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STRUCTURE INHERENT IN A FREE GROUPOID 
J. A. S. GROWNEY 

ABSTRACT. It has often been of interest in mathematics to 
consider the problem of embedding a certain algebraic system 
in other more restricted systems, i.e., in those satisfying addi
tional properties. In the present paper, an opposite problem is 
considered, namely, the possibility of finding certain more re
stricted systems within a given one. A new characterization of 
a free groupoid, in terms of a successor mapping, is also given. 

1. Introduction. Let S be any non-empty collection of symbols not 
containing the element * . A free groupoid ( G, • ), with free basis S, may 
be obtained in the following manner: 

(G-l) G is the collection of exactly those strings of symbols from 
S U { * } which satisfy the condition that, reading from left to right in any 
string, the number of elements of S encountered never exceeds the 
number of * 's until the final symbol is reached and in the entire string 
the number of elements of S exceeds the number of * 's by one. 

(G-2) For a,b E G, the operation • , with domain GX G and range 
G — S, is defined by 

a%b = *ab; 

that is, the • product of a and b is obtained by concatenating the sym
bol *, the symbols of a, and the symbols of b, in left-to-right order. 

Clearly, for a, b G G, a • b is a member of G since condition (G-l) is 
satisfied. 

The equivalence of the above definition of a free groupoid to the 
more usual one, stated in terms of homomorphisms, is demonstrated in 
[2]. A useful necessary and sufficient condition [1, p. 6] that a 
groupoid (G, • ) be free with free basis S C G is: each Ö E S 
is prime in G, whereas if a G G — S, say a = gig2 * * * gn, where 
g i Ê S U {*} for i = 1,2, • * *, n, then a = b • c for exactly one 
ordered pair of elements b, c of G — namely, b = g2g3 ' ' ' gm

 a n d c = 
gm+i ' ' ' gn> where m is the least positive (even) integer such that the 
number of occurrences of * in the string gig2 • • • gm is m/2. 
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2. A New Characterization of the Free Groupoid. For simplicity of 
exposition, in the following we consider only the free groupoid ( G, • ) 
with a single generator, s, although nearly all results translate easily to 
the arbitrary free groupoid. For our discussion, it is useful first to 
make the following definition. 

DEFINITION 1. Let X be the mapping, from G to the set of positive 
integers, defined by 

(i) \(s) = 1, and 
(Ü) if g = *g'g"> g'> g" e G, then X(g) = X(g') + A(g"). X(g) is 

called the length of g. 
It is easily shown [2, p. 17] that X is a well-defined mapping whose 

domain is indeed G and whose range is the entire set of positive 
integers. In each string g G G the symbol s occurs X(g) times, a fact 
which is a corollary to Theorem 1, itself readily provable by induction 
onX(g). 

THEOREM 1, If g = gxg2 * * * g* G G, with each gi G {*, s}, then 
k = 2X(g) - 1. 

The following concept of successor proves useful in obtaining a 
new characterization (Theorem 8) of a free groupoid. 

DEFINITION 2. The element * ss of G will be called the successor of 
s in G and if g = =*g'g", for g ' , g " G G, then a successor of g in G 
is any element of G of the form *h'g' or * g 'h" where h ' is a successor 
of g ' in G and h" is a successor of g" in G. 

Theorems 2, 3 and 4 are easily established by mathematical induc
tion on X(g). 

THEOREM 2. Each g in G has a successor in G. 

THEOREM 3. For g G G, if g ' is a successor of gin G then X(g ' ) = 
X(g)+1 . 

THEOREM 4. If g = gxg2 • • • g* G G, u;i£/i eac/i gi G {*,$}, then, 
for each j G {1,2, • • -, fc} such that gj = s, £hc element g ' = gi 
&-1 * *&&+i '"ghisa successor of g in G. 

As a direct consequence of Theorems 1 and 4 we obtain this next 
result. 

THEOREM 5. If an element g of G has X(g) = n, then g has n distinct 
successors. 

If Zg denotes the set of successors of g in G, then a straightforward 
proof by contraposition yields the following. 
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THEOREM 6. For g , / i £ G , if g ^ h then Zg ^ Zh. 

The proof depends on the fact that every set Zg contains exactly one 
element of the form gxg2 * * * g*+i> where k = X(g), where each 
gi G {*, s}, and where g*-i = * > gk = $, gk+i = s (which implies that 
g = gig2 ' * ' gfc-2*). 

The successor concept will now be used to obtain an alternate char
acterization of a free groupoid. For that purpose, let A be the union 
of a countably infinite sequence {Ai} of nonempty, pairwise disjoint 
sets subject to the following conditions: 

(Z-l) Ai contains a single element. 
(Z-2) There exists an injective mapping z, with domain A and range 

contained in P(A), the power set of A, such that if a G Ak then z(a) 
contains k elements and U a £ A z(a) = Ak+i for each k. 

z will be called a successor mapping and, for each a G A, z(a) will be 
called the successor set of a. It is an immediate consequence of (Z-l) 
and (Z-2) that Ai is a finite set, for each positive integer i. In fact, the 
addition of conditions (Z-3) to (Z-6) below guarantees [2, p. 35] that 
each Ai contains exactly Hi ( \l~i ) elements. 

