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STRUCTURE INHERENT IN A FREE GROUPOID
J. A. S. GROWNEY

ApsTRaCT. It has often been of interest in mathematics to
consider the problem of embedding a certain algebraic system
in other more restricted systems, i.e., in those satisfying addi-
tional properties. In the present paper, an opposite problem is
considered, namely, the possibility of finding certain more re-
stricted systems within a given one. A new characterization of
a free groupoid, in terms of a successor mapping, is also given.

1. Introduction. Let S be any non-empty collection of symbols not
containing the element *. A free groupoid (G, e ), with free basis S, may
be obtained in the following manner:

(G-1) G is the collection of exactly those strings of symbols from
S U { * } which satisfy the condition that, reading from left to right in any
string, the number of elements of S encountered never exceeds the
number of *’s until the final symbol is reached and in the entire string
the number of elements of S exceeds the number of *’s by one.

(G-2) For a, b € G, the operation e, with domain G X G and range
G — S, is defined by

ae b= xab;

that is, the @ product of @ and b is obtained by concatenating the sym-
bol *, the symbols of a, and the symbols of b, in left-to-right order.

Clearly, for a, b € G, ae b is a member of G since condition (G-1) is
satisfied.

The equivalence of the above definition of a free groupoid to the
more usual one, stated in terms of homomorphisms, is demonstrated in
[2]. A useful necessary and sufficient condition [1, p. 6] that a
groupoid (G,e) be free with free basis SC G is: each a €S
is prime in G, whereas if a € G— S, say a= g,g; " * g,, where
gESU{x} for i=1,2,- +,n, then a= bec for exactly one

ordered pair of elements b, c of G—namely, b = gyg; - * * g and ¢ =
gm+1 " " * &n Where m is the least positive (even) integer such that the
number of occurrences of * in the string g,g, * * * g, is m/2.
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2. A New Characterization of the Free Groupoid. For simplicity of
exposition, in the following we consider only the free groupoid (G, o)
with a single generator, s, although nearly all results translate easily to
the arbitrary free groupoid. For our discussion, it is useful first to
make the following definition.

DeFiniTION 1. Let A be the mapping, from G to the set of positive
integers, defined by

(i) AM(s) =1, and

(ii) if g==g'g", g’, g" € G, then A(g) = Ag’') + Ag"). Mg) is
called the length of g.

It is easily shown [2, p. 17] that A is a well-defined mapping whose
domain is indeed G and whose range is the entire set of positive
integers. In each string g € G the symbol s occurs A(g) times, a fact
which is a corollary to Theorem 1, itself readily provable by induction

onA(g).

TueoreMm 1. If g = g2 * * ' gk € G, with each g; € {x,s}, then
k=2xg) — L

The following concept of successor proves useful in obtaining a
new characterization (Theorem 8) of a free groupoid.

DEeriniTiON 2. The element % ss of G will be called the successor of
sin G and if g=xg’'g’, for g', g’ € G, then a successor of g in G
is any element of G of the form »h'g" or * g’'h” where h' is a successor
of g’ in Gand h” is a successor of g’ in G.

Theorems 2, 3 and 4 are easily established by mathematical induc-
tion on A(g).

TaeoreM 2. Each g in G has a successor in G.
Tueorem 3. For g € G, if g’ is a successor of g in G then A(g') =
Ag) + 1.

TueoreM 4. If g = gi1g, - g € G, with each g; € {*,s}, then,
for each j € {1,2, - - -, k} such that g; = s, the element g’ = g, - - -
gi-1 *Sgigi+1 * * ° &k s a successor of gin G.

As a direct consequence of Theorems 1 and 4 we obtain this next
result.

TueEOREM 5. If an element g of G has \(g) = n, then g has n distinct
successors.

If Z, denotes the set of successors of g in G, then a straightforward
proof by contraposition yields the following,
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TueoreMm 6. For g, h € G, if g # h then Z, # Z,.

The proof depends on the fact that every set Z, contains exactly one
element of the form g;g; ‘- gc+1, Where k = A(g), where each
gi € {*, s}, and where gx_, = *, gy = s, gk, = s (which implies that
2= g1 """ Brk-29)-

The successor concept will now be used to obtain an alternate char-
acterization of a free groupoid. For that purpose, let A be the union
of a countably infinite sequence {A;} of nonempty, pairwise disjoint
sets subject to the following conditions:

(Z-1) A, contains a single element.

