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ON THE EQUIVALENCE OF OSCILLATION AND THE 
EXISTENCE OF INFINITELY MANY CONJUGATE POINTS 

M . S. KEENER 

ABSTRACT. Consider the linear nth order ordinary dif
ferential equation t/(n) + 2 " ~ J pMy^ = ® where the co
efficients are continuous on a half-line. Sufficient conditions 
are given under which oscillation is equivalent to the existence 
of infinitely many conjugate points. 

Introduction. Consider the linear differential equation 

(l.i) i ( y ) s y w + S 1 p k W y * , = o) 
fc=0 

where pk(t),k = 0 ,1 , • • -, n — 1, is continuous on an interval 
[a, oo ), a > — oo. Equation (1.1) is said to be oscillatory provided it 
has an oscillatory solution, i.e., a nontrivial solution with arbitrarily 
large zeros. Otherwise, equation (1.1) is said to be nonoscillatory. For 
n = 2 it is well known that nonoscillation of (1.1) on [a, oo ) implies 
(1.1) is disconjugate on some interval [h, oo ) for a S b. Whether or 
not a similar statement is true for n > 2 was resolved in the negative 
by Dolan [1], and Gustafson [2]. A. Levin [4] also gives an ex
ample of a nonoscillatory third order equation for which, given arbi
trary numbers t0 and r, there exists a nontrivial solution with at least r 
zeros on (t0, oo ). In [2], for each n > 2 there is exhibited a linear 
equation of order n which is nonoscillatory yet r)p(a) exists for each 
integer p ^ 1. (r)p(a) is defined in § 2 below.) For a class of fourth-
order self-adjoint linear differential equations, Leighton and Nehari 
[6] show that oscillation is equivalent to the existence of r)p(a) for 
each integer p e l and used this equivalence to give sufficient condi
tions on the coefficients for nonoscillation. In addition, they are able 
to characterize for each p = 1 the extremal solutions defining r)p(a). 
Recently Ridenhour [10] has given conditions on equation (1.1) in 
terms of boundary-value functions under which he is able to obtain a 
characterization of the extremal solution for rjp(a) analogous to the 
characterization given by Leighton and Nehari in [6]. The purpose 
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of this paper is to give conditions on equation (1.1) under which oscil
lation is equivalent to the existence of r)p(a) for each integer p ^ 1. 
The conditions given here, although more restrictive than those in 
[10], are equivalent to those in [6] for n = 4. We shall make exten
sive use of several theorems given in [ 10]. 

2. Definitions and Preliminaries. Let k, iu i2, * * *, ik denote positive 
integers for which k ^ 2 and ^)=\ ij = n. A nontrivial solution u(t) 
of equation (1.1) is said to have a n i Y ^2 * ^k 

distribution of 
zeros on an interval I provided there exists points tx < t2 < ' ' * < tk 

for which m[u(t), tj] = ij for j = 1, 2, • • -, k. Here m[u(t), tj] denotes 
the exact multiplicity of the zero of u(t) at t = tj. The boundary value 
function nii2---ik (t), t = a, is defined as the infimum of the set of num
bers b > t for which there exists a nontrivial solution of (1.1) with an 
i\ — i% — ' ' ' — ik distribution of zeros on the interval [t, b]. Here 
we take the infimum of the empty set to be <*>. Iff i1i2---»k(0 = °° for 
all f = a, we write uli2-..ik = <*>. To simplify the notation we adopt 
the following notation used in [ 5] : 

S ( n - l ) p ( £ ) = ri1i2---ik W> 

where k = n — 1, i3-, = 1, j ^ p, and ip = 2. 
For k ^ 1 and t G [a, o° ) we define the fcth conjugate point nk(t) 

(in the sense of Sherman [12] and Gustafson [2]) as the infimum 
of the set of numbers b for which there exists a nontrivial solution of 
(1.1) with n + k — 1 zeros on the interval [£,&]. Throughout this 
paper zeros of a solution are counted according to their multiplicities. 
An extremal solution defining r)k(t) is a nontrivial solution of (1.1) 
having n + k — 1 zeros on [t,T}k(t)]. It should be pointed out that the 
notion of the conjugate point arising from the calculus of variations 
is different from the one defined here. 

