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GENERALIZATIONS OF THE FIRST AXIOM 
OF COUNTABILITY 

FRANK SIWIEC 

ABSTRACT. This paper is a comprehensive survey of the 
concepts which generalize first countability, of the relations 
among the concepts, and of the major examples found in the 
literature on the topic, 

0. Introduction. There are several reasons which one may give to 
indicate the value of generalizing the first axiom of countability. 
Among these are the following: 

(1) To weaken assumptions in important theorems. For example, 
a closed image of a metric space is metrizable, if the range is assumed 
to be first countable. 

(2) To study important properties. For example, if a real valued 
function f is continuous upon restriction to each compact subspace 
of a space X, then / is continuous on X, if X is a /c-space. 

(3) To study sequences and their properties. For example, in first 
countable spaces every accumulation point of a subset A is the limit 
of a sequence in A. 

The emphasis in this article is on giving a comprehensive list of 
concepts which have been introduced to generalize first countability, 
from different points of view, along with examples and references. The 
reader may often judge the value of a concept by considering the 
number of references pertaining to it, as listed in our references in 
Section 1. 

The structure of this survey is as follows: In Section 1, we present 
a list of definitions of concepts which generalize first countability. 
For standard terminology we follow Kelley [199], Nagata [290], and 
Thron [379], and the reader may note that there are some remarks 
concerning notation and terminology at the beginning of Section 1. 
The reader is advised to skim Section 1 and refer to it as needed as he 
would a dictionary. The history of the subject is briefly surveyed in 
Section 2, along with some motivation for the concepts and some 
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mention of unsolved problems. Section 3 gives implications and equiv
alences among the axioms discussed. In Section 4, we give a list of 
examples, all of which are both Hausdorff and not first countable. 
This list may serve the purpose of establishing which of the classes of 
spaces are distinct. The paper concludes with an exhaustive bibli
ography on the subject. 

All spaces are understood to be Hausdorff spaces, unless otherwise 
stated, with the following exception: In Section 1 we define the con
cepts without assuming the Hausdorff axiom. It should be noted that 
in some of the original articles some separation axiom is taken as part 
of the definition of the concept. Thus, definitions in the original papers 
may at times differ, though they are equivalent upon assuming the 
Hausdorff property. 

Finally, we would like to add that as in any other rapidly develop
ing field, terminology tends to vary, and we hope this survey will 
serve as an incentive for standardization. 

1. The Concepts. In this section we give what we believe to be a 
comprehensive list of the concepts found in the literature which 
generalize first countability. First, however, it is desirable for us to 
discuss some terminology used in this paper. 

The following conventions will be used unless stated otherwise: 
The word mapping will mean a continuous surjection; the letter X 
will stand for a topological space (see the remarks concerning the 
assumption of the Hausdorff axiom in the Introduction); N will stand 
for the set of positive integers, while letters such as i, j , k, m, n will 
represent elements of N, and c will represent the cardinality of the con
tinuum. The symbol "iff" is an abbreviation for "if and only if; " + " 
will mean that two (ór more) properties are held simultaneously; " = " 
will mean that two classes of spaces are equivalent. The boundary, 
closure, and interior of a set, will be denoted by "Bdy", "CI", and "Int", 
respectively. 

The words accumulation point and cluster point will be used in the 
following senses: A point x is an accumulation point (or synonymously 
limit point) of a set A if every neighborhood U of x meets A in a point 
distinct from x. A point x is a cluster point of a sequence {xn} if for 
every neighborhood U of x and every positive integer m, there exists 
an integer n> m such that xn G U. By extension, the term cluster 
point will also be used in cases involving nets and filters in the usual 
sense. (This terminology is consistent with that used in most topology 
textbooks.) A sequence (or net) is eventually in a set U if U contains 
all but finitely many elements of the sequence (or net). Following 
Michael [267], we say that a filter base *3- converges to a set A (where 



FIRST AXIOM OF COUNTABILITY 3 

A is permitted to be a one point set) if every neighborhood of A con
tains some F £ 9 , A sequence {A^} of sets is decreasing if A^ D An+l 

for all n in N. A decreasing sequence {An} of non-empty sets is a 
k-sequence (respectively, q-sequence) if it converges to some compact 
(respectively, countably compact) set which is contained in A„ for all 
n. In the following, a slash, /, separates the major references from the 
minor references. 

A space X is an absolute Fréchet-Uryson space iff whenever x G X , 
M C ßX and x G C1^XM, there exists a sequence of points in M con
verging to x. A bi-sequential space is absolute Fréchet-Uryson, and 
such a space is countably bi-sequential. Arhangel'skii [31]. 

For a space X and for any class €. of subsets of X, an accumulation 
point x of a set M is accessible by C-sets provided x is an accumula
tion point of a £-set lying in M U {x}. See: approximately accessible 
by £-sets, property H, property K, and also accessibility space. Why-
burn [399] /[346]. 

A space X is an accessibility space iff every accumulation point x of 
a set M in X is approximately accessible by closed sets, that is, there 
is a closed set C such that x is an accumulation point of C but not of 
C — M. For a T rspace X, X is an accessibility space iff it is a pseudo-
open space; property H implies accessibility space; and for a regular 
space X, X is an accessibility space iff it has property H. Another 
related concept is AulFs Z space. Whyburn [399]/[44, 238, 346, 352, 
354,356]. 

A space X is said to be accumulation complete iff each sequence 
that has a point x as a cluster point, has a subsequence that converges 
to x. A space being accumulation complete is equivalent to every 
countable subspace being Fréchet. This concept has also been called 
subsequential in [373]. An accumulation complete space is an H2 

space. [ 175,267, 323, 354, 373]. 
A space satisfying property a is the former terminology of Whyburn 

in [398] for a A:'-space. 
For a space X and for any class C of subsets of X, an accumulation 

point x of a set M is approximately accessible by C-sets provided there 
exists a £-set C having x as an accumulation point and such that all 
points of C in some neighborhood of x lie in M U {x}. See also: 
accessible by £-sets, accessibility space. Whyburn [399]. 

A space X is a bR-space iff every real-valued function whose restric
tion to each relatively pseudocompact subset K is continuous on K, 
is continuous on X, where a subset K is said to be relatively pseudo-
compact in X iff each continuous real-valued function on X is 
bounded on K. Noble [302]. 
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The definition of a bR*-space is analogous to that of a bR-space with 
the term "relatively pseudocompact subset" replaced by "subset whose 
product with each pseudocompact space is relatively pseudocompact 
in the product". The class of spaces which are foR* is between the 
classes of spaces which are kR and bR. Noble [302]. 

A space X is a bi-k space iff whenever a filter base S? has a cluster 
point x in X, there exists a fc-sequence {An} in X such that F intersects 
An for all n and all F G *?. This terminology was formerly used for 
the concept of a bi-quasi-fc space by Nagata in [292]. Michael 
[267] /[31,170,312, 336, 337,351,353]. 

The definition of a bi-quasi-k space is the same as the definition of 
a bi-fc space with the term "fc-sequence" replaced by "^-sequence". 
This concept was formerly called a bi-fc space by Nagata in [292]. 
Michael [267], Nagata [292] /[312, 336, 337]. 

A space X is a bi-sequential space iff whenever a filter base O has 
a cluster point x in X, then there is a decreasing sequence {An} of sets 
in X converging to x and such that F intersects A„ for all n and for all 
F G <9. Michael [267], Arhangel'skii [31], Malyhin [233], Olson 
[312] /[228, 235,236,336,337, 351,352,353]. 

The terminology c-space has been used for at least three concepts. 
(1) A space X is a c-space iff for each non-isolated point x of X and 
each sequence {Un} of neighborhoods of x, there exists a set 
{xn | n £ N } which is not closed and is such that xn G Un for every 
n. Every fc-space is a c-space in this sense. Chaber [87]/[355]. 
(2) A space is a c-space iff the closed sets are exactly those for which 
the intersection with every compact closed set is compact. Assuming 
the Hausdorff property, this is equivalent to the concept of a fc-space. 
de Groot [140]/[17, 18, 45, 327, 339]. (3) This terminology is also in 
use [331, 122, 335, 336] for spaces determined by countable subsets. 
See: countable tightness. 

A space satisfies condition (C0) iff each sequence whose closure is 
countably compact has a subsequence whose closure is compact. This 
is implied by condition (k0) of Chiba. Tanaka [375]. 

A space being of type C is Noble's [304] terminology for a space 
of point countable type. 

A space X is of type C* iff there exists a cover CQ of subsets of X 
which are compact + first countable + have countable character in 
X and C0 has the following property: for each x in X, each C in C0 for 
which x is in C, and each neighborhood U of x, there exists a C ' in d0 

with x £ C ' C l / n C . For Hausdorff spaces, this is equivalent to first 
countability (by (d) of (20) of Section 3). Noble [304]. 

The character of a set A in a space X, denoted by X( A, X), is the least 
cardinality of a collection !B of open neighborhoods of A having the 
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property that every neighborhood of A contains some member of !B. 
The character of a space X, denoted by X(X), is the supremum of the 
characters of all points of X. Other terminologies are: local character, 
local weight, point character, pointwise weight, weight; compare: 
pseudo character. This concept was discussed in the 1929 
memoir of Alexandroff and Urysohn [2]. A few recent references are: 
[26,177,187,195,247,250,251,282,283,315,316, 318, 322]. 

The terminology closure-countable is used by Wilansky in [406, 
p. 292] for the concept of countable tightness. 

The terminology closure-sequential is that of Wilansky in [406, p. 
292] for a Fréchet space. 

The terminology compactly-generated space is in common use 
among algebraic topologists (e.g., Spanier in [360] ) and others (e.g., 
Herrlich [170] ) for a /c-space. 

A space X has countable tightness iff whenever a point x is in the 
closure of a set A in X, there is a countable subset C of A such that x 
is in the closure of C. Equivalent conditions are: the closure of each 
set in X is the union of the closures of its countable subsets; and if A 
is a set in X and Cl C C A for every countable subset C of A, then A 
is closed in X. The latter condition is the version in which this con
cept was first introduced by Moore and Mrowka in [273] under the 
name: a space determined by countable subsets. This terminology is 
in common use. Other names for this concept are: c-space, closure-
countable space, countably generated space, countably accessible 
space (and formerly, space with an No-topology [219] ). The concept 
of tightness, for arbitrary cardinality, was introduced by Arhangel'skii 
and Ponomarev in [35] and has been discussed frequently in Arhan-
gel'skii's recent work. Compactification: [31, 233], examples: [126, 
188], general theory: [54, 187, 286], lattice of topologies: [218, 219, 
221], relation to mappings: [267, 268, 335, 353], relation to products: 
[31, 212, 233], relations to other cardinal functions: [28, 29, 30, 31, 32, 
33, 35, 250, 342, 343, 344], other: [122,125, 330, 331,334,335, 336,406]. 