(Z-2) There exists an injective mapping z, with domain A and range
contained in P(A), the power set of A, such that if a € A, then z(a)
contains k elements and U, ¢ ,, (@) = A, for each k.

z will be called a successor mapping and, for each a € A, z(a) will be
called the successor set of a. It is an immediate consequence of (Z-1)
and (Z-2) that A; is a finite set, for each positive integer i. In fact, the
addition of conditions (Z-3) to (Z-6) below guarantees [2, p. 35] that
each A, contains exactly 1/i (577) elements.

In the free groupoid (G, e), if we define z’' : G = P(G) by z'(g) =
Z, for each gin Gand if G; = {g € G:\(g) = i}, then 2z’ is a successor
mapping of A and {G;} is a countable collection of nonempty, pairwise
disjoint sets for which (Z-1) and (Z-2) are satisfied relative to z'.

If in addition to (Z-1) and (Z-2) there exists a relation R, with
domain AX A and range A — A,, compatible with the successor
mapping as prescribed by the conditions below, then it can be shown
that R defines a single-valued mapping @ of A X A into A. In fact,
(A,@) is (Theorem 8) a free groupoid with free basis A;. Writing
a@ b = ¢ to mean ((a, b), c) € R, and defining z(a) @b ={a’ @ b:
a' €Ez(a)}, a@zb)={a@b’':b’' €z(b)}, the conditions are,
fora, b, c,din A:

(Z-3) c=a@bifandonly if z(a) @ b U a @ z(b) = z(c).

(Z-4) If2(a) @ b N ¢ @ z(d) # P then ¢ € z(a) and b € z(d).

(Z-5) If a € A; then z(a) @ b and b @ z(a) each contain j distinct
elements, for any b in A.

(Z6) Ifa,b € A;witha 7‘ b, then z(a) @ ¢ 74 z(b) @ d and ¢ @ z(a)
# d @ z(b) for any c, d € A, for any positive integer i.

On the basis of the previously stated results for successors, we may
deduce the following proposition.

Tueorem 7. With z' as defined above, the operation e in the free
groupoid (G, e) satisfies the compatibility conditions (Z-3) to (Z-6).



120 J- A. S. GROWNEY

THEOREM 8. The system (A, @), where A and @ are subject to con-
ditions (Z-1) to (Z-8), is a free groupoid with free basis A,.

Proor. We first observe that it is sufficient to show that @ is an
injective mapping from A X Aonto A — A,.

For a,b,c,d€ A, if a@b=c@d, then z(a) @b U a@ z(d) =
z(c)@d U c@ z(d). Suppose a € A;, b € A;. If 2(a) @ b N ¢ @ z(d)
# @, then ¢ € z(a) and b € z(d), hence ¢ € A;_;, d € A;_,. Thus
z(c) @ d contains i + 1 elements, at least one of which must lie in
a @ z(b) since z(a)@ b contains only i elements. But if z(c) @ d N
a@ z(b) # @, then a € z(c) and d € z(b), which is a contradiction.
Thus we conclude that z(a) @b N c@ z(d) = P, and, by similar
reasoning, a@ z(b) Nz(c)@d= @. Hence z(a)@b = z(c)@d
and a @ z(b) = ¢ @ z(d) from which it follows that ¢ € A;, d € A;.
Condition (Z-6) then implies that a = ¢ and b = d and the injec-
tivity of @ is established.

For a € A;, b€ A;, z(a) @b contains i distinct elements and
a @ z(b) contains j distinct elements. If z(a) @ b N a @ z(b) # P,
from (Z-4) it follows that ¢ € z(a) and b € z(b), both of which are
impossible. Thus z(a) @b U a @ z(b) = 2(a @ b) contains i+ j
elements and hence a@ b € A;,;, The range of @ is therefore
A — A,, and the theorem is established. =

3. Structure Inherent in the Free Groupoid (G, e). In addition to
the notion of successor, it is possible to define within G operations and
relations resulting in additional algebraic structure. For example, we
may define binary operations e; and ey in G in the manner described
below. For the ordered pair g, g’ of elements of G, ¢;gg’ and ergg’
will denote those elements of G obtained by applying the operations
o; and ey respectively. This prefix notation will be advantageous pri-
marily because it is parenthesis-free; for example, instead of (ge;g " )e;g"
and gep(g'epg”), as in the more usual infix notation, we have
o0;gg’'g” and epgepg’g’ forg, g’, g" in G.

(I) For g, g’ € G, e;gg’ is that element of G obtained by substituting
the string g’ for the initial occurrence of s in g, reading from left to
right.

(F) For g, g’ € G, epgg’ is that element of G obtained by substitut-
ing the string g’ for the final occurrence of s in g, reading from left to
right.