The boundary-valu e functions and conjugate points defined above 
have been studied by a variety of authors. Some ([9] , [11]) have 
given various ordering properties of boundary-value functions, while 
others ([8] , [13]) have studied the relationships between rii(t) and 
boundary-value functions. Of particular interest Peterson [8] has 
shown that 

Th(£) = minfc^.{S(n_1)fc(f), S(n_ll7<£)}-

It follows that if r)i(t) < oo, there exists at most one integer p, 
1 = p = n — 1, for which S(n_1)p = oo . For n = 4 the conclusion of a 
basic lemma (Lemma 2.3) in [6] may be interpreted as S32 = °°. 
Hanan [3] has studied third order equations for which S2\ = °° or 
S22

 = °°. The results presented here generalize some of the theorems 
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in [6] and [3]. In [5] the author has studied oscillatory prop
erties of a class of nth-order equations for which S(n_1)p = oo for some 
integer p. In another vein Nehari [7] has shown that if r)l = oo for 
(1.1) (i.e., L(y) is disconjugate on (a, oo )) and q(t) ^ O o n (a, oo )? then 
for the equation L(y) = q{t)y, rik = oo whenever i + k> n. 

The following theorems are due to Ridenhour [10] and will be 
referred to often in the remaining portions of this paper. In order to 
simplify the notation on these theorems and those of § 3 we shall intro
duce the following definition. 

DEFINITION. Let p be a fixed integer, l ^ p ^ n — 1. A distribution 
of zeros ix — /2 — * * • — ik, k = 2, for a nontrivial solution of (1.1) is 
called a p-distribution provided 2 j = i h = n> an (^ t h e r e exists an 
integer s, 1 â s = fc, such that 2 J = I ij — p. Using the definition the 
following theorems are easy interpretations of the indicated theorems 
in [10]. 

THEOREM 2.1 (Theorem 2.3 [10]). For equation (1.1) suppose p 
is an integer, l ^ p ^ n - I, for which S(n_1)p = r(p+1)(n_p) = rp(n_p+i) 
= oo . Suppose further that y(t) is a nontrivial solution of (1.1) with an 
ii — i2 — ' * * — h distribution of zeros, 2 j = i ij = n, which is not 
a p-distribution. Let s = min {r | 2 j = i ij = p}. Then 2 i = i h = 

p + 1 and is = 2. 

THEOREM 2.2 (Lemma 4.2 [10]). For equation (1.1), suppose p is 
an integer, 2 g p g n - 2 , / o r which S(n_1)p = r(p+1)(n_p) = rp(n_p+1) 

= oo. Suppose further that y(t) is a nontrivial solution of (1.1) with an 
ix — i2 "" ' ' * """ h distribution of zeros for which ij ̂  2 for each 
j = 1,2, • • -, k. Then, 

(i) if 25= i *j = n> ^ distribution is a p-distribution; 

(ii) if 25=i *j > n ' tnen k = 3, iY = p , i2 = 2, i3 = n — p and y(t) 
has no other zeros on [a, oo ). 

THEOREM 2.3 (Theorems 4.1, 4.2 [10]). For equation (1.1) suppose 
p is an integer, l ë p â n - 1 , for which S(n_1)p = r(p+1)(n_p) = 
rp(n_p+1) = oo. Suppose further that yk(i) is an extremal solution for 
r)k(b) where b> a. Then 

(i) m[yk(t),b] = p,m[yk(t)9rik(b)] = n - p; 
(ii) t/fc(£) /ias exactly (k — 1) zeros on (b, r)k(b)); 

(iii) if j/fc(o) = 0 for c G (î?fc(&), °° ), ^ n fc = 1, p = n — 2, 
™ [?/*(*)> c] = 2; 

(iv) j/fc(£) is unique to within constant multiples. 