Countably accessible space is the terminology of [218, 221] for a 
space of countable tightness. 

A space X is a countably bi-k space iff whenever {Fn} is a decreas
ing sequence of sets in X, having x as a common accumulation point, 
then there is a fc-sequence {An} such that x G C^A^ D Fn) for all n. 
Michael [267] /[31, 312, 336, 351, 353]. A somewhat related property 
is mentioned in [228, p. 46]. 

The definition of a countably bi-quasi-k space is the same as the 
definition of a countably bi-k space with the term "fc-sequence" re
placed by "^-sequence '. Michael [267] /[278,312,336,355]. 
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A Space X is a countably bi-sequential space iff whenever {Fn} is a 
decreasing sequence of sets in X having x as a common accumulation 
point, there exists a decreasing sequence {An} which converges to x 
and such that A^ intersects Fn for all n. Equivalently, the conclusion 
of the preceding sentence may read: there exist points xn G Fn such 
that xn—» x. The latter version was called strongly Fréchet in [352]. 
Michael [267], Siwiec [352], Arhangel'skii [31], Malyhin [233], 
Olson [312] /[336, 351, 353, 355]. 

The terminology countably generated space is that of Franklin and 
Kohli [125] for a space of countable tightness. 

A space X is determined by countable closed subsets iff every set 
A in X which contains the closure of every subset B of A such that Cl B 
is countable, is closed in X. Moore and Mrowka [273], other: [122, 
187,188,286]. 

For the concept of a space determined by countable subsets, see: 
countable tightness. 

A space being determined by sequences is the terminology of Moore 
and Mrowka [273] for a sequential space. 

A space X is a DN-space iff for each x in X there is a net in X — {x} 
that converges to x and has the property that its range is a discrete 
subspace of X. Anderson [4]. 

The terminology E-space is that of McDougle [181] for a Fréchet 
space. 

For the concept of an E0-space, see: space in which each point is a 
Gg-set. 

A space X is an Evspace iff every point of X is a countable inter
section of closed neighborhoods. Aull [37] /[81,124, 349, 350, 355]. 

HausdorfFs terminology for a space satisfying the first axiom of 
countability is nowadays commonly shortened to a first countable 
space. 

A space X is a first countable space iff it has countable character, 
that is, every point has a countable open base for its neighborhoods. 
Other terminology: space satisfying the first axiom of countability, 
space with a locally countable base, locally separable space, weakly 
separable space. 

A space X is Fréchet iff whenever a point x is an accumulation 
point of a set A, there is a sequence in A which converges to x. This 
concept has also been called: closure-sequential space, E-space, 
Fréchet-Urysohn space, FU space. The latter two terms are standard 
among Russian topologists. Otherwise the term Fréchet space is 
standard, though the Russian terminology might be used where con
fusion is possible with another meaning of Fréchet space. For Haus-
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dorfT spaces, the following are equivalent: Fréchet space, hereditarily 
fc-space (i.e., every subspace is a fc-space), space with property K. 
The major references are Franklin's [118 and 120]. 

Characterizations: [13, 15, 19, 23, 44, 102, 118, 146, 157, 175, 187, 
225,233,248,250,312,337,351,352,353,370,371]. 

Compact spaces: [35,41,108,110, 111, 239]. 
Dimension: [414]. 
Examples: [4, 9, 15, 30, 34, 39, 41, 49, 102, 112, 119, 120, 126, 128, 

133,166,192,212,233,244,267,304,310,312,313,358]. 
Function spaces: [102,143,246,248]. 
General theory: [54,121,187,190]. 
Mappings: [13, 15, 19, 23, 54, 117, 118, 127, 146, 150, 154, 157, 168, 

205, 222, 223, 232, 238, 243, 244, 250, 267, 304, 312, 336, 337, 346, 351, 
352,353,355,370,371,413]. 

Metrization: [108,141,154,239,354]. 
Modifications of a Fréchet space: [34, 157, 168, 205, 206, 247, 249, 

250,253,254,287]. 
Paracompactness: [63,64,212]. 
Products: [31, 118, 120, 127, 143, 154, 155, 212, 238, 267, 304, 310, 

313]. 
Relations to other generalizations of first countability: [18, 19, 23, 

31, 34, 39, 41, 44, 102, 117, 118, 141, 157, 166, 168, 175, 182, 187, 190, 
192, 233,244,246,247,248,249,250,253,346,352, 358,399]. 

Survey remarks: [18, 30,267, 336, 399]. 
Other: [4, 30, 31, 33, 43, 50, 109, 128, 138, 192, 236, 330, 341, 380, 

406]. 
The term Fréchet-Urysohn space is the usual terminology for a 

Fréchet space among Russian mathematicians. 
An FU-space is an abbreviation for Fréchet-Urysohn space. 
A space in which each point is a G8-set, that is, a countable inter

section of open sets, may also be referred to as a space having count
able pseudo-character. The term E0-space is also in common use for 
this concept, but the term G8-space, which has been used, is unsuitable 
due to its use for other purposes. Compare: Ex-space, generalized G8 

space, space of pseudopoint-countable type. Since pseudo-character 
appears in the Alexandroff and Urysohn memoir of 1929 [2] , the 
following are only some recent references. Conditions for equality of 
character with pseudo-character: [1, 2, 10, 166, 167, 195, 239, 253, 
267, 284, 315], relation to other generalizations of first countability: 
[37, 42, 124, 141, 166, 167, 195, 228, 253, 267, 312, 352, 353, 375, 386], 
relation to other cardinality functions: [32, 111, 148,186, 342], relation 
to paracompactness and other compactness conditions: [1, 2, 194, 387, 
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388], realcompact: [164, 406], function spaces: [6, 144, 145, 164], 
examples: [2,6, 37,124], other: [139, 283, 330]. 

The term G8-space has been used by some mathematicians [6, 164, 
406, p. 163] for a space in which each point is a Gô-set. This term has 
also been used for at least two other unrelated concepts (spaces in 
which each closed subset is a Gô-set; spaces which are G8 subsets of 
their Stone-Cech compactification). 

A (completely regular) space X is a generalized G8 space iff each 
point x of X is either an isolated point of X or is such that there exists 
a real-valued function continuous on X — {x} which has no continuous 
extension to all of X. Heider [164]. 

A space satisfying the gf-axiom of countability is alternate termin
ology of Arhangel'skii in [18] for a space satisfying the weak first 
axiom of countability. 

A space is said to have property H iff every accumulation point of 
a subset is accessible by closed sets. A space with property H is an 
accessibility space and for regular spaces these concepts coincide. 
Also compare a Z space. Whyburn [397, 399] / [346]. 

A space X is an Hx space iff every countably compact subset is 
sequentially compact; equivalently, whenever S is a sequence in X 
having no convergent subsequence, there exists a subsequence T of 
S such that the range of T has no accumulation point. Both H2 spaces 
and Z spaces are Hx spaces. Aull [39] and Meyer [254]. 

A space X is an H2 space iff whenever S is a sequence in X having 
no convergent subsequence, the range of S has no accumulation point. 
All sequential spaces and all accumulation complete spaces are H2 

spaces. Aull [39]. 
The terminology k-point has been used with different meanings. 

The oldest is due to Alexandroff (and Urysohn) in [2] (see also [15, 
108, 213] ). A point x of a space X is a K-point iff it is isolated or there 
exists a sequence of distinct points of X converging to x. Tamano in 
[374, p. 230] called a point x of a space X a fc-point iff whenever x is 
an accumulation point of a subset A of X, there is a compact set K in 
X such that x is also an accumulation point of A fi K. A space X is a 
k'-space iff every point of X is a fc-point in this sense. For a third 
meaning, Noble in [301, p. 391] calls a point x of a space X a fc-point 
iff for any set U which contains x and such that U U K is open in K 
for every compact subset K of X, is itself a neighborhood of x. A space 
X is a fc-space iff every point of X is a fc-point in this sense. 

A space X is a k-space iff every subset of X whose intersection with 
every compact set K is closed in K, is closed in X. Definitions vary 
because the Hausdorff axiom is often assumed. For the origins of 
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this important concept see [8, 85]. A Zc-space is also commonly called 
a compactly-generated space; less commonly: K-space, fc3-space (by 
Fuller), Kelley space (by the French), space of class @. Compare de 
Groot's notion of a c-space. See also k-point. 

General references on /c-spaces: Arhangel'skii [15] and Steenrod 
[362]. 

Textbooks: Kelley [199], Wilansky [406], Willard [408]. 
Early articles: [8,135,257,325,94,96,199,274,275]. 
Algebraic topology: [68,134, 360, 362, 394]. 
Cardinality functions: [30, 34,189, 342, 343, 344]. 
Category: [123,129,130,134,169,170,172,187,326,327, 339, 362]. 
Characterizations: [11,15,17, 18, 23, 96, 187, 226, 244, 260, 267, 274, 

292,351,353,356,362,370]. 
Examples: [15, 48, 56, 65, 77, 165, 210, 263, 270, 312, 331, 352, 353, 

378, 404]. 
Exponential topology: [59, 92,197,198, 369]. 
Function spaces: [8, 48, 75, 96, 135, 145, 260, 275, 300, 325, 362, 

363, 390]. 
General theories: [121,187, 240,286,389]. 
Mappings: [11, 15, 16, 17, 18, 19, 22, 23, 24, 56, 66, 68, 87, 105, 

125, 133, 146, 147, 165, 178, 187, 211, 226, 244, 260, 261, 262, 267, 274, 
275, 277, 292, 299, 304, 337, 338, 348, 351, 353, 355, 356, 362, 370, 
374,377,395,398,409]. 

Metrization: [78]. 
Paracompactness and normality: [36,64,65, 78, 92,347]. 
Products: [15, 22, 47, 48, 59, 74, 75, 92, 94, 95, 97, 98, 178, 179, 261, 

262, 275, 299, 301, 304, 307, 308, 309, 362, 363, 365, 374, 376, 378]. 
Products of pseudo-compact spaces: [98,178, 301, 364, 374]. 
Real compactness: [97, 98]. 
Relations to other generalizations of first countability: [11, 15, 18, 

19, 23, 34, 44, 87, 98, 132, 146, 166, 189, 213, 244, 261, 263, 267, 270, 
292, 312, 331,333, 338,342, 346, 352,353,356,375, 398,399]. 

