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STRUCTURE INHERENT IN A FREE GROUPOID 
J. A. S. GROWNEY 

ABSTRACT. It has often been of interest in mathematics to 
consider the problem of embedding a certain algebraic system 
in other more restricted systems, i.e., in those satisfying addi­
tional properties. In the present paper, an opposite problem is 
considered, namely, the possibility of finding certain more re­
stricted systems within a given one. A new characterization of 
a free groupoid, in terms of a successor mapping, is also given. 

1. Introduction. Let S be any non-empty collection of symbols not 
containing the element * . A free groupoid ( G, • ), with free basis S, may 
be obtained in the following manner: 

(G-l) G is the collection of exactly those strings of symbols from 
S U { * } which satisfy the condition that, reading from left to right in any 
string, the number of elements of S encountered never exceeds the 
number of * 's until the final symbol is reached and in the entire string 
the number of elements of S exceeds the number of * 's by one. 

(G-2) For a,b E G, the operation • , with domain GX G and range 
G — S, is defined by 

a%b = *ab; 

that is, the • product of a and b is obtained by concatenating the sym­
bol *, the symbols of a, and the symbols of b, in left-to-right order. 

Clearly, for a, b G G, a • b is a member of G since condition (G-l) is 
satisfied. 

The equivalence of the above definition of a free groupoid to the 
more usual one, stated in terms of homomorphisms, is demonstrated in 
[2]. A useful necessary and sufficient condition [1, p. 6] that a 
groupoid (G, • ) be free with free basis S C G is: each Ö E S 
is prime in G, whereas if a G G — S, say a = gig2 * * * gn, where 
g i Ê S U {*} for i = 1,2, • * *, n, then a = b • c for exactly one 
ordered pair of elements b, c of G — namely, b = g2g3 ' ' ' gm

 a n d c = 
gm+i ' ' ' gn> where m is the least positive (even) integer such that the 
number of occurrences of * in the string gig2 • • • gm is m/2. 
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2. A New Characterization of the Free Groupoid. For simplicity of 
exposition, in the following we consider only the free groupoid ( G, • ) 
with a single generator, s, although nearly all results translate easily to 
the arbitrary free groupoid. For our discussion, it is useful first to 
make the following definition. 

DEFINITION 1. Let X be the mapping, from G to the set of positive 
integers, defined by 

(i) \(s) = 1, and 
(Ü) if g = *g'g"> g'> g" e G, then X(g) = X(g') + A(g"). X(g) is 

called the length of g. 
It is easily shown [2, p. 17] that X is a well-defined mapping whose 

domain is indeed G and whose range is the entire set of positive 
integers. In each string g G G the symbol s occurs X(g) times, a fact 
which is a corollary to Theorem 1, itself readily provable by induction 
onX(g). 

THEOREM 1, If g = gxg2 * * * g* G G, with each gi G {*, s}, then 
k = 2X(g) - 1. 

The following concept of successor proves useful in obtaining a 
new characterization (Theorem 8) of a free groupoid. 

DEFINITION 2. The element * ss of G will be called the successor of 
s in G and if g = =*g'g", for g ' , g " G G, then a successor of g in G 
is any element of G of the form *h'g' or * g 'h" where h ' is a successor 
of g ' in G and h" is a successor of g" in G. 

Theorems 2, 3 and 4 are easily established by mathematical induc­
tion on X(g). 

THEOREM 2. Each g in G has a successor in G. 

THEOREM 3. For g G G, if g ' is a successor of gin G then X(g ' ) = 
X(g)+1 . 

THEOREM 4. If g = gxg2 • • • g* G G, u;i£/i eac/i gi G {*,$}, then, 
for each j G {1,2, • • -, fc} such that gj = s, £hc element g ' = gi 
&-1 * *&&+i '"ghisa successor of g in G. 

As a direct consequence of Theorems 1 and 4 we obtain this next 
result. 

THEOREM 5. If an element g of G has X(g) = n, then g has n distinct 
successors. 

If Zg denotes the set of successors of g in G, then a straightforward 
proof by contraposition yields the following. 



STRUCTURE INHERENT IN A FREE GROUPOID 119 

THEOREM 6. For g , / i £ G , if g ^ h then Zg ^ Zh. 

The proof depends on the fact that every set Zg contains exactly one 
element of the form gxg2 * * * g*+i> where k = X(g), where each 
gi G {*, s}, and where g*-i = * > gk = $, gk+i = s (which implies that 
g = gig2 ' * ' gfc-2*). 

The successor concept will now be used to obtain an alternate char­
acterization of a free groupoid. For that purpose, let A be the union 
of a countably infinite sequence {Ai} of nonempty, pairwise disjoint 
sets subject to the following conditions: 

(Z-l) Ai contains a single element. 
(Z-2) There exists an injective mapping z, with domain A and range 

contained in P(A), the power set of A, such that if a G Ak then z(a) 
contains k elements and U a £ A z(a) = Ak+i for each k. 

z will be called a successor mapping and, for each a G A, z(a) will be 
called the successor set of a. It is an immediate consequence of (Z-l) 
and (Z-2) that Ai is a finite set, for each positive integer i. In fact, the 
addition of conditions (Z-3) to (Z-6) below guarantees [2, p. 35] that 
each Ai contains exactly Hi ( \l~i ) elements. 