The following well known lemma has been used by various authors. 
Its proof may be found in [12] and is stated here for easy reference. 



128 M . S . KEENER 

LEMMA 2.1. Let b < c be real numbers and suppose u(t) and v(t) 
are nontrivial solutions of equation (1.1) for which m[u(t), b] > 
m[v(t), b] ^ 0, m[u(t), c] > m[v(t), c] ^ 0, and v(t) / 0 for 
t G (fo, c). Then there exists a nontrivial linear combination of u(t) 
and v(i) with a double zero on (b, c). 

3. Main Results. Consider the following equation together with the 
conditions for some fixed integer p, 1 ^ p ^ n — 1, 

L(y)=y<»>+ B2p*(')y<fc)=0, 

(3.1) _ "I" _ _ 
S(n-l)p — r(p + l)(n-p) ~~ r p(n-p+l) — rp2(n-p) — °° • 

In this section we shall show that (3.1) is oscillatory if and only if, for 
b> a, r)k(b) exists for each integer fc ^ 1. Using different techniques 
than those presented here Ridenhour [ 10] obtained this result for the 
special case p — n— 1. If p = n — 1 or p = 1, then the condition 
rp2(n-p) = °° is redundant and may be omitted. For n = 3 or n = 4, 
this same condition is redundant for any choice of p = 1, 2, 3. We 
begin with the following fundamental theorem. 

THEOREM 3.1. For the system (3.1) if u(t) is a nontrivial solution 
with an ix — i2 — ' ' ' — ik distribution of zeros, ^kj=\ij = n, then 
iY — i2 — • ' ' — ikis a p-distribution of zeros. 

Let ti < t2< ' ' ' < tk denote points for which m[u(t), tj] ^ ij for 
j = 1, 2, • • -, k. Suppose first that 2 ^ p ^ n - 2. If m[u(t), t3] ̂  2 
for each j= 1, 2, • • *,fc, then by the hypothesis and Theorem 2.2 
there exists an integer a for which 

k a 

^ m[u(t), tj] = nand ^ m[u(t), tj] = p. 
J = l 3=1 

It follows that m[u(t), tj] = ij for each j = 1,2, * • *,fc, and the dis
tribution is therefore a p-distribution. 

Assume then that m[u(t), tQi] = iQl = 1 for some integer qx, 
1 ^ qx ^ fc. We shall show that if the given distribution is not a p-
distribution, then there exists a nontrivial solution with a zero distribu
tion which is not a p-distribution and has (fc + 1) distinct zeros in this 
distribution. Repeating this argument (n — k — 1) times would yield 
a nontrivial solution having a zero distribution which is not a p-distribu
tion of zeros at (n — 1) distinct points, contradicting S(n_1)p = °° . 

To this end, suppose ix — i2 — • • • — ifc is not a p-distribution of 
zeros and let s = min {r | ̂ }=i ij = p}. By Theorem 2.1, we have 
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(3.3) È *; = P + X and ** = 2-
J' = l 

If ij= 1,7 / s> it follows that s = p, contradicting S(n_1)p = oo. We 
may then assume there exists an integer q ^ s for which iq = 2, and 
consider a nontrivial solution £>(£) satisfying the following (n — 1) 
conditions: 

vU)(tr) = o j = 0 ,1 , • • -, ir - 1, r / q, qi; 

l ^ K ) = 0, j = 0, 1, • • -, iQ - 2; 

t/'(0 = o. 

Observé that m[u(t), ts] = 2. Otherwise w(£) has a zero distribution 
on the set {tj}j*qi which is not a p-distribution and obviously contra
dicts Theorem 2.1. Similarly, v^ici~^'(tq) ^ 0 since m[v(t), ts] ^ 3 . 
Consequently, no nontrivial linear combination of u(t) and t>(£) is 
identically zero. If a constant c is chosen sufficiently small, it follows 
that either u(t) — cv(t) or w(£) + cv(t) has zeros near t = £Qi and 
t—tq. Hence this linear combination has (k 4- 1) distinct zeros, and 
this zero distribution is not a p-distribution by (3.3). As indicated 
above, repeating this argument leads to the conclusion that S(n_1)p(a) 
< oo. This contradiction of the hypothesis completes this portion of 
the proof of the theorem. 