Subspaces: [15,19,23,362,378, 392,393]. 
Survey remarks: [18,30,267, 336, 339, 362]. 
Topological groups: [25,193, 280,281, 305]. 
Other: [21, 43, 50, 56, 57, 62, 103, 130, 131, 171, 210, 257, 330, 404, 

405, 412]. 
A subset A of a space X has property (k) iff a subset of A is closed 

in A whenever it intersects every compact subset K of X in a set closed 
in AD K. Compare the concept of a fc-space. Weddington [393]. 

The notation K-space is that of D. E. Cohen for a fc-space. 
A space is said to have property K iff every accumulation point of a 

set is accessible by compact sets. This concept has been called a kr 
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space by Fuller. It is equivalent to a space being hereditarily a fc-space 
[23, Proposition 1, and 399], and assuming the Hausdorff axiom, it is 
also equivalent to the space being a Fréchet space. Halfar [150]/[23, 
46,133,224,244,330,399]. 

A space X is a k'-space iff whenever a point x is an accumulation 
point of a set A in X, x is an accumulation point of A D K for some 
compact set K. This concept seems to have been discussed originally 
in 1946 [8]. It has also been called: property a (by Whyburn), kx-
space (by ArhangeFskii), and fc2-space (by Fuller). Compare: fcn-space, 
/c-point. ArhangeFskii [11, 14, 15]/products: [47], subspaces: [393], 
relation to paracompactness: [64, 234], relation to mappings: [8, 66, 
133, 267, 353, 356], other: [23, 34, 42, 43, 121, 132, 166, 187, 244, 352, 
374,398,399]. 

The terminology k 'space is also that of Comfort [98] for a fcR-space. 
A space satisfies condition (k0) iff each sequence having a cluster 

point has a subsequence which is contained in a compact set. Chiba 
[88]. 

A space X is defined to be a k^-space by the condition that each 
sequence having a cluster point x has a subsequence which is con
tained in a compact set such that x is a cluster point of the subsequence. 

The terminology krspace has been used by Arhangel'skii to mean 
k' -space (see /cn-space), and has been used by Fuller to mean a space 
with property K. 

The terminology k2-space has been used by Arhangel'skii in the 
sense of the definition given below for a fcn-space, and has been used 
by Fuller to mean a k '-space. 

The terminology k3-space has been used in the sense below by 
Arhangel'skii, and has been used by Fuller to mean a fc-space. 

For a positive integer n, a space X is a kn-space iff for every subset 
M of X, Cl(M)kn = CI M, where C1(M)fcl is the set of all points x for 
which there exists a compact set K such that x G C1(K H M), and 
Cl(Af)fcn+1 = Cl(Cl(M)Ov Arhangel'skii [14,15, p. 52]. 

A space X is a kR-space iff every real-valued function on X, whose 
restriction to every compact set is continuous, is continuous on X. 
Complete regularity of the space X is usually assumed. This concept 
has been called a k'-space by Comfort in [98]. Michael [263, 270], 
Comfort [98], Noble [301, 304]/[18, p. 154, 76, 178, 180, 300, 302, 
305,325,390]. 

The terminology Kelley space is that of [134, 326, 339] and others 
for a fe-space. 

A space is defined to be a KFC-space by the condition that every 
compact subspace is first countable. Clearly spaces in which every 
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compact subspace is metrizable [351, 353], and spaces in which each 
point is a G6-set (by 20e of Section 3) are KFC-spaces. [70]. 

An X-space is defined as follows: Let X be a set and C a collection 
of pairs (S, x) where S is a sequence in X and x is a point in X, with 
S said to converge to x, satisfying: (1) if S is a sequence with constant 
value xy then (S, x) G dy (2) if (S, x) G C and R is a subsequence of 
S, then (R, x) G C9 and (3) if (S, x) G C and (S, y) G C, then x = y. 
Then (X, C) is an ./-space. Notice that (X, C) is not a topological con
cept and see the discussion of this concept in Section 2. [39, 61, 106, 
137,176,208,214,382,400]. 

An £*-space is an ./'-space, (X, C) satisfying the additional condition: 
if (S, x) ^ d then there is a subsequence R of S such that for any sub
sequence T of R, (T, x) $ £. [101,106,137,138,208,214,241]. 

The terminology local character is that of [250] for the character 
of a space. 

A space with a locally countable basis is the terminology of Mc-
Dougle for a first countable space. 

Locally separable space is the terminology of Vaidyanathaswamy 
[382] and Balachandran [51] for a first countable space. 

The terminology local weight is that of [127, 187, 230] for the 
character of a space. 

A space X is maximally resolvable iff it has isolated points or is the 
union of A(X) disjoint sets each of which intersects each non-empty 
open subset of X in at least A(X) points, where A(X) is the dispersion 
character of X, i.e., the minimum cardinality of the non-empty open 
subsets of X. All first countable spaces and all regular spaces of point 
countable type are maximally resolvable. Ceder [84, 85], Ceder and 
Pearson [86], El'kin [113,114], Pearson [320]. 

A space is said to be a mosaic space iff it has a cover D{ of compact 
metrizable subspaces and has the (weak) topology: A set U is open iff 
U H K is open in K for every KG 9(. Assuming the Hausdorff axiom, 
the class of sequential spaces and the class of mosaic spaces coincide. 
Davison [102], Lavallee [224]. 

A space X belongs to class 91 iff the projection mapping of X X Y 
onto X is a closed mapping for every countably compact space Y. 
Spaces which are k + S4 spaces (thus also sequential spaces) belong to 
St. Isiwata [182] /[117,152,212, 213,288, 345]. 

A space X is o-metrizable by an o-metric d iff d is a nonnegative 
real-valued function on X X X such that (1) d(x, y) = 0 iff x = y, 
and (2) a subset F of X is closed iff for each point x not in F, d(x, F) > 
0. This concept has also been called generalized metrizable and g-
metrizable. For 7\-spaces, o-metrizability is equivalent to the space 
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satisfying the weak first axiom of countability. All the papers of Nedev 
in the bibliography are on o-metrizability. See also the references for 
the weak first axiom of countability. 

The terminology point character is that of [247] for the character 
of a space. 

A space X is of point countable type or pointwise countable type 
iff each point is contained in a compact set having countable character 
in X. Compare pseudopoint-countable type. This concept of Arhan-
gel'skii was introduced in [12] and, with proofs, in [15]. Major 
results may be found in: Arhangel'skii [12, 15, 33], Borges [70], 
Filippov [115, 116], Wicke [401]. Results on mappings: [12, 15, 
88, 91, 93, 115, 116, 266, 267, 268, 277, 304, 312, 319, 336, 337, 351, 
401, 403], relations to other generalizations of first countability: [12, 
15, 33, 115, 116, 161, 166, 167, 228, 261, 312, 351, 352, 376, 386], car
dinality functions: [28, 31, 33, 342, 343, 344], metrizability: [12, 15, 
70], products: [12, 15, 33, 304, 376], ßX: [15, 386], exponential top
ology: [92, 300], dimension: [319], topological group: [319], 
survey remarks: [12, 15, 18, 161, 267, 277, 403], other: [24, 27, 300, 
353]. 

Pointwise weight is the terminology of [262] for the character of a 
space. 

The pseudo-character of a set A in a space X, denoted by ^(A, X), 
is the least cardinality of a collection of neighborhoods of the set A 
whose intersection is A. The pseudo-character of a space X, denoted 
by ^(X), is the supremum of the pseudo-characters of the points of the 
space X. This concept has been discussed in the 1929 memoir of 
Alexandroff and Urysohn [2]. The terminology pseudo-weight has 
been used at times in place of pseudo-character. See: space in which 
each point is a G6-set. 

A space X is a pseudo-open space iff every quotient mapping onto 
the space is a pseudo-open mapping. Whyburn defined the concept 
of an accessibility space and proved that for T rspaces, these concepts 
coincide. Shirley [346]. 

A space X is of pseudopoint-countable type iff each point is con
tained in a compact set of countable pseudo-character in X. Vaughan 
[386]. 

The terminology pseudo-weight is that of [1, 139] for pseudo-
character. 

A space X is said to be a q-space iff every point of x is a q -point. A 
point x is a q-point iff x has a sequence {Un} of neighborhoods such 
that if xn G Un for all n, then the sequence {xn} has a cluster point 
x '. Assuming regularity, the concept of a g-space and a strict q space 
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coincide. Assuming paracompactness, the following are equivalent: 
ç-space, strict q space, r-space, space of point countable type. On 
mappings: [87, 88, 181, 259, 278, 291, 332, 337], metrizability: [259, 
278], paracompactness: [73, 385], realcompactness: [183, 230], ßX: 
[183], products: [376], surveys: [161, 267, 277, 336], other: [70, 166, 
173,227,228,261, 312,377,403]. 

A space X is a quasi-k space iff every subset whose intersection with 
every countably compact set C is closed in C, is closed in X. The con
cept was introduced by Nagata [292]. On mappings: [54, 146, 181, 
213, 278, 279, 292, 308, 337, 355], products: [308, 376], general theory: 
[54], survey remarks: [267,277,336]. 

A space X is an r-space iff every point x of X is an r-point. A point 
x is an r-point iff x has a sequence {Un} of neighborhoods such that if 
xn G Un for all n, then the sequence {xn} is contained in a compact 
set. [234,260, 318] /[70,161,166,228, 357]. 

A space X is an r0-space iff every point x of X has a sequence {Un} 
of neighborhoods such that if xn G. Un for all n, then the sequence {xn} 
has a subsequence with compact closure. Rishel [337]. 

A space of class @ is the terminology of Morita in [274] for a k-
space. 

A space X is an S3 space iff every sequentially compact subset is 
closed in X. Aull [39]. 

A space X is an S4 space iff every countably compact subset is 
closed in X. The class of S4 spaces includes the classes of sequential 
spaces and Z spaces. Aull [39] /[ 102,376]. 

A space X is an sR-space iff every real-valued function on X, whose 
restriction to every convergent sequence (with its limit) is continuous, 
is continuous on X; equivalently, every real-valued sequentially con
tinuous function on X is continuous. Noble [304]. Notice that if the 
words "real-valued" are omitted, this yields a characterization of a 
sequential space [53]. Vidossich in [388] discusses a similar concept 
with the words "countable subset" replacing "convergent sequence". 

