X), the lattice of principal topologies compares closely as a 
lattice with 2(X). Most of the results concerning this lattice are due 
to A. Steiner. [100] 

The lattice of principal topologies is a complete lattice whose 
least element is the indiscrete topology and greatest element is the 
discrete topology. This lattice is both atomic and anti-atomic; its 
atoms coincide with those of 2(X). Although the lattice of principal 
topologies is a sublattice of £(X), it is not a sub-complete lattice of 
2(X). 

This lattice is complemented, non-modular if |X| = 3, and non-self 
dual if |X| = 4. If X is finite, the lattice of principal topologies is 
simply 2(X). If X is infinite, the lattice of principal topologies is of 
cardinality 2lxl. 

The lattice of principal topologies on X is isomorphic to the dual 
of the lattice of pre-orders on X. [ 100] Alexandroff pointed out this 
correspondence between orders and topologies when he proved that 
there is a one-to-one correspondence between the principal T0-
topologies on X and the partial orders on X. [ 1] For more information 
on this subject, see [ 124]. 

The Lattice of Partition Topologies. A topology on X is called a 
partition topology if it possesses a base which is a partition of X. The 
lattice of all partition topologies on a set has been studied in several 
different forms. O. Ore seems to have been the first to extensively 
investigate this lattice in the form of the lattice of equivalence rela­
tions on a set. [78] Vaidyanathaswamy pointed out that the lattice 
of partition topologies is a sublattice of 2(X). [117] More recently, 
M. Rayburn studied this lattice as the lattice of closed-open topologies 
and as the lattice of complete Boolean Algebras on X. [89] Finally, 
M. Huebener has proved that the lattice of partition topologies on 
X is precisely the lattice of principal-regular topologies on X. [46] 

The least and greatest elements of this lattice are the indiscrete 
and discrete topologies. Ore has shown that this lattice is completely 
complemented; that is, every interval in the lattice is a complemented 
lattice. He also proved that this lattice is atomic and anti-atomic, 
where the atoms are the partition topologies containing precisely two 
minimal open sets, and the anti-atoms are the partition topologies 
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which have one minimal open set consisting of a pair of points, and 
the other minimal open sets each consisting of a single point. 

The lattice of partition topologies on X is lower semi-modular, but 
non-modular if |X| ^ 4. If X is infinite, the cardinality of this lattice 
is 2lxL If |X| = n, the cardinality of the lattice of partition topologies 
on X, denoted pn, is given by the recursion formula 

Pn+1= S ( ?Vi 

Ore also proved that the group of automorphisms of the lattice of 
partition topologies on X is isomorphic to the symmetric group on 
X. [78] 

As a final comment, we point out, once again, Whitman's result that 
any lattice may be embedded in the lattice of partition topologies 
on an appropriate set. [ 123] 

The Lattice of Regular Topologies and the Lattice of Completely 
Regular Topologies. The join of regular (completely regular) topol­
ogies in X(X) is itself a regular (completely regular) topology. How­
ever, this is not necessarily true of the meet of regular (completely 
regular) topologies. [43] [75] Hence, neither of these lattices is a 
sublattice of the lattice of topologies. The least and greatest elements 
of each lattice are the indiscrete and discrete topologies. If X is a 
finite set, the lattice of regular topologies on X is precisely the lattice 
of partition topologies on X. [46] M. Hu ebener has described certain 
classes of regular topologies which have complements in the lattice of 
regular topologies, [46] but it is apparently unknown if the entire 
lattice is complemented. Since the non-principal ultratopologies in 
2(X) are both regular and completely regular, [100] the cardinality 
of both lattices on an infinite set is 22 . 

The Lattice of Countably Accessible Topologies. This lattice was 
introduced by R. Larson [66] in a construction which paralleled 
A. Steiner's construction of the lattice of principal topologies. 

A topology is called a countably accessible topology if it can be 
written as the meet of ultratopologies whose associated ultrafilters 
contain countable sets, but no finite sets. A topology is countably 
accessible if and only if every non-closed set, G, contains a countable 
subset with a limit point lying outside of G. 

The set of countably accessible topologies on a set is a subset of the 
collection of Tx -topologies and contains all first countable T r 

topologies on the set. Arbitrary meets in this lattice and £(X) coincide, 
although arbitrary joins may differ. The lattice is non-atomic, anti-



THE LATTICE OF TOPOLOGIES : A SURVEY 187 

atomic, non-complemented, and non-modular. If X is countable, the 
lattice of countably accessible topologies is precisely A(X). If X is 
uncountable, the cardinality of the lattice of countably accessible 
topologies is 2'xl. 