Suppose now that p = 1. We shall show that if ix — i2 — • • • — i* 
is not a p-distribution, then there exists a nontrivial solution of (3.1) 
which has at least (k + 1) distinct zeros and a zero distribution which 
is not a 1-distribution. As before this will contradict S(n_1}1 = oo . 

By hypothesis it clearly follows that there exists an integer q > 1 
for which iq §£ 2. If there also exists an integer qx for which 
m[u(t), tqJ = 1 we may proceed in a way analogous to that in the 
appropriate above portion for 2 ^ p § n - 2. We assume then 
m[u(t), tj] = 2 for all^' = 2. There are several cases to be considered. 
Suppose first that there exists m ^ q, m > 1, for which im i^ 2. Con
sider then a non trivial solution v(t) of (3.1) defined by the following 
(n — 1) conditions 

VW(tr) = Oj = 0,l, •••, ir^r^ q,q; 

t,<i>(*m) = 0 , j = 0 , l , • • ' , i m - 2 ; 

!>" ( ^ = 0. 

It follows from Theorem 2.1 that u"(tl)v(ii-1)(tq)v(i*n-V(tm) j* 0. 
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Consequently, if a constant c is chosen sufficiently small, then either 
u(t) — cv(t) or u(t) + cv(i) has (k + 2) distinct zeros and a zero distri
bution which is not a 1-distribution. 

Now suppose k = 2. By hypothesis r2(n-i) = °°> a n d hence 
wi[w(£), t2] = n - 2 ê 2. Choose a nontrivial solution v(t) of (3.1) 
satisfying the following (n — 1) conditions: 

ü(i)(tl) = 0 , j = 0 , l , 2 ; 

vU)(t2) = 0, j = 0,1, • • -, n - 5, if n ^ 5. 

Then as before a constant c may be chosen so small that either u(t) — 
cv(t) or u(t) + CÜ(£) has (fc + 2) distinct zeros and a double zero at 
t = tx. 

Finally, suppose ij = 1, j ^ 1, q, k > 2, and m[u(t), tj] ^ 2 for all 
j = 1,2, * * -, k. The technique is similar to that above. The choice 
of the solution v(t) differs according to m[u(t), tq]. If m[u(t), tq] — iq 

is even, choose v(t) satisfying 

„U)(tl) = 0, j = 0, 1, 2; 

»($) = °> j 7̂  9> 

»0)(*,) = 0,7 = 0 ,1 , • • -, iq - 3, if i, ^ 3. 

If m[u(t), tq] — iq is odd, choose v(t) satisfying 

u(j)(*i) = 0 , j = 0 , l , 2 , 

v(tj) = 0, j / qi for some qij£l,q, 

vV\tq) = 09j=09l, ••• ,*, " 2 . 

In either case, it follows that m[w(£), £Q] — ra[t;(£), tq] is an even 
positive integer, and hence a constant c may be chosen so small that 
either u(t) — cv(t) or u(t) + ct>(£) has n zeros distributed over (fc + 1) 
distinct points and a double zero at £ = tv A similar argument may 
be given for the case p = n — 1, concluding the proof of the theorem. 

The following corollaries are immediate consequences of Theorem 
3.1. Two nontrivial solutions of (3.1) are essentially different pro
vided they are not constant multiples of each other. 

COROLLARY 3.1. If a< a< ß, any nontrivial solution of (3.1) with 
(p — 1) zeros on [a, a] and (n — p — 1) zeros on [ß, °o ) has only 
simple zeros on (a, ß). 