A space X is a sequential space iff every sequentially open set is 
open. Equivalently, every sequentially closed set is closed. Assuming 
the Hausdorff axiom, the following are equivalent: (1) sequential 
space, (2) mosaic space, (3) sequential in the sense of Dudley [106], 
i.e., a space determined by an ,/*-space of Fréchet in the sequential 
manner (as discussed in Section 2). A sequential space has also been 
referred to as a space determined by sequences, and a sequentially 
generated space. Closely related to the concept of a sequential space 
is the concept of a Fréchet space. Section 2 discusses some of the rela
tionships. 
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Major references: Franklin [118,120], Davison [102]. 
Early articles: [61,102,241]. 
Cardinality functions: [26, 30, 32, 34, 249, 251, 253, 254, 322, 343, 

344]. 
Category: [52,169,170,172,187, 346]. 
Characterizations: [34, 50, 52, 61, 102, 118, 146, 187, 351, 352, 353, 

370, 371]. 
Compact spaces: [30, 32,102,122, 239, 254, 285,287, 329, 380]. 
Convergence structure: [55, 61,101,106,138, 208, 272, 400]. 
Examples: [34, 39, 41, 101, 102, 117, 118, 119, 120, 122, 126, 188, 

189,192,216,245,324]. 
Function spaces: [101,102,106,245,246,248,251,273,300]. 
General theory: [54,121,187, 240, 286]. 
Mappings: [53, 54, 102, 118, 125, 146, 168, 178, 187, 212, 224, 229, 

241, 250, 267, 304, 306, 307, 337, 346, 351, 352, 353, 370, 371, 375, 377]. 
Modifications of the sequential space concept: [34,142,157,168,172, 

188,205,212,247, 249,250,251,253,272,273,352,358]. 
Paracompactness and normality: [36,63, 64, 215, 347]. 
Products: [62, 102, 118, 119, 120, 178, 212, 215, 262, 267, 304, 364, 

375, 376,377]. 
Relations to other generalizations of first countability: [26, 30, 34, 

39, 41, 102, 117, 118, 120, 126, 157, 175, 187, 188, 224, 245, 246, 247, 
248, 249, 253,267,273,322, 330, 331, 336,337,341, 376,399]. 

Survey remarks: [245,267,336]. 
Topological group: [25, 329]. 
Other: [166,191,192,255,330,341,354,364, 378, 391]. 
A set F is a sequentially closed set in a space X iff every sequence 

which converges to a point in X — F takes on at most finitely many 
values in F. 

Sequentially generated space is the terminology of Franklin and 
Kohli [ 125] for a sequential space. 

A set U is a sequentially open set in a space X iff every sequence 
which converges to a point of U is eventually in U. 

A space X is said to be a singly bi-k space iff whenever a point 
x G Cl F there exists a fc-sequence {An} in X such that x G C1(F H AJ 
for all n. Michael [267] / [31, 312, 336,337,351, 353]. 

The definition of a singly bi-quasi-k space is that of a singly bi-k 
space with the term "fc-sequence" replaced by "(/-sequence". With a 
slightly different definition, a singly bi-quasi-fc space was referred to as 
property-(P) in [332]. Michael [267] /[278, 312, 332, 336, 337]. 

A space X is said to be a strict q space iff every point is contained 
in a countably compact set of countable character in X. Assuming 
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regularity, the concept of a strict q space is equivalent to that of a 
g-space. Michael [267]. 

A space X is said to be a strong accessibility space iff whenever 
{An} is a decreasing sequence of subsets of X each having x as a com
mon accumulation point, there exists a closed set C such that x is an 
accumulation point of C but, for each n, x is not an accumulation point 
of C - A«. Siwiec [352, 353, 355]. 

Strongly Fréchet space was the terminology for a countably bi-
sequential space in [352]. This term has also been used in [31, 233]. 
An abbreviation used in [31] is SFU-space. 

A space X is strongly k ' iff whenever {A^} is a decreasing sequence 
of sets each having x as a common accumulation point, there exists 
a compact set K such that x G C1(K D AJ for all n. Siwiec [352]/ 
[267,336,353]. 

Subsequential is the terminology of Tall [373] for an accumulation 
complete space. 

For the concept of tightness of a space, see: countable tightness. 
The terminology very k space is that of Arhangel'skii [ 19, 23, 33] 

for a fc-space every subspace of which is also a fc-space. Arhangel'skii 
showed that for Hausdorff spaces this concept coincides with Fréchet 
space. Compare: property K. 

A space X satisfies the weak first axiom of countability iff for each 
point x of X there exists a countable collection Tx of sets Q(x) contain
ing x, such that a set U is open in X iff for each x in U there exists a 
Q(x) G Tx for which Q(x) C U. This concept is also called the gf-
axiom of countability. For Tx-spaces, spaces satisfying the weak first 
axiom of countability coincide with the o-metrizable spaces. Arhan
gel'skii [18, p. 129]/[79, 330, 353, 354, 355]. Also see the references 
of Nedev for o-metrizability. 

A space X is a weakly-k space iff every set whose intersection with 
every compact set is finite, is closed. Rishel [333,334], House [174]. 

The terminology weakly separable space is that of Whyburn [396] 
for a first countable space. 

A space X is a Z space iff for each point x in X and each subset M 
of X such that x is an accumulation point of M, there exists a subset 
P of M such that x is the unique accumulation point of P. Every 
Fréchet space is a Z space and every Z space is both an Hi space and a 
space satisfying property H. Aull [39],Kannan [191]. 

2. A Brief Motivational and Historical Survey. Riesz in 1906, Haus
dorff in 1914, and Root in 1914 were the first to consider in one way 
or another the very natural topological idea of a countable base for 
the neighborhoods of a point. Though the concept is basic, a more 
important reason for the interest in spaces satisfying the first axiom 
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of count ability, or first countable spaces as they are more commonly 
called today, is that "sequences are adequate". What we mean by this 
is that a point x is in the closure of a set A iff there exists a sequence 
in A which converges to x. This is certainly a familiar and commonly 
used property of metric spaces and more generally of first countable 
spaces. It is clear that a first countable space has this property. How
ever, we may see this in a round-about manner by considering the 
following condition (which T'ong called condition c) in [381] ): Every 
point x of the space X has a sequence {Ni} of neighborhoods of x 
with the property that if a point X{ is chosen from each Nh then the 
sequence fa} converges to x. The reader may verify that this condi
tion is equivalent to X being first countable, and that the condition 
implies that sequences are adequate in the sense described above. 
(This simple property is probably well known, but does not seem to 
appear in textbooks.) 

The reader is probably aware that what we have given as the 
meaning of "sequences are adequate" is, in fact, the definition of a 
Fréchet space (in the terminology of American general topologists). 
Of course, in a first countable space sequences are also adequate in 
another equally important sense: the sequentially open sets are iden
tically the open sets. This is the defining condition of a sequential 
space. We have the following implications among these fundamental 
concepts: 

L , , • Fréchet • sequential. 
countable a 

Sequential and Fréchet spaces are closely related as the following 
analogies show. For a sequential space, every sequentially closed set 
is closed; for a Fréchet space, the sequential closure is the closure. 
Also, for a sequential space, whenever A is a non-closed set, some 
accumulation point of A is the limit of a sequence in A; for a Fréchet 
space, whenever A is a non-closed set, every accumulation point of 
A is the limit of a sequence in A. (These conditions actually char
acterize sequential and Fréchet spaces.) 

The idea that sequences are adequate is in the foreground in the 
definitions given by Fréchet in 1906. The structures which he dis
cussed are not, however, topological spaces as we understand them 
today. There are two basic ways in which we may translate his JL- and 
X*-spaces into the current idea of a "topology". (Due to Garrett Birk-
hoff (with acknowledgment to Baer) [61], and Kisynski [208]. The 
most useful recent references for topology are Dudley [ 106], and P. 
Meyer [250]. See also Kelley's text [199, end of Chapter 2].) Let X 
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be a set and £ a collection of pairs (S, x) where S is a sequence in X, 
and x is a point in X, with S said to be converging to x. The collection 
£ is to satisfy the condition that if (S, x) G £ and S ' is a cofinal (at 
most finitely many elements have been removed) subsequence of S, 
then (S\x)Œ£. (Fréchet/s X- and ^*-spaces assume additional 
axioms — see Section 1 for definitions of these and other concepts not 
defined here.) Then a topology T may be defined, in the sequential 
manner, by: a subset U of X is in T iff whenever (S, x) G £ and XELU, 

then S is eventually in U. This collection T, which might also be 
denoted r( £) having been derived from the collection £, is easily seen 
to be a topology and the space (X,r(£)) is sequential. If (X, £) is an 
./-space of Fréchet, then (X, r(£)) is also a T^-space (but not necessarily 
Hausdorfl). Conversely, if (X, r) is a topological space, then a collec
tion £ = £(T) may be defined by: (S, x) G £ iff whenever x G U G r, 
S is eventually in U. If (X, £) is an ^*-space of Fréchet, then 
(X,T(£)) is a Tx sequential space and £(?{£)) = £. And if (X,r) is 
a Hausdorff sequential space, then (X, £{r)) is an _/*-space such that 
r( £(T)) = T. A collection r ' may also be defined on X in the Fréchet 
manner, by: a subset U of X is in r ' iff U = X — C1(X — U) where a 
point x is in the closure of a set F, C1(F), iff there exists a pair (S, x) G 
£ such that SC F. It is well known [217, p. 185] that r ' might not 
be a topology (the closure operator need not be idempotent — though 
(X, T ' ) is a closure space in the terminology of Cech [82]), but if r ' 
is a topology, then T' = T and the topology is Fréchet. 

Conway [101] points out that if (X, T) is the complete metric space 
ll of all summable (i.e., having finite sum) real sequences (note that 
r is the topology obtained in the sequential manner from £{r)), then 
there is a non-sequential topology r" on X, which is thus distinct from 
T, but for which £(r) = £(r"). Thus, though a topology uniquely 
determines the collection of convergent sequences, a collection of 
convergent sequences determines a "natural" sequential (that ob
tained in the sequential manner above) topology, but it may not be the 
only topology having the same collection of convergent sequences. 
("Sequences are not adequate" in determining a unique topology.) 