In the free groupoid (G, • ) , if we define z' : G —> P(G) by z'(g) = 
Zg for each g in G and if G{ = { g E G : X(g) = i}, then z ' is a successor 
mapping of A and {Gt} is a countable collection of nonempty, pairwise 
disjoint sets for which (Z-l) and (Z-2) are satisfied relative to z '. 

If in addition to (Z-l) and (Z-2) there exists a relation R, with 
domain AX A and range A — Ax, compatible with the successor 
mapping as prescribed by the conditions below, then it can be shown 
that R defines a single-valued mapping @ of A X A into A. In fact, 
(A, @) is (Theorem 8) a free groupoid with free basis Ax. Writing 
a @ b = c to mean ((a, fe), c) G K, and defining z(a) @ b = {a' @ b : 
a' G z(a)}9 a@ z(b) = {a@ b' :b' G z(b)}, the conditions are, 
for a, b, c, d in A: 

(Z-3) c = a @ & if and only if 2(a) @ t U o @ z(fe) = z(c). 
(Z-4) If «(a) @ fo H c @ z(d) f 0 then c G z(a) and b G 2(d). 
(Z-5) If a G A, then z(a) @ b and b @ z(a) each contain j distinct 

elements, for any b in A. 
(Z-6) If a, bG A; with a 7̂  b, then z(a) @ c / z(fe) @ d and c @ z{a) 

^ d@ z(b) for any c, d G A ,̂ for any positive integer i. 
On the basis of the previously stated results for successors, we may 

deduce the following proposition. 

THEOREM 7. With z ' as defined above, the operation • in the free 
groupoid (G, • ) satisfies the compatibility conditions (Z-3) to (Z-6). 
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THEOREM 8. The system (A, @), where A and @ are subject to con­
ditions (Z-l) to (Z-6), is a free groupoid with free basis Ax. 

PROOF. We first observe that it is sufficient to show that @ is an 
injective mapping from AX A onto A — Ax. 

For a,b,c,dE. A, if a @ b = c @ d, then z(a) @ b U a @ z(d) = 
z(c) @dUc@ z(d). Suppose aGAi,bGAj. If z(a) @bf)c@ z(d) 
^ 0 , then c G z(a) and b £ z(d), hence c G A{_i? d G A ^ . Thus 
2(c) @ d contains i + 1 elements, at least one of which must lie in 
a @ z(b) since z(a) @ b contains only i elements. But if z(c) @ d C\ 
a @ z(b) ^ 0 , then a G z(c) and d G z(b), which is a contradiction. 
Thus we conclude that z(a) @ b H c @ z(d) = 0 , and, by similar 
reasoning, a @ z(b) fi z(c) @ d = 0 . Hence z(a) @b = z(c) @ d 
and a @ z(fc) = c @ %(d) from which it follows that c G 4 d G Aj. 
Condition (Z-6) then implies that a—c and b = d and the injec-
tivity of @ is established. 

For a G Ai, b G Aj} z(a) @ b contains i distinct elements and 
a@ z(b) contains j distinct elements. If z(a)@ b D a@ z(b) / 0 , 
from (Z-4) it follows that a G z(a) and b G z(b), both of which are 
impossible. Thus z(a) @ b U a @ z(b) = z(a @ b) contains i + j 
elements and hence a@ b Œ Ai+j. The range of @ is therefore 
A — Ai, and the theorem is established. • 

3. Structure Inherent in the Free Groupoid (G , • ) . In addition to 
the notion of successor, it is possible to define within G operations and 
relations resulting in additional algebraic structure. For example, we 
may define binary operations •/ and mF in G in the manner described 
below. For the ordered pair g, g ' of elements of G, «/gg ' and «Fgg ' 
will denote those elements of G obtained by applying the operations 
•/ and »F respectively. This prefix notation will be advantageous pri­
marily because it is parenthesis-free; for example, instead of (g«/g ' )*zg" 
and g*F(g'#Fg")> a s m m e more usual infix notation, we have 
• /• /gg 'g" and« F g« F g 'g" , forg ,g ' ,g" in G. 

(I) For g, g ' G G, «/gg ' is that element of G obtained by substituting 
the string g ' for the initial occurrence of s in g, reading from left to 
right. 

(F) For g, g ' G G, »Fgg ' is that element of G obtained by substitut­
ing the string g ' for the final occurrence of s in g, reading from left to 
right. 