Corollary 3.2. If a < a < ß and u(t) and v(t) are essentially different 
nontrivial solutions of (3.1) with (p — 1) zeros in common on [a, a] 
and (n — p — 1) zeros in common on [ß, o° ), then W[u(t)v(t)] = 
u'(t)v(t) - v\t)u(t) ^ 0 fort G (a,ß). 
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Since W[u(t), v(t)] j ^ 0 implies u(i) and v(t) form a fundamental 
set for a second-order linear ordinary differential equation, Corollary 
3.2 may be considered as a separation theorem, i.e., the zeros of u(t) 
and v(t) separate each other on (a,ß). Consequently, the number of 
zeros of u(t) on (a,ß) differs from the number of zeros of v(t) on (a,ß) 
by at most one. 

In [5] it is assumed for equation (1.1) that no two essentially 
different solutions have (n — 1) zeros in common. The assumption plays 
a crucial role in the proofs of many of the theorems in [5]. The fol
lowing theorem shows that the results of [5] are applicable to the 
system (3.1). 

THEOREM 3.2. For the system (3.1) no two essentially different solu
tions have (n — 1) zeros in common. 

Suppose to the contrary that u(t) and v(t) are essentially different 
solutions of (3.1) with (n — 1) zeros in common located as distinct 
points tx < t2 < ' • * < tk. Clearly i § 2 , and for i = 1, 2, • • -, k let 

m{ = min {m[u(t), ti] ,m[v(t), t{] } ̂  n — 2. 

Define s = min {r lX*=i m* — P)> an<^ consider the nontrivial solu
tion w(t) of (3.1) given by 

w(t) = u(m*)(ts)v(t) - v(m*\ts)u(t). 

It follows that w(i) has a distribution of zeros which is not a p-distribu-
tion. This contradication of Theorem 3.1 completes the proof of the 
theorem. 

The following two lemmas indicate to a certain extent how the zeros 
of an extremal solution defining r)k(b) for (3.1) are distributed on 
(b,r)k(b)), b > a. Let b > a be a real number and {Zi(b; t)}^~Q the 
fundamental set of solutions of (3.1) for which Zi{j)(b; b) = ò{j (the 
Kronecker delta), j = 0 ,1 , 2, • • -, n — 1. By Theorem 2.3 any extremal 
solution of (3.1) for r)k(b), k = 1, is a linear combination of the solu
tions Zi(b; t), i = p, • • -, n — 1. In the remainder of this paper yk(t) 
shall denote the extremal solution of (3.1) for r)k(b) for which yk(t) = 
^nj^ckjZj(b;t) 

(3.4) "S 4 = l a n d c f c p > 0 . 
j=p 

LEMMA 3.1. For the system (3.1) if b > a and v)k{b) < oo and 
1 < q < k, then yk(t) has at least q distinct zeros on (b, r)q(b)). 
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To prove the lemma consider a set of nontrivial solutions {tii(f)}f=0
p 

satisfying the following (n — 1) conditions for i = 1, 2, • • -, n — p — 1: 

u.U)(h) = oj = 0,1, • • -, p - 2, if p = 2; 

(3.5) u ^ W ) = 0, j = 0 ,1 , • • -, n - p - i - 1; 

UiU)hk(b)) = 0,j = 0,1, • • - , ! - 1. 

Let ii0(f) = j/q(£) and un_p(t) = yk(t). Note that for i = 1, 2, • • -, n — p, 
Ui(t) and Mi_i(f) have (p — 1) zeros in common at t = b and n — p — 1 
zeros in common on the set {i)q(b), t)k(b)}. Let a ^ < ao2 < * * • < 
oö(Q_i) denote the simple zeros of u0(t) on (b,r)q(b)). Since Wi(£) and 
u0(t) are essentially different, by Lemma 2.1 and Corollary 3.2, Ui(t) 
must have a simple zero on (b,atoi) a n d on each interval (oty, otyj+u), 
j = 1, 2, • • -, g — 1, where a ^ — %(&). Hence uY(t) has at least q 
simple zeros on (b,r)q(b)). Suppose u{{t) for some i, 1 ê i < n - p, 
has q simple zeros on (b,r)q(b)) at points an < Oj2 < * • * < a^, 
where u^t) ^ 0 on (oiq)r)q(b)). If u^t) and ui+1(£) are essentially dif
ferent, it follows from Corollary 3.2 and Lemma 2.1 that ui+i(t) van
ishes on (otipOtHj+i)), j= 1, 2, • • -, 9 - 1, and on (a%(q_i),i)Q(fo)). 
Consequently, ui+l(t) has at least g zeros on (b,r)q(b)). Hence u^t) 
has at least q zeros on (b,i)q(b)) for each i = 0, 1, • • -, n — p, and the 
proof is complete by choosing i = n — p. 