The last decade has brought a renewed interest in these spaces 
from a different viewpoint — that of mappings. Ponomarev [321] 
and Hanai [153] around 1960 discovered independently that a space 
is first countable iff it is an open (all mappings are understood to be 
continuous and onto) image of a metric space; thus yielding a theorem 
which links a first countable space with the important concepts of a 
metric space and an open mapping in a particularly interesting manner. 
Subsequently, Arhangel'skii [13] and Franklin [118] have charac-
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terized Fréchet and sequential spaces as pseudo-open (equivalently, 
hereditarily quotient) and quotient images of metric spaces, respec
tively. Bi-sequential and countably bi-sequential spaces have also 
been defined (see Section 1) and characterized as bi-quotient and 
countably bi-quotient images of metric spaces, respectively. As a 
result, the known relations among these mapping concepts immediately 
yields the following fundamental sequence of implications: 

first bi- countably „ , , . , 
, . ! , — > .. i—* i • .. i - > * rechet—» sequential, 

countable sequential bi-sequential ^ 
It may be of interest to point out that in naming a bi-sequential space, 
E. Michael [267] chose to use the prefix "bi" to indicate a nice 
property which this concept shares with first count ability. This being 
that the product of two (or even a countable number of) spaces of 
this type is again a space of this type. The property of being a bi-
sequential space is also nice because it is hereditary (i.e., it is pre
served by arbitrary subsets). Sequential spaces unfortunately have 
neither of these two properties. The interested reader may consult 
Michael's paper. (For a survey of the mappings discussed above see 
Siwiec and Mancuso [356] ; for a survey of these and other char
acterizations of images of spaces, see Michael [267] and Siwiec 
[353].) 

Having discussed images of metric spaces we may point out that an 
interesting unsolved problem is to characterize closed images and 
perfect images of first countable spaces. First recall that a perfect 
image of a metric space is metrizable and that a closed image of a 
metric space has been characterized as a Fréchet space with an addi
tional condition. (See Lasnev [223], and the discussion of spaces of 
point countable type and q-spaces which follows.) Since a perfect 
mapping is a bi-quotient mapping, and a bi-quotient image of a bi-
sequential space is again bi-sequential, we have: 

first perfect image of a , . . , 
A ,1 ^r- x i. ui • bi-sequential. 

countable irrst countable space ^ 
Example 1 of Section 4 may be shown to be a perfect image of a first 
countable space, and of course it is not itself first countable. On the 
other hand, a slight modification of this example yields an example 
which is bi-sequential without being a perfect image of any first count
able space. Specifically, the example is the one-point compactifica-
tion of a discrete space of cardinality exp exp No- As in example 1, 
this space is bi-sequential. If it were a perfect image of a first count
able (Hausdorff) space Z, then Z would be compact because of the 
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perfect mapping. However, noting Arhangel'skii's recent discovery 
[26, see also 322 and 340] of the solution to the well-known problem 
of Alexandroff and Urysohn, that a space which is compact + first 
countable ( + Hausdorfï) has cardinality less than or equal to the car
dinality of the continuum, c, we may apply this result to determine 
that Z has cardinality ê c. Thus its image, the space with which we 
are concerned, would have cardinality S c, contradicting our assump
tion. We then have a bi-sequential + compact space which is not a 
perfect image of any first countable space. 

In 1970 Whyburn defined (see Section 1) and characterized an 
accessibility space as one for which every quotient mapping onto the 
space is a pseudo-open mapping. Likewise a strong accessibility space 
has the property that every quotient mapping onto the space is 
countably bi-quotient. Half of the following is then an immediate 
corollary: A space is Fréchet (respectively, countably bi-sequential) 
iff it is sequential + accessibility (respectively, strong accessibility). 

Convergent sequences have been central to the discussion thus far. 
But the set of values of a convergent sequence together with its 
limit (or one of its limits) forms a compact set, so that not surprisingly, 
first countable spaces have "nice" properties associated with compact 
sets. Actually, we have already made use of compactness, indirectly, 
in our discussion of perfect mappings, and we have stated that a com
pact first countable (HausdorS) space has cardinality ^ c. However, 
the most useful generalization of first countability which deals with 
compact sets is that of a k-space. (Compare de Groot's [140] notion 
of a c-space for non-Hausdorff spaces.) Both a Fréchet space and a 
sequential space are easily seen to be a /c-space, but a Fréchet space 
is actually hereditarily so. The property of being a /c-space is not 
hereditary as may be seen by considering a completely regular non-/c 
space and its compactification. In 1966 Arhangel'skii [23 and 19] 
showed the converse, that is, a (Hausdorfï) space which is hereditarily a 
/c-space is necessarily a Fréchet space. (This was unexpected because 
a /c-space is associated with compact sets and a Fréchet space with 
convergent sequences. M. Rudin [244 and 399] independently dis
covered this same result.) The concept of a /c-space is of use in many 
other ways; we mention two uses involving mappings: First, every 
function on a /c-space X, whose restriction to every compact subset of 
X is continuous, is itself continuous on X (in fact, this characterizes a 
/c-space; compare the concept of a ZcR-space). Second, D. E. Cohen 
[94] characterized a /c-space as a quotient image of a locally compact 
space. (This may be compared with a characterization of a sequential 
space which we have discussed above. See also [267, 353].) Steenrod 
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in [362] has suggested fc-spaces as a "convenient category" of spaces 
for algebraic topology, in the sense that it is "large enough to contain 
all of the particular spaces arising in practice" and has good prop
erties. But the fc-space assumption is convenient in most of general 
topology for the same reasons. In particular, one would commonly 
wish to exclude pseudo-finite spaces (spaces in which every compact 
subset is finite) from consideration. By making the assumption of a 
(Hausdorfl) fc-space one does in fact eliminate these. The reader may 
wish to examine the examples ofnon-fc-spaces found in Section 4, of 
which the most interesting are examples 39 and 69. 

Another useful and related idea is that of a k '-space. (In fact, it was 
thought at one time that a fc-space had the k '-space property; see 
Arhangel'skii [15, p. 31].) Recalling that first countable spaces, even 
metric spaces, need not be locally compact, we may now consider 
the following relations: 

y • strongly k ' • k 
compact i 

(i) 

first bi- countably „ . , . , 
. , , —> .. i—> i . /• i -* l1 rechet-* sequential, 

countable sequential bi-sequential ^ 

The concepts in this diagram are related to an amazing extent, (i) 
Locally compact spaces may be defined (namely, characterized) so 
that the five concepts located in the central region of this diagram and 
local compactness have definitions which are completely analogous 
[352]. (ii) The upper sequence of classes of spaces has been char
acterized by mapping conditions completely analogous to that of the 
lower sequence (see tables (22) and (23) in Section 3). 

Another class of spaces which contains the class of first countable 
spaces and in whose definition compactness plays a role are Ar-
hangel'skii's spaces of point countable type. This class of spaces also 
generalizes locally compact Hausdorff spaces, spaces which are perfect 
preimages of metric spaces, and Cech-complete spaces (completely 
regular spaces which are Gô subsets of their Stone-Cech compactifi-
cation). However, this class is not related to that of the k '-spaces 
(examples 4 and 66 in Section 4). These spaces have been especially 
useful in the study of perfect preimages of metric spaces, known as 
paracompact M-spaces, on which there has come to be an extensive 
literature. In particular Wicke [401] has characterized spaces of point 
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countable type as open images of paracompact M-spaces. (Wicke's 
theorem requires that the image space be a T0-space, but Michael 
[266] has shown that this assumption is not needed. Wicke's theorem 
is actually true if the words "open mapping" are replaced by "almost-
open mapping" or by "P2-mapping". For these matters see [353]. See 
also Chiba [88] and Coban [93, Theorem 14].) 

Two other important "mapping theorems" are known for spaces of 
point countable type. (1) A closed image of a metric space is metriz-
able if the image is of point countable type. (This result of Arhan-
geFskii [12] improves a well-known theorem.) (2) Filippov's theorem 
[115] : a quotient image of a space with a point countable base has a 
point countable base if the image is of point countable type and if 
preimages of points are second countable subspaces of the domain. 
(These results in turn have been improved by Michael — see below.) 
In regard to a "problem" stated above, Vaughan (and Coban) [386] 
have pointed out that a perfect image of a first countable space need 
not be of point countable type nor even of pseudopoint-countable type. 
(See also [353, p. 135].) 

C. J. R. Borges proved a very nice theorem for spaces of point 
countable type. He showed that if X is the adjunction space of two 
metrizable spaces, then X is itself metrizable if it is of point countable 
type. Additionally, he proved a sum theorem for metrizability: If X 
is of point countable type and if X is dominated (in the sense of 
Michael) by a collection of metrizable subspaces, then X is metriz
able. These and related results appear in [70]. 

Since a Hausdorff space of point countable type is a Zc-space (this 
is more difficult to prove than one would expect [ 15, p. 37] ) and 
since both spaces of point countable type and fc-spaces have been 
characterized as images of Hausdorff paracompact M-spaces under 
different mappings (also compare the result of D. Cohen mentioned 
above), Michael [267] has defined and studied some intermediate 
classes of spaces, yielding: 

^ . , , i . i countably singly 7 

countab le—• bi-Ac • , . , J • , ?/ *- k. 
type 

This sequence of concepts also fits directly above diagram (1) given 
previously with additional implications in an upward direction. 
(See diagram (2) in Section 3.) Michael [267] has found that the 
mapping theorems regarding metrizability and point countable base 
quoted above for the case of point countable type are in fact true 
assuming only countably bi-k (or even a weaker condition). 
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With what we have seen, a question arises whether in fact countably 
bi-fc, say, is a "nicer" condition than point countable type. In fact in 
1964, almost simultaneously with Arhangel'skii's introduction of 
spaces of point countable type, Michael introduced (/-spaces and 
proved that a closed image of a metric space is metrizable if the image 
is a 9-space [267, 259]. Thus (/-space is another concept which chal
lenges the importance of point countable type. It appears difficult 
to determine the relative value of these concepts; however it might be 
pointed out that in the presence of paracompactness, (/-spaces and 
spaces of point countable type are equivalent. Thus the result of 
Michael concerning the metrizability of a closed image of a metric 
space is essentially the same as the result of Arhangel'skii quoted 
before. 