TueoreM 9. Each of the algebraic systems (G, e;) and (G, er) is a
semigroup with identity.
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Proor. The result will be established for (G, ¢;) with a similar proof
applying in the case of (G, ep). The condition for membership in G,
stated in (G-1), is seen to be satisfied for e;gg’ whenever it is satisfied
for g and g’. Hence e, is indeed an operation in G. Further, the ele-
ment s of G is seen to serve as an identity for ;. It remains to show
that for a, b, c € G, e;e;,abc = e;ae;bc. This will be proved by mathe-
matical induction on A(a). If A(a@) =1, then a= s and e;e;abc =
o;bc = ejae;bc. If A(a) > 1 then there exist unique a’,a” in G such
that ¢ = *xa'd” and A(a') < A(a), A(d") < A(a). Thus we have e;a8;bc
= o; *xa'd"e;bc and, by definition of e;, this latter is equivalent to
*e;0'e/bca’. By the induction hypothesis, e;a 'e;bc = e;0;a'bc,so that
xea’'e;bca’ = xem@a’bca’. Again utilizing the definition of ey,
we may transform the right hand side into e;e; *a’d’bc = e;e;abc, and
the proof is complete. = :

Although e; and ey are not commutative in G, there are infinite sub-
sets of G in which this property also holds. For each positive integer k,
let s* denote that element of G consisting of k — 1 repetitions of * fol-
lowed by k repetitions of s, and let s denote that element of G con-
sisting of k — 1 repetitions of s followed by a final s. If we define
G' = U {sk} and G" = U {s;}, the union being taken over all positive
integers, then the following result is apparent.

TueOREM 10. Each of the algebraic systems (G, e;) and (G,'®f) isa
commutative semigroup with identity s.

The mapping which associates with each element g of G'(G")
the non-negative integer A(g) —1 is an isomorphism between
(G’', o;)({G'; ep)) and the additive semigroup of non-negative integers,
and thus we may also make this next assertion.

THEOREM 11. The commutative semigroups (G’', o) and (G ', ep) are
each freely generated by * ss.

In addition, the element * ss plays the role of generator in the set
G, in a sense made precise by the following.

Tueorem 12. For g € G, either g = s or there exists a positive
integer k such that g = g,g, * * * g with each g; € {o}, of, *ss}.

Proor. By induction on A(g). IfA(g) = 2 then g = sor g = *ss, and
the theorem holds. If A(g) > 2, then there exist unique g’, g’ in G
with A(g’) < A(g) and A(g") < A(g), such that g = xg'g". IfA(g’) =
1, then A(g") >1 and g = ep* ssg”; if A(g") = 1, then A(g’) > 1 and
g = o; *ssg’. WhenA(g’) > landA(g")> 1,wehaveg = epe; xssg'g".
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In each case the inductive hypothesis applied to g’ and/or g" estab-
lishes the desired result. =

Using the notion of successor, defined previously, one may define
a partial order in G, i.e., a reflexive, antisymmetric and transitive rela-
tion in G.

DerintTiON 3. For g, g’ € G we will say that g precedes g', denoted
g= g, if and only if there exist a positive integer k and g, go, * * *,
gk € G such that g, = g, g = g’, and g; is a successor of gi— for
eachi= 23, - - k.

For completeness the following obvious results are stated as
theorems.

Tueorem 13. The set G is partially ordered relative to =, and has
s as its least element.

THEOREM 14. The sets G’ and G’ are each linearly ordered by =.

Tueorem 15. For g, g',¢g" in G, if g = e;g'g" or g = epg'g’, then
g'Sgandg =g

After observing that, for g, gy, g5, g2, 21", g2 ' in Gwith g = * g,g, and
g'=xg'g’',g=g'ifandonlyifg, = g,"and g, = g,’, thefollowing
may be proved easily by mathematical induction on A(g) + A(g’).

Tueorem 16. Every pair g, g’ has an infimum, inf(g, g'), and a
supremum, sup(g, g'), in G.

Theorem 16 asserts that the system (G, =) is a lattice and we may
further state the following.

THEOREM 17. The lattice (G, =) is distributive.

Proor. What the theorem asserts is that, for g, g’, g’ in G, the
formulas

inf(g, sup(g’, g’)) = sup(inf(g, g'), inf(g, g')) »
sup(g, inf(g’, g')) = inf(sup(g, g"), sup(g, g")) »

hold and their verification rests on the following well-known result:
A lattice is distributive if and only if it does not
contain a sublattice isomorphic to either of the 5-
element lattices of Figure 1. In each of these lattices
the ordering is defined by: p = q if and only if p =
q or there exists a downward path from q to p.

The assumption that a sublattice isomorphic to either of the lat-
tices of Figure 1 can occur in G quickly leads to contradiction of
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aforementioned properties of G, and the desired conclusion is thus
established. =

(a) (b)

Ficure 1
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