The Lattice of "Joins of Hyperplanes". R. Bagley defined this lattice 
in [7] to be the lattice consisting of the cofinite topology, the atoms in 
A(X), and any topology which can be written as the join of atoms in 
A(X). This lattice is a sub-complete lattice on A(X), and is isomorphic 
to the complete Boolean algebra of subsets of X. 

IV. 2(X) is contained, in a natural way, in several more general 
lattices, which arise from considering some of the alternative ap­
proaches to topological structure through closure functions or con­
vergence functions. 

Lattices of Closure Functions. A closure function in the sense of 
Cech is an increasing, order-preserving, function / from F(X) to 
F(X) such that f(0) = 0 . Ore's definition adds to these the 
property that / is idempotent. If, in addition, the function preserves 
unions, as is assumed in the Kuratowski axioms, the structure is equi­
valent to the usual topological structure. When ordered by f^ g 
iff g(A) C f(A) for all A Q X, the set of Cech-closures and the set of 
Ore-closures on X both form complete lattices containing the lattice 
of topologies on X. [61], [77] 

The lattice of Cech-closures has the virtue of simple joins and meets 
defined by ( / v g)(A) = f(A) H g(A), and ( / A g)(A) = 
f(A) U g(A) for all A C X. It is a proper sublattice of the lattice 
of all functions from (P(X) to ^(X) . Unfortunately, neither the 
lattice of Ore-closures nor the lattice of topologies is a proper sub-
lattice of the lattice of Cech-closures. The Ore-closures have the same 
join as the Cech-closures, but different meet. The lattice of topologies 
has the same meet as the lattice of Ore-closures, but a different join. 
[61], [77] 

The lattice of Ore-closures can be represented as the lattice of 
complete intersection rings over X. It is a lower semi-modular atomic 
lattice, but is not anti-atomic and not complemented. [77] 

Lattices of Sequential Topologies. When Garrett Birkhoff intro­
duced the lattice of topologies, he also discussed the lattice of se­
quential topologies. In its most general form, a sequential topology on 
a set X is just a relation between the set of sequences on X and X itself. 

If / is a sequence topology on X, then a sequence {xn} converges 
to a point x if x E. f({xn}). We denote this as xn—>x. A Frechet 
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./-space is a sequential topology that satisfies: 

(1) f({xn}) is empty or singleton. 

(2) If x = xn for every n, then xn —» x. 

(3) xn —> x implies that every subsequence of {xn} converges to x. 

The sequential topologies, when ordered by f= g iff g({xn})Ç 
f({xn}) form a complete, distributive lattice, of which the lattice 
of Frech et ./-spaces is a sub-complete lattice. [19] If the Frechet £-
spaces are further assumed to satisfy the condition that the addition 
of a finite number of terms to a sequence affects neither its con­
vergence nor its limits, then the corresponding lattice is complete 
and completely distributive. [117] 

These lattices do not, however, contain 2(X) in any natural way. 
The lattice of topologies and the lattice of sequential topologies can 
be mapped into each other by the functions f and i/i, defined by 
£(^)({xn}) = {x | every open neighborhood of x in U contains all 
but a finite number of the xn} and ijj(f) = {A\ AC X, f({xn}) 
C A implies that A contains all but a finite number of the xn}. It is 
clear that, for any topology U, I/J(£(^7)) is always TY. Furthermore, 
even when O is T1? */>(£(^)) does not always equal D. [117] Thus 
£ fails to include, not only the lattice of topologies, but also the lattice 
of 7\-topologies, in the lattice of sequential topologies. A satisfactory 
topological characterization of the topologies for which </*(£( ^ ) ) = *J, 
and thus of the class of topologies which can be included in the 
lattice of sequential topologies on X, has apparently not been deter­
mined. 

Lattices of Convergence Structures. Convergence structures 
generalizing topological structure can be found by using convergences, 
not of sequences, but of filters, or alternatively, of nets. The defini­
tions and notation used here are those of Kent. [50], [51] Let F(X) 
be the set of all filters on X, and let Qx be the filter generated by x, 
for each x G X. A convergence function / is a function from F(X) 
into iP(X), suchthat 

(1) VÇ g ^>f(V)Çf(g), for all <3, ^ E F(X), and 

(2) x G / ( ^ x ) , f o r a l l x G X . 

For each x G X, let O/fa) = Pi {<? | <? is a filter and Ï £ / ( 9 ) } . 