(This paragraph is an aside which the reader may omit.) Several 
other, somewhat related, though less important, concepts have been 
introduced in efforts to find the weakest conditions needed to prove 
certain interesting results. Michael's (/-space is one example, another 
is condition (fc0), which was introduced as a condition for the count
able product of M-spaces to again be an M-space. Let us pause to 
examine this more carefully. An M-space (respectively paracompact 
M-space) is a quasi-perfect (respectively perfect) preimage of a metric 
space as we have partially mentioned above. This in itself indicates 
than an M-space is a "nice" concept. However, the product of two M-
spaces need not be an M-space unless the M-spaces also satisfy con
dition (fc0). Thus the question arises whether a "nicer" concept is: 
M-space satisfying condition (fc0). Probably not, but we do have the 
question here and elsewhere. In particular it is clear from the defini
tions (which we need not give in this aside) that for spaces satisfying 
condition (fc0), (1) countably compact = space of class £* of Noble 
[301], (2) M-space = space of class (£ of Ishii, Tsuda, and Kunugi as 
Chiba [88] points out, and (3) (/-space = r0-space. Note also that 
(1) implies (2) implies (3), and r0-space implies condition (fc0). Now 
returning to Michael's (/-space and related concepts we point out to 
the reader that in Michael's paper [267] the "nicer" concepts seem to 
be those in our diagram (2) of Section 3 though various weaker proper
ties are also given in his paper which suffice for proving some results 
(strict q — q, point countable type — r, countably bi-k — property (a) 
of Michael's Proposition 4.E.5, etc.). Thus again it is not clear which 
concepts are really "nicer". 

Another concept which has been considered for some time, though 
namelessly until recently, is accumulation complete. This is just the 
Fréchet property for countable subsets; thus a countable space is 
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accumulation complete iff it is Fréchet. But a space need not be 
countable for this equivalence to hold. Not only will a sequential 
space do, but a space need only have countable tightness. Thus, if a 
space has countable tightness and every countable subset is Fréchet, 
then the space is Fréchet (there are related results stated in Section 
3). This and a like condition (spaces determined by countable closed 
subsets) were first introduced by Moore and Mrowka in 1964 [273] 
and have been reintroduced in recent years under other names. For 
Hausdorff spaces we have: 

determined by , , 
L. , *. i i countable 

sequential • countable • . , ,_ 
i j i tightness. 

closed subsets ö 

If a space is compact Hausdorff and determined by countable closed 
subsets, then the space is sequential [273]. 

We now state some open problems on this topic. (1) (Franklin) Does 
Hausdorff + compact + countable tightness imply sequential? (2) 
(Franklin and Rajagopalan [126]) Does regular + sequentially com
pact + countable tightness imply sequential? (Compare example 45 
and notice that as pointed out in [126], the Proposition of [122] is 
false and Theorem B is an open problem. However if the answer to (2) 
is positive then the answer to (1) is also positive for any space of car
dinality < 2Nl, by the Corollary of [122].) (3) (Franklin [122] ) Does 
regular + countable tightness imply determined by countable closed 
subsets? (Compare example 44). (4) Does Hausdorff + countable 
tightness (or even a countable space) H- k0 imply Zc-space? (The 
answer is positive if k0 is replaced by k0' *n this statement.) (5) For 
Hausdorff spaces, is hereditarily k0 equivalent to accumulation com
plete? If the answer to (4) is affirmative, then this answer is also 
affirmative because if S is a sequence with accumulation point p in a 
hereditarily k0 Hausdorff space X, then S U { p } is a Hausdorff k0 

countable space, thus a A:-space hereditarily. So that, by the result of 
Arhangel'skii and Rudin, SU{p] is Fréchet. Thus there exists a 
sequence in S, and so in X, which converges to p. (6) Consider a space 
X having the following property: Whenever a point x is an accumula
tion point of a set A in X there exists a subset C of A such that x is an 
accumulation point of C and C has countable closure. This property 
is clearly "between" the properties of being Fréchet and of being 
determined by countable closed subsets. Is the property in fact held 
by spaces which are determined by countable closed subsets? It may 
easily be seen that a space having property H and having countable 
tightness satisfies this property. (While this paper was in preprint 
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form, V. Kannan has written that he has some solutions to the above 
problems. In regard to the third problem, he has a regular space 
with countable tightness which is not determined by countable closed 
subsets. The example uses elementary measure theory. Regarding 
the fourth problem he has a countable Hausdorff fc0 space which is not 
a k space. And regarding the fifth problem, he has proved the state
ment affirmatively.) 

Considering cardinal numbers other than Ko is yet another means 
of generalizing first countability. We lead into this discussion by first 
discussing countable pseudo-character. Clearly every E0-space 
(i.e., a space in which each point is a Gô-set) is a 7\-space, and every 
regular E0-space is an E r space (though there exists a homogeneous 
Hausdorff E0-space which is not an E rspace [124]). (Anderson [6] 
points out that a completely-regular space is an E0-space iff each point 
is a zero-set for some real-valued continuous function.) These two 
conditions have the advantage of usually being easily verifiable for 
a given example of a space, and additionally, spaces with a G8-diagonal 
(i.e., the diagonal is a Gs-subset of the product of the space with 
itself) are E0-spaces. Since for E0-spaces or EL-spaces certain pairs of 
conditions become equivalent — these may be seen in Section 3, but 
as an example we mention that an E0-space of point countable type is 
first countable — these properties are useful for determining the condi
tions that particular examples satisfy. 

The result just quoted concerning point countable type is interest
ing—and it also generalizes to higher cardinality. Its history goes 
back to about the 1920's when Alexandroff and Urysohn in their 
memoir and also Chittenden [89] proved that a locally compact 
Hausdorff space is first countable iff each point is a Gs-set. Some of the 
relations among cardinality concepts are given in Section 3, and we 
have already stated Arhangel'skii's solution of the Alexandroff and 
Urysohn problem. However, Arhangel'skii proved more generally, that 
every Hausdorff space has cardinality strictly less than the Lindelof 
degree times the character of the space, where the Lindelof degree is 
the smallest cardinal number m such that every open cover of the 
space has a subcover of cardinality m or less. (See also Comfort's 
survey [99].) 

Fréchet and sequential spaces, as well as other spaces discussed in 
this survey, have also been considered with arbitrary cardinality (For 
example, Meyer has shown that every space having countable tight
ness is 2 °-Fréchet, and has pointed out that example 51 shows that 
the converse is false.) These will not be considered in this survey, but 
the reader may refer to the works of Meyer, and also [26, 28, 30, 34, 
127,142,169,186,187,204,272]. 
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As our final consideration we will discuss a space satisfying the 
weak first axiom of countability whose definition seems to indicate 
that the concept deserves more attention than it has received. This 
means of generating a topology does have some interesting properties. 
(1) Every accumulation complete space which satisfies the weak first 
axiom of countability is first countable. (2) A space which satisfies the 
weak first axiom of countability hereditarily is first countable. (See 
also [354 or 353 IV D].) Means of weakening metrizability by modify
ing the concept of a metric have also been attempted for some time. 
A space which has an o-metric is in fact equivalent to a space satisfying 
the weak first axiom of countability. Nedev has done considerable 
work on this topic from the point of view of o-metrizability. 

For categorical approaches to the concepts in this survey see: 
Franklin [123], Herrlich [170], Herrlich and Strecker [172], and 
Kannan [187]. 

3. Some Relations Among the Concepts. For the greater ease of 
the reader in finding and also in comparing results, we present much 
of this section in an informal "diagram" form. The statements in (8) 
and elsewhere are understood in the sense of the following example: 
If a space X has countable tightness, then X is an accumulation com
plete space iff X is a Fréchet space. The reader should note that many 
of the following results are true only with the assumption of the Haus-
dorff axiom. 

A few of the results stated have not appeared in the literature and 
proofs of these are indicated at the end of the section. There the reader 
may also find credits for the known results. (Charts (22) and (23) are 
of interest in this survey because they indicate characterizations of 
some of the classes of spaces discussed here. However, it does not 
seem justified to define the large number of mapping concepts given 
in these charts. The reader interested in the subject may consult the 
references which are suggested after the charts.) 
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(See (13) and (14) in regard to this diagram.} 

cd 

to ci 

• H O 

m u 



28 F. SIWIEC 

accessibility 

Frechet = sequential + Z 

A diagram of concepts defined by sequences (and some related 
concepts). (4) 
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'R-
-*> k 

R 
— b 

R 

sequential-

A diagram of concepts defined by functions. (3) 

A non-discrete pseudo-finite space (a space in which each compact 
subset is finite) is not weakly-fc (thus also not a fc-space). (5) 

A completely regular space with a non-isolated P-point (in the 
sense of Gillman and Jerison [ 136] ), or a space with a non-isolated 
point such that every G8 containing the point is a neighborhood of the 
point, does not have countable tightness. (6) 

If a space X has countable tightness and every countable subspace 
of X has property P, then X also has property P, for P being: weakly-fc, 
k ', Fréchet, countably bi-sequential. (7) 

(k0 = weakly-A: 

countable J k0' = k ' 
tightness *~ j 

1 accumulation _ „ , , 
I complete 

determined by countable closed subsets + k = sequential 

hereditarily k0' = accumulation complete 
hereditarily k = Fréch et 

(8) 

(9) 

(10) 

accessibility 

quasi-fc = singly bi-quasi-fc 

k0' (+ regular) = accumulation complete 

k =k' 

sequential = Fréch et di) 
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strong 
accessibility { 

or 
KFC 

- • < 

sequential 

fco 

fc 

singly bi-fc 

fc' 

countably bi-fc 

strongly fc ' 

bi-fc 

= strongly fc ' 

= countably 
bi-sequential (12) 

= accumulation complete 

= sequential 

= Fréchet 

= Fréchet 

= countably bi-sequential 

= countably bi-sequential 

= bi-sequential 

V 
point countable type = first countable 

-* first countable £0 + q + regular 
(See diagram (2) in regard to the above results and also compare 
(20e).) 

Ei - • < 

| quasi-fc 

singly 
bi-quasi-fc 

countably 
bi-quasi-fc 

bi-quasi-fc 

q 

^strict q 

= sequential 

= Fréchet 

_ countably 
bi-sequential 

= bi-sequential 

= first countable 

= first countable 

(13) 

(See diagram (2) in regard to the above results.) 

The following are equivalent: 

(14) 

(a 
(b 
(c 
(d; 
(e 
(f 
(g: 
(h 
(i) 

0) 
(k 

Fréchet, 
property K, 
hereditarily a fc-space, 
sequential + accessibility, 
sequential 4- Z, 
sequential + accumulation complete, 
countable tightness + accumulation complete, 
countable tightness + hereditarily fc0', 
countable tightness 4- fc0' + accessibility (if regular), 
fc ' + property H, 
k + accessibility. (15) 
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The following hold: 

(a) If X is a space which is sequential but not Fréchet, then X con
tains a subspace which, with the sequential closure topology 
(sequentially closed sets are closed), is homeomorphic to 
example 25 of Section 4. 