THEOREM 9. Each of the algebraic systems (G, • / ) and < G , # F ) is a 
semigroup with identity. 
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PROOF. The result will be established for (G, • / ) with a similar proof 
applying in the case of (G, mF). The condition for membership in G, 
stated in (G-l), is seen to be satisfied for »/gg' whenever it is satisfied 
for g and g ' . Hence •/ is indeed an operation in G Further, the ele­
ment s of G is seen to serve as an identity for •/. It remains to show 
that for a,b,cEi G, mp^bc = •IamIbc. This will be proved by mathe­
matical induction on k(a). If k(d) = 1, then a = s and •/•/a&c = 
%ibc = micmibc. If k(a) > 1 then there exist unique a' ,d' in G such 
that a = *a'd' and k(a') < k(a), k(d') < k(a). Thus we have •Iamibc 
= •/ *a'd'%ibc and, by definition of •/, this latter is equivalent to 
*•/a ,•/foca , ,. By the induction hypothesis, «/a'«/foe = mp^'be,so that 
*9id'*ibcd' = **j*ia'bcd'. Again utilizing the definition of •/, 
we may transform the right hand side into •/•/ *a'd'bc = •/•jafoc, and 
the proof is complete. • 

Although •/ and %F are not commutative in G, there are infinite sub­
sets of G in which this property also holds. For each positive integer k, 
let sk denote that element of G consisting of k — 1 repetitions of * fol­
lowed by k repetitions of s, and let sk denote that element of G con­
sisting of k — 1 repetitions of * s followed by a final s. If we define 
G' = U {sk} and G" = U {s*}, the union being taken over all positive 
integers, then the following result is apparent. 

THEOREM 10. Each of the algebraic systems (G/,«/) and (G,"#F) is a 
commutative semigroup with identity s. 

The mapping which associates with each element g of G'(G") 
the non-negative integer A.(g) — 1 is an isomorphism between 
(G\ • /)( (G " mF)) and the additive semigroup of non-negative integers, 
and thus we may also make this next assertion. 

THEOREM 11. The commutative semigroups (G', %i) and{G", •F)are 
each freely generated by * ss. 

In addition, the element * ss plays the role of generator in the set 
G, in a sense made precise by the following. 

THEOREM 12. For g £ G , either g = s or there exists a positive 
integer k such that g = gxg2 ' ' ' gk with each g, G {•/, *F, * ss}. 

PROOF. By induction on A(g). If X(g) ^ 2 then g = s or g = * ss, and 
the theorem holds. If X(g) > 2, then there exist unique g ' , g" in G 
with A(g') < X(g) and X(g") < A(g), such that g = *g 'g" . If A(g') = 
1, then k(g") > 1 and g = #F* ssg"; if A(g") = 1, then k(g') > 1 and 
g = •/ *ssg'. WhenA(g') > l a n d \ ( g " ) > l ,wehaveg = «j*/ *&sg'g"'. 
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In each case the inductive hypothesis applied to g ' and/or g" estab­
lishes the desired result. • 

Using the notion of successor, defined previously, one may define 
a partial order in G, i.e., a reflexive, antisymmetric and transitive rela­
tion in G. 

DEFINITION 3. For g, g ' G G we will say that g precedes g ', denoted 
g = g', if and only if there exist a positive integer k and g1? g2, • • % 
gk EL G such that gx = g, gk = g ' , and g{ is a successor of g{_x for 
each i = 2, 3, • • -, fc. 

For completeness the following obvious results are stated as 
theorems. 

THEOREM 13. The set G is partially ordered relative to =, and has 
s as its least element. 

THEOREM 14. The sets G' and G" are each linearly ordered by ^ . 

THEOREM 15. For g, g ' ,g" in G, if g = *jg'g" or g = •Fg'g"? then 
g'^gandg S g . 

After observing that, for g, gl5 g2, g ', gx ', g2 ' in G with g = * gig2 and 
g ' = * gì 'g2 ', g = g ' if and only if gx ^ gi ' and g2 ^ g2 ', the following 
may be proved easily by mathematical induction on X(g) + \(g ' ). 

THEOREM 16. Every pair g, g ' has an infimum, inf(g, g ;) , and a 
supremum, sup(g, g '), in G. 

Theorem 16 asserts that the system ( G, = ) is a lattice and we may 
further state the following. 

THEOREM 17. The lattice (G, ^ ) is distributive. 

PROOF. What the theorem asserts is that, for g, g ' ,g" in G, the 
formulas 

inf(g, sup(g ' , £ ' ) ) = sup(inf(g, g '), inf(g, g" )) , 

sup(g, inf(g ', g" )) = inf(sup(g, g '), sup(g, g" )), 

hold and their verification rests on the following well-known result: 
A lattice is distributive if and only if it does not 

contain a sublattice isomorphic to either of the 5-
element lattices of Figure 1. In each of these lattices 
the ordering is defined by: p = q if and only if p = 
q or there exists a downward path from q to p. 

The assumption that a sublattice isomorphic to either of the lat­
tices of Figure 1 can occur in G quickly leads to contradiction of 
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aforementioned properties of G, and the desired conclusion is thus 
established. • 

( a ) ( b ) 

FIGURE 1 
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