A series of progressively stronger structures, culminating in one equiva­
lent to topological structure, follows. A convergence function f is a 
convergence structure iff 

(3)xGf(V)^xEf(Vn Ox). 
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A convergence structure fis a limitierung [36] iff 

(4) / ( <?0 fi / ( <?2) Ç / ( S , fi 92), for all Vlt 9 2 G F(X). 

A limitierung / is a pseudo-topology iff 

( 5 ) i G / ( 9 ' ) for all ultrafilters S Ç S? '=>x G / ( S?). 

A pseudotopology / is a pretopology iff 

(6) x G f(0//x))9 for all x E X . 

A pretopology is topological iff 

(7) for every x G X, ^y{x) has a filter base iBy(x) Ç .<V/x) such 

thatt/ G G(x) G Q/j(x)=>G(x) £ % ) . 

For each of these properties, the set of all such functions on a fixed 
set X forms a complete lattice when ordered in the natural way by 
/ i ^ h iSM * ) e /x( *), for all <? G F(X). 

The lattice of pretopologies on X has a representation as a sub-
lattice of filters on Xx, and, as a consequence, is atomic, anti-atomic, 
modular, distributive, and compactly generated, but not completely 
distributive, and not complemented unless X is finite, in which case 
it is uniquely complemented. [26] Carstens has stated that the 
lattice of pseudotopologies on X can be represented as the lattice of 
subsets of a set and is therefore a complete Boolean lattice. [27] 

The lattice of convergence structures, C(X), is a sub-complete lattice 
of the lattice of convergence functions, C'(X). Both C(X) and C'(X) 
have join and meet that can be defined very simply for any family Q 
of functions as ( V Ç ) ( 9 ) = f l {/(S?) | / £ Ç } , and (A Q)(V) 
= U { / ( S ) | / G Ç ) } , for all VGF(X). Each of the other lat­
tices is an additive subsystem of C'(X), in that it has the same join, 
both finite and infinite. But none is a sub-complete lattice of C'(X) 
because meets are not preserved. In fact, Kent has shown that every 
convergence structure is the infimum of a set of topologies. [51] There­
fore, for any two lattices intermediate between 2(X) and C'(X), one 
can never be a sub-complete lattice of the other. However, Carstens 
has shown that £(X) is a sublattice of the lattice of pretopologies on X. 

For each convergence function f, there is a finest limitierung, a 
finest pseudo-topology, a finest pretopology, and a finest topology 
coarser than, or equal to / . [36], [50] 

V. Strengthening of Topologies. If *J and Ö ' are topologies on X 
such that O C C7 ', O ' has been called an expansion, [43] an exten­
sion, [73], [21] and an enlargement of *J. [30] Most of the well 
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known separation axioms are preserved under arbitrary expansions. 
Some topological properties which are only preserved under special 
types of expansions have been studied in [73], [21], [30]. Examples 
of such properties are regularity, complete regularity, normality, 
separability, first and second countability, connectedness, and various 
types of compactness. 

Minimal and Maximal Topologies. While the set of all topologies 
in 2(X) sharing a given topological property may not have a least or 
greatest element, it may have minimal or maximal elements. A 
topology on X is said to be maximal P (minimal P) if the topology 
possesses property P, but no stronger (weaker) topology on X possesses 
property P. Topologies which qualify as being minimal or maximal 
with respect to appropriate topological properties are characterized 
in the following theorem. 

THEOREM 5.1. A topology in 2(X) is minimal P or maximal P with 
respect to some topological property P iff every one-to-one continuous 
map of the space onto itself is a homeomorphism. [85] 

A similar theorem may be given for minimum and maximum topol­
ogies. 

THEOREM 5.2. A topology in 2(X) is minimum P or maximum P 
with respect to some topological property P iff every one-to-one map 
of the space onto itself is a homeomorphism. [65] 

Another example of a general type of theorem which characterizes 
an entire class of maximal P spaces is given by D. Cameron in [24, 
Theorem 2.4]. 

The following two charts indicate several topological properties 
whose minimal or maximal topologies have been characterized. In 
many cases, the topological behavior of these minimal and maximal 
topologies has been investigated. For further information on these 
results, see the references listed. 

For some topological properties, there are no maximal topologies. 
For example, if X is an uncountable set, then there are no maximal 
separable or maximal second countable topologies in 2(X). Of course, 
if X is finite or countable, the discrete topology is maximum separable 
and maximum second countable. Note that the discrete topology is 
maximum for many topological properties: T0, 7\, T2, regular, normal, 
disconnected, etc. It appears that maximal connected spaces have not 
been characterized in such a way as to answer many questions about 
them. For example, it is unknown whether there is a maximal con­
nected topology which is finer than the usual topology on the reals. 