(b) If X is a space which is Fréchet but not countably bi-sequential, 
then X contains a subspace which is homeomorphic to example 
9 of Section 4 (the sequential fan). (16) 

The following are equivalent: 
(a) first countable, 
(b) for each point x there is a sequence {£/;} of neighborhoods of x 

such that whenever a point x{ (E £7$ for each i, the sequence {x }̂ 
converges to x, 

(c) E0 + point countable type, 
(d) Ey + q (or + strict g), 
(e) accumulation complete + weak first axiom of countability, 
(f) accessibility + weak first axiom of countability, 
(g) Fréchet + weak first axiom of countability. (17) 

If a space is Fréchet + countably bi-quasi-fc + regular, then it is 
countably bi-sequential. Thus a compact Fréchet space is countably 
bi-sequential. If a space is compact + perfectly normal, then it is first 
countable. (18) 

A space which is countable + regular + q is a separable metrizable 
space. (19) 

For a space X, the following relations hold: 
(a) W ë X X i wX. 
(b) ^ X g |X|. 
(c) XX ^§ 26X, if X is a regular space. 
(d) If K is a compact subset of X, X(K, X) ^ ra, and X(x, K) = ra for 

x G X , thenX(x, X) â ra. 
(e) XX = ^X, if X is of point countable type, or if there exists a cover 

{K„} of compact sets with X(K«, X) ^ ^X. Compare (13). 
(f) |X| ^ 2LX x x. Thus, if X is compact + first countable, then 

\X\^c. 
(In the above, |X| is the cardinality of X, XX is the character of X, 
ÔX is the density of X (i.e., the least cardinality of a dense subset of X), 
LX is the Lindelof degree of X (i.e., the least cardinal number ra such 
that every open cover of X has a subcover of cardinality ra or less), 
^ X is the pseudo-character of X, and wX is the weight of X (i.e., the 
least cardinality of an open base for X). See Comfort [99] for an 
excellent survey of cardinality concepts.) (20) 
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For a completely regular space X, X(x, X) = X(x, ßX) for every x in 
X; X(x, ßX) is uncountable for every point x ofßX — X. (21) 
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Credits and proofs for the above results. 
Diagram (2) is taken from Michael [267] ; most of diagram (4) is 

from Aull [39] ; the fact that a space which is k + S4 belongs to 91, in 
diagram (4), is similar to a result of Isiwata [182, Theorem 1.3] which 
the reader may verify by modifying Isiwata's proof. (Isiwata has more 
on this last subject. See also Scarborough [345, Corollary 5], Nadler 
[288], Hanai [152, Theorem 3], and Noble [302, 303, 307]. A partial 
converse of Hanai [152, Theorem 4] may be improved somewhat to 
say: If X is a 7\ non-discrete space having countable tightness and Y 
is a space such that the projection of X X Y onto X is closed, then Y is 
countably compact. A related result is also in [345, Corollary 5, and 
288].) 

Result (5) is easily proved and may be left to the reader. Statement 
(6) is due to Paul Meyer. 

The Fréchet and countably bi-sequential cases of (7) and (8) are 
proved by Michael in [267]. Noting that for countable spaces: k0 = 
weakly-fe and k0 ' = k ', the proofs of the other cases are trivial. 

Result (9) is due to Kannan [187]. The second statement of (10) is 
a well-known result of Arhangel'skii [23] and independently, of Mary 
Ellen Rudin (see [399] and [244] ), while the first statement of (10) 
is an immediate corollary. 

It is easily proved that a regular + accessibility + k0' -space is accumu
lation complete. The other parts of (11) and (12) follow immediately 
from the mapping characterizations of the spaces given in charts (22) 
and (23). 

The results of (13) and (14) with the £0-space and Ex-space assump
tions have been discussed by several researchers; see Michael [267 
Section 7] in particular. The writer showed in [351 or 353] that the 
E0 space assumption could be replaced by the assumption of a KM-
space (i.e., a space in which every compact subspace is metrizable). 
Here we show a better result, that KFC-space suffices. (Notice that 
every E0-space is a KFC-space by (20e).) The cases of a fc0'-space, 
fc-space, and space of point countable type easily follow directly from 
the definitions and (20d). The three "bi-k" cases may be proved direct
ly or in the manner of the following: If X is a space which is bi-fc and 
KFC then, by results given in Michael [267, Theorem 3.E.3, etc.], 
the space X is a bi-quotient image of a paracompact M-space Z which 
is a subspace of X X M for some metric space M. Then Z is a KFC-
space because if K is compact in Z, then its projection TTI(K) into X is 
compact in X. Since X was assumed to be KFC, TTI(K) X M is first 
countable, so that the subspace K is also first countable. But a para-
compact M-space is known to be of point countable type [267], so 
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that Z which is KFC and of point countable type is first countable by 
what we have mentioned above. The space X being a bi-quotient 
image of the first countable space Z is then bi-sequential [267]. The 
two remaining cases of (13) are now trivial. Notice that the results 
of (14) expect for the g-space case may be generalized in a like manner. 
In particular the E !-space assumption may be replaced by the assump
tion that every countably compact subspace is first countable. 

The equivalence of Fréchet to (b) and (c) of (15) is (10) above. The 
equivalence to (d) is a repeat of (11), (e) is due to Aull [39], (f) is due 
to Howes and Chandler [175], (g) is a repeat from (8), (h) follows from 
(10), while (i) follows from (11). The last two conditions are due to 
Shirley [346] and Aull [44]. Result (a) of (16) is due to Franklin 
(see example 25 of Section 4), while (b) is a variation of some yet un
published work of P. Harley and K. van Doren dealing with metriz-
ability. We will prove this result here. Thus, let X be a space which is 
Hausdorff, Fréchet, but not countably bi-sequential. We wish to show 
that X contains a subspace homeomorphic to example 9. Since X is 
not countably bi-sequential, there exists a decreasing sequence {An} 
of sets having a common accumulation point x0 and such that no 
sequence {xn} with xn G A„ for all n, can converge to x0. Let 
{xn ̂  be a sequence of distinct points of Ax converging to x0. There 
exists an i2 G N such that i2 > 1 and no subsequence of {xn

1}, which 
is contained in A^, can converge to x0. Let {xn

2} be a sequence of 
distinct points of A^ converging to x0. Thus {xn

2} may be assumed to 
have no points in common with the sequence {Xn1}. There exists an 
i3 G N such that i3 > i2 and no subsequence of {xn

1} and {xn
2}, which 

is contained in Aig, can converge to x0. Continuing this procedure, we 
obtain xn

j, and we may set X ' = {x0, xn
j \j, n G N}. Then for each j , 

there are at most finitely many points xn
j which are not isolated in X '. 

For the proof of this, suppose there is a j G N for which there are 
infinitely many xn

j not isolated in X' . Denote these by D. Then each 
xn

j of D is an accumulation point of X'. Since X' is Fréchet, there is a 
sequence S,-n in X ' which converges to xn

j. Clearly Sjn has only finitely 
many points in common with each sequence {xm

k \m G N}. We may 
assume that Sjn was chosen to be contained in {xm

k | k ^ n, m G N}. 
Let S be the union of all these Sjn (for xn

j G D), with {x0} U D removed 
from S. Then x0 is an accumulation point of S. Since S is Fréchet, there 
is a sequence in S which converges to x0. But then this sequence has 
only finitely many points in common with each sequence {xm

k j m G N}. 
Let S' be a subsequence having at most one point in common with 
each {xm

k \ m G N}. Let S" be S ' with a repetition of terms, if neces
sary, so that S" has an element yn of each An with S" = {yn \ n G N}. 
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Then yn —> x0 which contradicts the original assumption. Thus, for 
each j there are at most finitely many points xn

j not isolated in X'. 
Let X" consist of the isolated points of X' union {x0}. Then X" has x0 

as its only non isolated point. To show that X ' is example 9, let G be 
an arbitrary open neighborhood of x0 in the topology of example 9. 
Then X" - G is of the form U {Dj \j G N}, where each Dj C 
{xn

j \n G N}. By Theorem 5.1 of Olson [312], since each Dj is closed, 
their union is closed in X, and so also closed in X". Thus G is open in 
X". 

A countable regular space is easily seen to be an Ej-space, thus (19) 
follows from (17d). Results (d) and (e) of (20) are due to Coban [91, 
90, p. 143], while (f) is due to Arhangel'skii [26] (see also [28, 99, 
322, 340] ). The results of (21) may be found in Wilansky [406, p. 151 
#209 and p. 195 #112]. 

Chart (22) may be found in [352, 356, and 399]. In chart (23) almost 
all the spaces X characterized have the property that the discrete 
union referred to consists of the discrete union of all subspaces of X 
of the stated type. The "sequential" entries are due to Franklin [118], 
the "Fréchet" entries to Arhangel'skii [ 13], the "countably bi-sequen-
tial" entries to Siwiec [352]. The "bi-quotient" column is due in whole 
or in part to Michael [267] and Morita [274]. In the "compact" row 
the first entry is due to Morita [274], the second to Arhangel'skii [15], 
and the third to Siwiec [352]. The "paracompact M-space" row is 
due to Michael [267], the following row to Rishel [331] and Kannan 
[ 187]. The chart appearing here is very similar to a chart of Kannan 
[187, p. 164] and a chart of Michael [267] to which the reader might 
also refer. Charts (22) and (23) are taken from [353]. 

4. The Examples. In this section we present a number of examples 
of Hausdorff, non-first countable spaces gathered from the literature. 
The properties which the following examples satisfy are given in a 
chart which follows. Some good references for additional examples 
are Franklin [118 and 120], Franklin and Rajagopalan [126], Michael 
[267], and Steen and Seebach [361]. 

1. The one-point compactification, R*, of R, where R is the set of 
real numbers with the discrete topology [361, #24] . By Michael [267, 
Example 10.15] this space is bi-sequential. It is in fact a perfect image 
of a first countable space (the space given in Bourbaki [72, Exercise 
2.13d] ). 