The method of proof used in Lemma 3.1 actually yields a somewhat 
stronger result than that stated. Instead of using the extremal solution 
yk(t), a similar proof may be constructed using any nontrivial solution 
u(t) of (3.1) having at least p — 1 zeros at t = b and (n — p) zeros on 
(riq(b), °° ). Furthermore, if u(t) and yq(t), 9 = 1 , are essentially dif
ferent solutions and a set of solution, {u{(t)}fZo, similar to that used 
in the proof of Lemma 3.1 is introduced, then for some i = 1, 2, • • -, 
n — p, Ui(t) and ui_l(t) are essentially different. It follows that u(t) 
has at least q zeros on (b,T)q(b)). In [5] it is shown that if (3.1) is 
oscillatory, there exists oscillatory solutions with a zero at t = b of 
multiplicities p — 1 and p. Clearly, these oscillatory solutions must 
have q distinct zeros on (b, Tjq(fo)), q =" 1. 

LEMMA 3.2. For equation (3.1) if b > a, l ë q ë f c + p - n , and 
7}k(b) < oo 9 then yk(t) has at most n — p + q — 1 zeros on (b, ifo(fc)). 

To prove the lemma suppose to the contrary that yk(t) has at least 
n — p + q distinct zeros (recall the zeros of yk(t) are simple on 
(b,r)k(b))) on (b, r)q(b)). Consider a set {Vi(t)}^ of nontrivial 
solutions of (3.1) given by v^t) = un_p_i(t), i = 0, 1, - - % n — p, where 
Uj(t),j = 0, 1, 2, • • -, n — p, is defined by (3.5). Corollary 3.2 implies 
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that for i = 1, • • -, n — p the number of zeros of v^t) differs from the 
number of zeros of fi_1(f) by at most one. Hence yq(t) = vn_p(t) has 
at least q zeros on (b,r)q(b)) contradicting Theorem 2.3. This con
cludes the proof of the lemma. 

We are now prepared to prove the primary theorem of the paper. 

THEOREM 3.3. For the system (3.1) the equation is oscillatory pro
vided for some b > a, rjk(b) exists for each integer k ^ 1. 

We need only show that if b > a and r)k(b) exists for k = 1, then 
there is an oscillatory solution of the equation. To this end recall the 
definition (3.4) ofyk(t). Since each member of the sequence of vectors 
{(ckp> cfc(p+i)> ' ' '•> ck(n-i))}t=i n e s o n the unit ball in a finite dimen
sional vector space, there exists a subsequence of vectors which con
verge to a vector (cp, cp + 1 , • • -, cn_x) on the unit ball. Let {*/*.(*)} 1=1 
denote the corresponding subsequence of solutions, and define y(t) = 
5)5=p CjZi(b; t). Clearly, y(t) =̂  0 and the zeros of y(t) are the 
accumulation points of the zeros of {;/*,(*)} 1=i» 

We now show that y(t) has arbitrarily large zeros on (fo, oo ). If 
q > 1 denotes an integer, then, for each integer k> n — p + q + 1 = 
a(q), yk(t) has at least n — p + q zeros on (b,r)a(q)(b)) by Lemma 3.1. 
On the other hand, Lemma 3.2 yields that yk(t) has at most n — p + 
q — 1 zeros on (b,r)q(b)). Therefore yk(t) vanishes at least once on 
(r)q(b),yia(q)(b)) for every b>n — p + q+1. It follows that y(t) 
vanishes on [r)q(b),r)a{q)(b)] for each integer q > 1, and the proof is 
complete. 
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