In the free groupoid (G, • ) , if we define z' : G —> P(G) by z'(g) = 
Zg for each g in G and if G{ = { g E G : X(g) = i}, then z ' is a successor 
mapping of A and {Gt} is a countable collection of nonempty, pairwise 
disjoint sets for which (Z-l) and (Z-2) are satisfied relative to z '. 

If in addition to (Z-l) and (Z-2) there exists a relation R, with 
domain AX A and range A — Ax, compatible with the successor 
mapping as prescribed by the conditions below, then it can be shown 
that R defines a single-valued mapping @ of A X A into A. In fact, 
(A, @) is (Theorem 8) a free groupoid with free basis Ax. Writing 
a @ b = c to mean ((a, fe), c) G K, and defining z(a) @ b = {a' @ b : 
a' G z(a)}9 a@ z(b) = {a@ b' :b' G z(b)}, the conditions are, 
for a, b, c, d in A: 

(Z-3) c = a @ & if and only if 2(a) @ t U o @ z(fe) = z(c). 
(Z-4) If «(a) @ fo H c @ z(d) f 0 then c G z(a) and b G 2(d). 
(Z-5) If a G A, then z(a) @ b and b @ z(a) each contain j distinct 

elements, for any b in A. 
(Z-6) If a, bG A; with a 7̂  b, then z(a) @ c / z(fe) @ d and c @ z{a) 

^ d@ z(b) for any c, d G A ,̂ for any positive integer i. 
On the basis of the previously stated results for successors, we may 

deduce the following proposition. 

THEOREM 7. With z ' as defined above, the operation • in the free 
groupoid (G, • ) satisfies the compatibility conditions (Z-3) to (Z-6). 
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THEOREM 8. The system (A, @), where A and @ are subject to con
ditions (Z-l) to (Z-6), is a free groupoid with free basis Ax. 

PROOF. We first observe that it is sufficient to show that @ is an 
injective mapping from AX A onto A — Ax. 

For a,b,c,dE. A, if a @ b = c @ d, then z(a) @ b U a @ z(d) = 
z(c) @dUc@ z(d). Suppose aGAi,bGAj. If z(a) @bf)c@ z(d) 
^ 0 , then c G z(a) and b £ z(d), hence c G A{_i? d G A ^ . Thus 
2(c) @ d contains i + 1 elements, at least one of which must lie in 
a @ z(b) since z(a) @ b contains only i elements. But if z(c) @ d C\ 
a @ z(b) ^ 0 , then a G z(c) and d G z(b), which is a contradiction. 
Thus we conclude that z(a) @ b H c @ z(d) = 0 , and, by similar 
reasoning, a @ z(b) fi z(c) @ d = 0 . Hence z(a) @b = z(c) @ d 
and a @ z(fc) = c @ %(d) from which it follows that c G 4 d G Aj. 
Condition (Z-6) then implies that a—c and b = d and the injec-
tivity of @ is established. 

For a G Ai, b G Aj} z(a) @ b contains i distinct elements and 
a@ z(b) contains j distinct elements. If z(a)@ b D a@ z(b) / 0 , 
from (Z-4) it follows that a G z(a) and b G z(b), both of which are 
impossible. Thus z(a) @ b U a @ z(b) = z(a @ b) contains i + j 
elements and hence a@ b Œ Ai+j. The range of @ is therefore 
A — Ai, and the theorem is established. • 

3. Structure Inherent in the Free Groupoid (G , • ) . In addition to 
the notion of successor, it is possible to define within G operations and 
relations resulting in additional algebraic structure. For example, we 
may define binary operations •/ and mF in G in the manner described 
below. For the ordered pair g, g ' of elements of G, «/gg ' and «Fgg ' 
will denote those elements of G obtained by applying the operations 
•/ and »F respectively. This prefix notation will be advantageous pri
marily because it is parenthesis-free; for example, instead of (g«/g ' )*zg" 
and g*F(g'#Fg")> a s m m e more usual infix notation, we have 
• /• /gg 'g" and« F g« F g 'g" , forg ,g ' ,g" in G. 

(I) For g, g ' G G, «/gg ' is that element of G obtained by substituting 
the string g ' for the initial occurrence of s in g, reading from left to 
right. 

(F) For g, g ' G G, »Fgg ' is that element of G obtained by substitut
ing the string g ' for the final occurrence of s in g, reading from left to 
right. 