THE LATTICE OF TOPOLOGIES : A SURVEY 191 

Additional information on most of the following minimal topologies 
may be found in A survey of minimal topological structures, by Berri, 
Porter, and Stephenson. [ 16] 

Property 

Bicompact 

Countably 
compact 

Perfect 

Perfect 
regular 

Sequentially 
compact 

Lindelöf 

Regular 

non-discrete 

Nested 

Connected 
Principal 

Non-T0 

Non-T! 

Characterization of maximal elements 

maximal iff the closed subsets of the 
topology are precisely the bicompact 
subsets. 

maximal iff the closed subsets of the 
topology are precisely the countably 
compact subsets. 

maximal iff *J is perfect and every sub­
set which has no isolated points is open. 

maximal iff U is perfect regular and 
whenever A and B are complementary 
subsets of X which have no isolated 
points, then A and B are open. 

maximal iff the closed subsets of the 
topology are precisely the sequentially 
compact subsets. 

maximal iff the closed subsets of the 
topology are precisely the 
Lindelöf subsets. 

maximal iff it is a nonprincipal ultra-

topology or it is of the form 

0(x,nx{y))f\ö{y,ni(x)). 

maximal iff it is nested and TD. 

maximal iff X = U {Bx | {x} $ Ö }, 
and x ^ y implies Bx D By contains 
at most one point, and every two points 
in X can be connected by exactly one 
simple chain consisting of minimal open 
sets. (Bx = n {G | x G G, G G ü }) 

maximal iff it is of the form 
?(x, My)) n u(y, «14*)). 

maximal iff it is a principal 
ultratopology. 

References 
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Property 

To 

Tg and T{, 

TD 

T, 

T2 

\T2 

\T2O 

k 

^3a> T4, T 5 , 
T2-para-
compact, 
Metrizable, 
T2-locally 
compact, 
T2-zero 
|dimensional 

T2-perfectly 
|normal 

T2-first 
countable, 

r 
Eo 

Characterization of minimal elements 

minimal iff it is T0, nested, and the 
complements of the point closures 
generate the topology. 

minimal iff minimal T0 and principal. 

minimal iff it is TD and nested. 

minimum iff the closed proper subsets 
of the topology are precisely the 
finite subsets. 

minimal iff it is T2, H-closed, and 
semi-regular. 

minimal iff it is T2, and every open 
filter with a unique cluster point 
converges. 

minimal iff it is T2a and every 
Urysohn filter with a unique cluster 
point converges. 

minimal iff it is T3, and every regular 
filter with a unique cluster point 
converges. 

minimal iff it possesses the property 
under consideration and is bicompact. 

minimal iff it is T2-perfectly normal 
and countably compact. 

minimal iff T2 -first countable and every 
open filter with a countable base and 
a unique cluster point converges. 

minimum iff X is countable and *J is 
the minimum Tx topology. 
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[105] 

[105], [83] 
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GLOSSARY 

Topological Definitions: 
A space (X, U ) is called a 

TD-space iff {x} ' (the derived set of {x}) is a closed set for every x G X. 
Tg-space iff whenever {x} ' ^ 0 , {x} ' is a point closure. 
Ti -space iff for each x G X, {*}' is the union of a family of point-

closures, {{y} | y G Y} such that for all distinct r, s G Y, r and s 
are separated. 

T2o-space iff it is a Urysohn space. 
T3-space iff it is Tx and regular. 
T3fl-space iff it is T\ and completely regular. 
T4-space iff it is Tx and normal. 
T5-space iff it is Tx and completely normal. 
E0-space iff every point in X can be written as the countable inter­

section of neighborhoods of x. 
EY -space iff every point in X can be written as the countable inter­

section of closed neighborhoods of x. 

A filter in a space (X, C7) is called an open filter iff it has a filter base 
consisting of open sets. 

A filter in a space (X, Ü) is called a closed filter iff it has a filter 
base consisting of closed sets. 

A filter in a space (X, (J) is called a regular filter iff it is both an 
open and closed filter. 

A filter, 9 in a space (X, U) is called a Urysohn filter iff it is an 
open filter and for each x G X, such that x is not a cluster point of *?, 
there is an open neighborhood U of x and V £ 9 such that U DV 
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