2. Let Z be the unit square with lexicographic order and the order 
topology [361, #48] , let Y = Z X Z, K the diagonal in Y, and X = 
Y/K (The space Y/K is the quotient image of Y under the mapping 
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/ which identifies K to a point. In other words, Y/K = (Y — K)rU 
{p} where p is a point not in Y — K, f : Y—> Y/K is defined by 
f(x) = x for all x in Y — K while f(x) = p for x in K, and Y/K 
has the topology obtained by requiring / to be a quotient mapping.) 
Then X is a perfect image of the space Y (a compact first countable 
space), and X is not first countable because K is not a G6-set in Y. [267, 
Example 10.4]. 

3. The ordinal space [0, a^), where (ÜX is the first uncountable 
ordinal, with the set of countable limit ordinals identified to a point 
(see example 2 above for "identified to a point"). This is Y of example 
3.3 in [259]. 

4. The space X/S described in remark 3.3 of Borges [69]. 
5. The space X/K where K is the closed unit interval in the x-axis 

and X is the example of remark (2) on page 105 of Heath [160]. 
6. The space X/K where K is the closed unit interval in the ac-axis 

and X is the space of example 12.1 of Michael [260], [267, Example 
10.3]. 

7. The plane with the topology generated by sets of the form U 
where U is an open interval of a line through the origin such that the 
interval does not contain the origin, or U is the union of the collection 
of open intervals each of which contains the origin and such that each 
line through the origin contains one of these open intervals. Example 
C of Bing [60, or 361 #141]. Compare example 13. 

8. The one-point compactification of a discrete space whose car
dinality is a measurable cardinal. Michael [267, Example 10.13]. 

9. A countable space X of Arens [9, the space X on p. 233] com
monly called the "sequential fan". Let Xn = {0,1,1/2, • • •} with the 
usual topology for each n G N. Consider the discrete union of these 
Xn, and let X be the quotient obtained by identifying the zeros to a 
point. See also [15, page 25 Example 2.3, 126, page 311, 252]. This 
is a subspace of example 16. 

10. The second example on page 475 of Duda [ 104]. 
11. The space of rational numbers with the set of integers iden

tified to a point [118, example 1.11]. 
12. The space of real numbers with the set of integers identified 

to a point. 
13. The plane with the topology generated by sets of the form U 

where U is an open interval of a line through the origin such that the 
interval does not contain the origin, or U is an open sphere centered at 
the origin with a finite number of open radii removed. Anderson [6, 
example 3]. Compare example 7. 

14. The plane with the x-axis identified to a point [199, example 
3.R]. 
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15. The first example on page 475 of Duda [104]. 
16. The discrete union of a countable number of copies of the 

closed unit interval, with the point zero in each of the copies identified 
to one point. This space contains example 9 as a subspace. 

17. Okuyama's image space in section 4 of [311]. 
18. The countable, zero-dimensional, homogeneous space of 

Franklin and Rajagopalan [126, example 3.1]. 
19. The zero-dimensional topological group of Franklin and Raja

gopalan [126, example 2.1]. 
20. The discrete union of 2N() copies of example 1, with the point 

at infinity of each copy identified to one point [265, p. 17]. 
21. The one-point compactification of the space ^ of Isbell. Frank

lin [120, example 7.1]. 
22. The real numbers provided with the topology generated by the 

union of the usual topology and all sets of the form U U {0}, where 
U is a usual open neighborhood of the sequence {Un}. Franklin 
[118, example 1.8]. 

23. Let X be the real line, let f(x) = x if x is not a positive integer, 
and let f(x) = — 1/x otherwise. The image space, with the quotient 
topology, is the example of T'ong [381, example 1, or 18, example 
2.2]. 

24. Ceder's example 9.3 in [83]. 
25. This is a countable space due to Ar ens [9, Y on page 233] or 

see Franklin [120, example 5.1]. Franklin has shown that every space 
which is sequential but not Fréchet contains a subspace which, with 
the sequential closure topology, is homeomorphic to this example. 
(In the sequential closure topology every sequentially closed set is 
closed.) The space X = (N X N) U N U {0} with each point of 
N X N a n isolated point. A basis of neighborhoods o f n E N consists 
of all sets of the form {n} U {(m, n) | m ^ ra0}. And U is a neighbor
hood of 0 iff 0 G U and U is a neighborhood of all but finitely many 
n G. N. Example 38 is the subspace obtained by deleting N from X. 

26. The radial topology of the plane: a set U is open iff for each 
point p of U, U contains a line segment through p in each direction. 
The space is separable, but not Lindelöf and not regular. [410]. 
Compare example 28. 

27. The product space of the space of example 12 with a closed 
unit interval. Franklin [ 120, example 7.4]. 

28. The Archimedean topology of the plane: a set is open iff its 
intersection with each horizontal line and each vertical line is a set 
open in the usual topology of the line [ 15, page 30 and page 58; also 
256]. Compare example 26. 
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29. The space Xl of example 3.2 on page 35 of [ 15]. 
30. The countable, zero-dimensional space S^ of Arhangel'skii and 

Franklin [34], which has no point of first countability. 
31. An example of Kofher [209, example 2, or 210, example (9.2)]. 
32. A countable example of Kofher [209, example 3]. The product 

of this space with itself is not a /c-space. 
33. Example 4 of Kofner [209]. 
34. An example of Arhangel'skii [18, p. 149, example 5.1, or equi-

valently, 20, p. 1260]. 
35. The product space of the real line with example 11. Michael 

[260, example 12.6]. 
36. The product space of the space of example 16 and a closed unit 

interval. Michael [267, example 10.2]. 
37. A countable, connected, nowhere first countable example of 

Kannan [ 189, Theorem 3]. 
38. The countable pseudo-finite (every compact subset is finite) 

example of Arens. [9 the space Z on page 234, or 199, Problem 2.E]. 
See example 25. 

39. The subspace N U {p} of ßN where p is any point of ßN — N. 
This space is pseudo-finite, not a subspace of any sequential space 
[117], and is not of class 91 [212]. See: [136, Problem 6.E.5, or 260, 
example 12.5]. 

40. The product space of the space of rational numbers with the 
space of example 11. Franklin [118, example 1.11, or 260, example 
12.6]. 

41. A countable space of Arhangel'skii identified as example L in 
[ 15, p. 15, example 2.2]. 

42. A countable, zero-dimensional example of Appert [361, #98] . 
43. A countable space of Arhangel'skii identified as example IT in 

[15, p. 57, example 3.5]. No point of the space is a K-point (in the 
sense of Alexandroff and Urysohn), in fact the space is pseudo-finite. 

44. The space is ßN retopologized with a topology generated by the 
union of the usual topology for ßN and the family {IV U {p} | p Œ ßN 
— N}. Franklin [122, Theorem A]. Example 55 is ßN with its usual 
topology. 

45. Example 1.2 of Franklin and Rajagopalan [126]. 

46. An example of Heath [ 162 or 163]. 

47. The product space of the space of rational numbers with the 
space of example 16 [267, Example 10.1]. 

48. An example of Aull [37, example 1]. This is not an E r space 
though it is an £0" sP a c e-
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49. The subspace of [0, «ÜJ, where c^ is the first uncountable 
ordinal, obtained by removing the set of countable limit ordinals 
[ 165, example H on p. 85]. This example of a pseudo-finite space is 
very similar to the following example. 

50. The set of real numbers with an additional point "at infinity". 
A set is closed if it contains the point at infinity or if the set is count
able. This example of Gal [39, example 5 or 352, Problem 2.8b] and 
the preceding example are very similar. 

51. The set of ordinal numbers less than or equal to the first un
countable ordinal with the usual order topology [361, #43] . 

52. The Tychonoff plank in the version with the corner point 
(CUI, (t)0) included [361, #86] . Compare example 60. 

53. The product of 2*° copies of the closed unit interval [361, 
#105, 197, 198]. Priestley shows that this space is badly non-Fréchet 
since it has a countable dense subset that contains no nontrivial con
vergent sequences [323, 324]. 

54. The product of 2No copies of a discrete two point space. 
55. The Stone-Cech compactification ßN of the countable dis

crete space N [361, #111, or 136, example 6.10]. This example is not 
an Hi space [39] and does not belong to class 9t [182, example 2.3]. 
For the character of this space see [ 149]. Example 44 is a modifica
tion of this example. 

56. The Stone-Cech compactification ßQ of the space of rational 
numbers [136, example 6.10]. ßQ does not belong to 9t [182, example 
2.3]. 

57. The Stone-Cech compactification ßR of the space of real num
bers [136, example 6.10]. ßR does not belong to 9t by [182, example 
2.3], 

58. Example 1.1 of Franklin and Rajagopalan [126]. 
59. The Stone-Cech compactification of example 50. This is the 

space Y of [267, Example 10.5]. 
60. The Tychonoff plank in the version with the corner point 

((Oi, o>o) deleted [136, example 8.20, or 257, #87] . Compare example 
52. 

61. The space X in section 4 of Morita [276]. 
62. The space Y in section 4 of Morita [276]. 
63. The product space of [0, c^) with [0, CUJ . [199, Problem 4.E, 

or 165, Example 2.3]. 
64. Example X of Suzuki [372] with Ma = [0, w j and cardinality 

o f A = Ki. 
65. The real line with an open base consisting of the usual open 

intervals with at most a countable set of points deleted. This is a 
pseudo-finite example of Alexandroff and Urysohn [2, example 2]. 
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66. Example 10.5 of Michael [267]. 
67. The space X X Y, where X = {0,1,1/2, • • •} with the usual 

topology and Y is example 9 (the sequential fan). Bagley and Wedding-
ton [47, Theorem 1]. 

68. The example P U N of Novak [361, #112, or 136, example 9.15]. 
69. The product space of 2 N<> copies of the real line. 
70. The modification of Bing's example G by Michael in [258, 

example 2] . 
71. Isiwata's modification ( [183], or the space X of [267] Example 

10.7) of Novak's example, PUN, number 68 above. 
72. Isiwata's modification of Novak's product space (the space 

X X Y of [267] Example 10.7). 
In the chart which follows, the second column refers to the separa

tion axioms which the examples satisfy —note that all examples are 
Hausdorf — with "P" meaning paracompact Hausdorff, "K" meaning 
compact Hausdorff, and"RC" meaning regular and countable. An 
"H" means that the example has the stated property hereditarily, " + " 
means the example has the property, but some subspace does not have 
the property, "—|" means the example has the property, and "— " means 
the example does not have the property. Blanks in the chart indicate 
cases which have not been answered. The letter V denotes the car
dinality of the continuum. However, the continuum hypothesis is at 
times assumed, so that in some cases "c" actually denotes that the car
dinality, m, satisfies Ko < m = e. 
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