THEOREM 9. Each of the algebraic systems (G, • / ) and < G , # F ) is a 
semigroup with identity. 
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PROOF. The result will be established for (G, • / ) with a similar proof 
applying in the case of (G, mF). The condition for membership in G, 
stated in (G-l), is seen to be satisfied for »/gg' whenever it is satisfied 
for g and g ' . Hence •/ is indeed an operation in G Further, the ele
ment s of G is seen to serve as an identity for •/. It remains to show 
that for a,b,cEi G, mp^bc = •IamIbc. This will be proved by mathe
matical induction on k(a). If k(d) = 1, then a = s and •/•/a&c = 
%ibc = micmibc. If k(a) > 1 then there exist unique a' ,d' in G such 
that a = *a'd' and k(a') < k(a), k(d') < k(a). Thus we have •Iamibc 
= •/ *a'd'%ibc and, by definition of •/, this latter is equivalent to 
*•/a ,•/foca , ,. By the induction hypothesis, «/a'«/foe = mp^'be,so that 
*9id'*ibcd' = **j*ia'bcd'. Again utilizing the definition of •/, 
we may transform the right hand side into •/•/ *a'd'bc = •/•jafoc, and 
the proof is complete. • 

Although •/ and %F are not commutative in G, there are infinite sub
sets of G in which this property also holds. For each positive integer k, 
let sk denote that element of G consisting of k — 1 repetitions of * fol
lowed by k repetitions of s, and let sk denote that element of G con
sisting of k — 1 repetitions of * s followed by a final s. If we define 
G' = U {sk} and G" = U {s*}, the union being taken over all positive 
integers, then the following result is apparent. 

THEOREM 10. Each of the algebraic systems (G/,«/) and (G,"#F) is a 
commutative semigroup with identity s. 

The mapping which associates with each element g of G'(G") 
the non-negative integer A.(g) — 1 is an isomorphism between 
(G\ • /)( (G " mF)) and the additive semigroup of non-negative integers, 
and thus we may also make this next assertion. 

THEOREM 11. The commutative semigroups (G', %i) and{G", •F)are 
each freely generated by * ss. 

In addition, the element * ss plays the role of generator in the set 
G, in a sense made precise by the following. 

THEOREM 12. For g £ G , either g = s or there exists a positive 
integer k such that g = gxg2 ' ' ' gk with each g, G {•/, *F, * ss}. 

PROOF. By induction on A(g). If X(g) ^ 2 then g = s or g = * ss, and 
the theorem holds. If X(g) > 2, then there exist unique g ' , g" in G 
with A(g') < X(g) and X(g") < A(g), such that g = *g 'g" . If A(g') = 
1, then k(g") > 1 and g = #F* ssg"; if A(g") = 1, then k(g') > 1 and 
g = •/ *ssg'. WhenA(g') > l a n d \ ( g " ) > l ,wehaveg = «j*/ *&sg'g"'. 
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In each case the inductive hypothesis applied to g ' and/or g" estab
lishes the desired result. • 

Using the notion of successor, defined previously, one may define 
a partial order in G, i.e., a reflexive, antisymmetric and transitive rela
tion in G. 

DEFINITION 3. For g, g ' G G we will say that g precedes g ', denoted 
g = g', if and only if there exist a positive integer k and g1? g2, • • % 
gk EL G such that gx = g, gk = g ' , and g{ is a successor of g{_x for 
each i = 2, 3, • • -, fc. 

For completeness the following obvious results are stated as 
theorems. 

THEOREM 13. The set G is partially ordered relative to =, and has 
s as its least element. 

THEOREM 14. The sets G' and G" are each linearly ordered by ^ . 

THEOREM 15. For g, g ' ,g" in G, if g = *jg'g" or g = •Fg'g"? then 
g'^gandg S g . 

After observing that, for g, gl5 g2, g ', gx ', g2 ' in G with g = * gig2 and 
g ' = * gì 'g2 ', g = g ' if and only if gx ^ gi ' and g2 ^ g2 ', the following 
may be proved easily by mathematical induction on X(g) + \(g ' ). 

THEOREM 16. Every pair g, g ' has an infimum, inf(g, g ;) , and a 
supremum, sup(g, g '), in G. 

Theorem 16 asserts that the system ( G, = ) is a lattice and we may 
further state the following. 

THEOREM 17. The lattice (G, ^ ) is distributive. 

PROOF. What the theorem asserts is that, for g, g ' ,g" in G, the 
formulas 

inf(g, sup(g ' , £ ' ) ) = sup(inf(g, g '), inf(g, g" )) , 

sup(g, inf(g ', g" )) = inf(sup(g, g '), sup(g, g" )), 

hold and their verification rests on the following well-known result: 
A lattice is distributive if and only if it does not 

contain a sublattice isomorphic to either of the 5-
element lattices of Figure 1. In each of these lattices 
the ordering is defined by: p = q if and only if p = 
q or there exists a downward path from q to p. 

The assumption that a sublattice isomorphic to either of the lat
tices of Figure 1 can occur in G quickly leads to contradiction of 
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aforementioned properties of G, and the desired conclusion is thus 
established. • 

( a ) ( b ) 

FIGURE 1 

R E F E R E N C E S 

1. R. H. Brück, A Survey of Binary Systems, Springer-Verlag, New York, 1966. 
2. J. A. S. Growney, Finitely Generated Free Groupoids, Doctoral dissertation, 

University of Oklahoma, Norman, Okla., 1970. 

BLOOMSBURG STATE COLLEGE, BLOOMSBURG, PENNSYLVANIA 17815 




